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PERFECT COMPACTA AND BASIS PROBLEMS IN TOPOLOGY

GARY GRUENHAGE AND JUSTIN TATCH MOORE

An interesting example of a compact Hausdorff space that is often presented in
beginning courses in topology is the unit square [0, 1]× [0, 1] with the lexicographic
order topology. The closed subspace consisting of the top and bottom edges is
perfectly normal. This subspace is often called the Alexandroff double arrow space.
It is also sometimes called the “split interval”, since it can be obtained by splitting
each point x of the unit interval into two points x0, x1, and defining an order by
declaring x0 < x1 and using the induced order of the interval otherwise. The
top edge of the double arrow space minus the last point is homeomorphic to the
Sorgenfrey line, as is the bottom edge minus the first point. Hence it has no
countable base, so being compact, is non-metrizable. There is an obvious two-to-
one continuous map onto the interval.

There are many other examples of non-metrizable perfectly normal compacta,
if extra set-theoretic hypotheses are assumed. The most well-known is the Souslin
line (compactified by adding a first and last point). Filippov[6] showed that the
space obtained by “resolving” each point of a Luzin subset of the sphere S2 into a
circle by a certain mapping is a perfectly normal locally connected non-metrizable
compactum (see also Example 3.3.5 in [37]). Moreover a number of authors have
obtained interesting examples under CH (or sometimes something stronger); see,
e.g., Filippov and Lifanov[7], Fedorchuk[5], and Burke and Davis[3].

At some point, researchers began to wonder if there is a sense in which minor
variants of the double arrow space are the only ZFC examples of perfectly normal
non-metrizable compacta. A first guess was made by David Fremlin, who asked if
it is consistent that every perfectly normal compact space is the continuous image
of the product of the double arrow space with the unit interval. But this was too
strong: Watson and Weiss[38] constructed a counterexample (which looked like the
double arrow space with a countable set of isolate points added in a certain way).
Finally, the following question, also due to Fremlin, became the central one:

Question 1. [10] Is it consistent that every perfect compactum admits a continuous
and at most two-to-one map onto a metric space?

We call a space which does admit an at most two-to-one continuous map onto a
metric space premetric of order 2.

Gruenhage noticed a close connection with what is now being called the “basis
problem” for uncountable first countable spaces:

Question 2. Is it consistent that every uncountable first countable regular space
contains either an uncountable discrete subspace, or a fixed uncountable subspace
of the real line or of the Sorgenfrey line?

In other words, might there be a three-element basis for uncountable first count-
able regular spaces? One might be tempted to remove the requirement of first
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countability in this question, but this is not possible by Moore’s ZFC L-space [19].
It’s clear that if there is any three element basis, it must be the three mentioned in
Question 2. The connection to Fremlin’s problem is this: a positive answer to the
basis problem for first countable spaces implies a positive answer to Fremlin’s con-
jecture, and Fremlin’s conjecture is equivalent, under PFA, to the basis conjecture
for subspaces of perfectly normal compacta[13].

As is suggested by some previous partial results, it is possible that PFA or Mar-
tin’s Maximum MM could imply positive answers to these questions. Fremlin[9]
showed that under MM, any perfectly normal compactum admits a map to a met-
ric space M whose fibers have cardinality two or less on a comeager subset of M.
Gruenhage[12] showed that even without first-countability, PFA implies a positive
answer to the basis problem in the class of cometrizable spaces1 (later, Todorcevic
[33] proved that this follows from OCA, a consequence of PFA).

It turns out that there is an axiom, namely Woodin’s Axiom (∗) [39], which
is a provably optimal set theoretic hypothesis in the sense that if either of these
questions can be shown to have a positive answer in some suitably robust model,2

then (∗) implies a positive answer. It is important to note that questions for which
(∗) is optimal in this sense are ones which are of a certain logical form and which
reduce to spaces of size and weight not greater than ℵ1. This includes not only
these two questions, but most of the ones that follow. Thus we have decided to
state them in the form “Does (∗) imply...”, though this is of course usually not
the way they originally appeared. In practice, (∗) can be rather difficult to apply
directly; our formulation can be taken to be an essentially equivalent way of asking
if the statements can be proved consistent. See the last section for further discussion
of (∗).

1. Perfect compacta

Predating Fremlin’s problem are two other basic questions about perfectly nor-
mal compacta:

Question 3. (∗) If X×Y is perfect and compact, then is either X or Y is metriz-
able?

Question 4. (∗) Is every locally connected perfect compactum metrizable?

The first question is due to Przymusinski[22] and the variant of the second which
asks if MAℵ1 gives a positive answer has been attributed to Rudin (see [21]). If (∗)
implies a positive answer to either the basis problem or to Fremlin’s problem, then
both of these questions also have positive answers[11][13].

A consistent positive answer to Question 4 would imply a consistent positive
answer to the following question, which appears in [17]3 (see also Problem 6.12 in
[23]). But in this case we don’t know any consistency results, positive or negative:

Question 5. If a compact convex subset of a locally convex topological vector space
is perfectly normal, must it be metrizable?

1A space (X, τ) is cometrizable if there is a weaker metric topology τ ′ such that every point

has a τ -neighborhood base consisting of τ ′-closed sets.
2In particular, if PFA or MM implies a positive answer or if such an answer can be forced
3The author of this question is not clear; it seems to have already been known to MacGibbon

in [17], but this was the earliest reference we could locate.
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It is perhaps worth noting that Helly’s space of non-decreasing functions from
[0, 1] into [0, 1] with the pointwise topology is compact, convex, separable, and first
countable but not metrizable.

Concerning Przymusinski’s question, suppose that there are disjoint uncountable
A0, A1 ⊆ [0, 1] such that there is no monotonic injection of an uncountable subset
of A0 into A1. Abraham and Shelah have shown in [1] that such pairs of subsets of
[0, 1] can exist in a model of MAℵ1 . On the other hand, Todorcevic proved in [34]
that if X0 and X1 are obtained as in the split interval construction, but with only
the points of A0 and A1 split, then X0 × X1 is perfectly normal. Hence MAℵ1 is
not sufficient for a positive answer to Przymusinski’s question.

Since no uncountable subspace of the Sorgenfrey line is embeddable in a locally
connected perfect compactum[11], a positive answer to the following would give a
positive answer to Question 4:

Question 6. (∗) Does every non-metrizable perfect compactum contains a copy of
an uncountable subspace of the Sorgenfrey line?

The difference between maps with metric fibers and with ≤ 2-point fibers in this
context is unclear:

Question 7. (∗) Does every perfect compactum admit a map into a metric space
with metric fibers?

Question 8. (∗) If K is a perfect compactum which maps into a metric space with
metric fibers, must K admit an at most two-to-one map into a metric space?

A compact Souslin line K is a perfectly normal compactum which does not map
onto a metric space with metric fibers[26]. Filippov’s CH example mentioned in
the introduction admits an obvious map onto a compact metric space with metric
fibers, but is not premetric of order two.

A weaker form of Question 7 can be stated as follows. Suppose that K ⊆ [0, 1]ω1

is a perfect compactum. For f 6= g ∈ K, let ∆(f, g) denote the least α such that
f(α) 6= g(α), and define

T (K) = {f � α : f ∈ K and ∃g ∈ K(α < ∆(f, g) < ω1)}.

Question 9. (∗) If K is a non-metrizable perfect compactum, can T (K) contain
an Aronszajn subtree?

This question appears in [4] along with a number of related questions. See also
Tuncali’s article in this volume.

Question 10. (∗) If X is a perfect compactum and Y ⊆ X2 is scattered, must
Y have Cantor-Bendixson rank less than ω1? What if Y is assumed to be locally
compact?

Assuming CH, Gruenhage has constructed an example of a perfect compactum
X whose square is a hereditarily normal, hereditarily separable space [14]. In fact,
X is premetric of order 2 and X2 contains a locally compact, locally countable S
space. It is possible to show, however, that Question 10 has a positive answer for
compacta which are premetric of order 2 ((∗) is required for this deduction).

It is also not known if Fremlin’s problem can be reduced to the 0-dimensional
case, which motivates the following two questions, the latter suggested by Todor-
cevic.
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Question 11. Is it consistent4 that every perfect compactum is the continuous
image of a 0-dimensional perfect compactum?

Question 12. (∗) Does every non-metrizable perfect compactum contains a closed
subspace with uncountably many clopen sets?

2. Uncountable spaces

Call a space X functionally countable if every continuous real-valued function
defined on X has countable range.

Question 13. (∗) Is every first countable hereditarily functionally countable space
countable?

Question 14. (∗) Does every uncountable functionally countable subspace of a
countably tight compact space have an uncountable discrete subspace?

Obviously any uncountable hereditarily functionally countable space has count-
able spread, and a first countable example is a counterexample to the basis con-
jecture. Any uncountable left-separated subspace of a Souslin line is a consistent
example of such a space. Currently the only known ZFC example of an uncount-
able functionally countable space with no uncountable discrete subspace is Moore’s
L-space, which is hereditarily functionally countable. Assuming MAℵ1 , it is known
that there are no first countable L-spaces[24] and that any compactification of an
L-space maps continuously onto [0, 1]ω1 [8, 44A] (see [29, p.68]). Under (∗), any
functionally countable first countable space of countable spread must be both hered-
itarily Lindelöf and hereditarily separable, and any uncountable one would also be
a counterexample to the basis conjecture.

Question 15. Is it consistent that every uncountable first countable space of count-
able spread either contains an uncountable subspace of the Sorgenfrey line or has a
countable network?

If a positive answer to this question is consistent with MAℵ1 , then this would also
give a positive answer to the basis question, since MAℵ1 implies that any uncount-
able space with a countable network contains a uncountable separable metrizable
subspace [12]. As with the basis conjecture, under PFA[12] (or even OCA[33]), this
question has a positive in the class of cometrizable spaces, even without the first
countable assumption.

Question 15 is related to some other questions concerning when spaces have a
countable network. Recall that a subset Y of a space X is weakly separated if one
can assign to each y ∈ Y a neighborhood Uy of y such that y 6= z implies y 6∈ Uz

or z 6∈ Uy. Note that if X has a countable network, then X does not contain
an uncountable weakly separated subspace. The converse of this was asked by
Tkachenko [25]:

Question 16. Is it consistent that a space with no uncountable weakly separated
subspace must have a countable network?

4(∗) may not necessarily be an optimal hypothesis for giving a positive solution to this problem,
since we cannot assume without loss of generality that the space has weight ℵ1. It still seems

likely, however, that a forcing axiom is an appropriate hypothesis to yield a positive solution.
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Unlike Question 15, this is open even in the non-first countable case. Todorcevic
discusses this question in [33] and states without proof that under PFA, if no finite
power of a space X has an uncountable weakly separated subspace, then X has
a countable network. Juhasz, Soukup, and Szentmiklóssy[15] obtained the same
result under MAℵ1 for spaces of size and weight ≤ ℵ1. Note that it follows that
under PFA (under MAℵ1 for spaces of size and weight ≤ ℵ1), Question 15 and
Question 2 are equivalent.

The following also remain unsolved:

Question 17. (a) Is it consistent that X has a countable network if X2 has no
uncountable discrete subspace? (b) What if Xω is hereditarily separable and hered-
itarily Lindelöf?

Question 17(b) is an old question of Arhangel’skii[2]. Todorcevic[33] has shown
that there are cometrizable counterexamples to these questions, as well as Ques-
tion 16, as long as b 6= ω2. These questions are also open in the the first countable
case, and in that case, a positive answer to Question 15 with PFA implies a positive
answer to these as well.

3. Approaches, axiomatics, further reading

It should be emphasized that analysis of these problems would benefit greatly
from a combinatorial reformulation or approximation, particularly one which is
Ramsey theoretic in nature. If there are positive solutions, Todorcevic’s method
of building forcings with models as side conditions will likely provide the basic
framework. The standard source is [33]; further reading can also be found in [27]
and [31]. The methods of [18] can be considered as a continuation of this theme.

In [30], Todorcevic has given positive answers to Fremlin’s question and the basis
problem in the rather broad class of spaces that can be represented as relatively
compact subsets of the class B1(X) of all Baire class 1 functions on some Polish
space X endowed with the topology of pointwise convergence. Compact subsets
of such B1(X) are sometimes called ’Rosenthal compacta’ since one interpretation
of the famous Rosenthal `1-theorem says that the double dual ball of a separable
Banach space containing no copy of `1 equipped with the weak* topology is one
example of such a compactum. The class also contains the split interval, the one
point compactification of a discrete set of size at most 2ℵ0 , and is closed under the
operations of taking countable products and closed subspaces. Todorcevic proves
that if K is a Rosenthal compactum with no uncountable discrete subspaces, then
K is perfect and premetric of order at most 2; moreover, if K is not metrizable,
then it contains a full copy of the split interval.

Unlike the broader class of regular spaces, questions about Rosenthal compacta
can typically be settled in the framework of ZFC. The analysis in [30], however, has
a strong set theoretic theme and a number of the arguments presented there may
give some insight into how to approach some of the problems in this article. The
reader may also find [35] and [36] informative in a similar manner.

While a complete understanding of Woodin’s axiom (∗) is probably not necessary
for an analysis of these problems, it is worth making a few more remarks about it.
Axiom (∗) is the assertion that L(P(ω1)), is a generic extension of L(R) by the Pmax

forcing. Many questions in this article can be cast in the language of H(ℵ+
1 ) — the

collection of sets of hereditary cardinality at most ℵ1 — since it is often possible to
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assume without loss of generality that the weight and possibly the cardinality of the
space is at most ℵ1. Furthermore, the assertions in the questions typically are Π2

in their complexity — they have a pair ∀X∃Y of unbounded quantifiers followed
by bounded quantification.5 The Pmax forcing has the effect of making H(ℵ+

1 )
satisfy all Π2 sentences which are Ω-consistent. Being Ω-consistent is a natural
strengthening of “has a well founded model” — a precise definition can be found in
[39]. For our purposes it is sufficient to say that if a statement can always be forced
over any ground model with sufficient large cardinals, then it is Ω-consistent. All
the forcing axioms and nearly all consistency results in set theoretic topology fit
this description. Large cardinals are needed for the analysis of Pmax but these can
often be avoided in applications if one wishes to obtain consistency results instead.

Another interesting property of the Pmax extension is its minimality. If G is Pmax-
generic over L(R) and X is any new element of H(ℵ+

1 ), then L(R)[X] = L(R)[G].
Since a C-sequence on ω1 can never be in L(R) under appropriate large cardinal
hypotheses, the Pmax extension is always of the form L(R)[C] where C is some
C-sequence on ω1.6 In this context, L(R) is a model in which the Axiom of Choice
fails and which satisfies strong Ramsey theoretic statements (e.g., ω1 is measur-
able and in particular Ramsey’s theorem holds for ω1). This gives a posteriori
explanation as to the role of Todorcevic’s method of minimal walks [32] in building
counterexamples such as Moore’s L space [19]. This method involves an analysis of
a number of two place functions which are recursively defined on C-sequences. It
is likely that this method will be useful in constructing counterexamples related to
the above questions. The reader is referred to [28] for further information.

It also seems plausible that a hypothesis such as the following may be useful in
constructing an informative counterexample to some of these questions:

f: There are continuous fα : α → ω (α < ω1) such that if E ⊆ ω1 is closed
and unbounded, then there is a δ in E such that fδ(E ∩ δ) = ω.

The object postulated by this axiom can naturally be used to strengthen the combi-
natorial objects constructed using the method of minimal walks. Since quantifica-
tion is only over the closed unbounded filter, this axiom cannot be negated by c.c.c.
forcing and hence is consistent with MAℵ1 . It is even immune to Axiom A forcings
and many forcings built using models as side conditions (see, e.g., [33]). It there-
fore cannot be used to construct, e.g., an S space. It has been used to construct a
counterexample to Shelah’s basis conjecture for the uncountable linear orders [20].
Whether f can be used to construct a counterexample can, in general, be used as
a litmus test for whether the more involved methods presented in [18] are needed
to eliminate counterexamples (as opposed to the more user-friendly techniques of
[33]). This axiom was also useful in constructing an L space which later was the
prototype for the ZFC construction in [19].
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sium., 1986 (Z. Froĺık, ed.), pp. 223-230. Heldermann-Verlag, Berlin, 1986.
[12] G. Gruenhage, Cosmicity of cometrizable spaces, Trans. Amer. Math. Soc. 313(1): 301-315,

1989.
[13] G. Gruenhage, Perfectly normal compacta, cosmic spaces, and some partition problems, in:

Open Problems in Topology, pp. 85-90. North-Holland, Amsterdam, 1990.

[14] G. Gruenhage and P.J. Nyikos, Normality in X2 for compact X, Trans. Amer. Math. Soc.
340(2):563-586, 1993.

[15] I. Juhász, L. Soukup, and Z. Szentmiklóssy, Forcing countable networks for spaces satisfying

R(Xω) = ω, Comment.Math.Univ.Carolinae 37,1: 157-168, 1996.
[16] P. Larson, Forcing over models of determinacy, in: Handbook of Set Theory, to appear.

[17] B. MacGibbon, A criterion for the metrizability of a compact convex set in terms of the set

of extreme points, J. Funct. Anal. 11: 385–392, 1972.
[18] J. T. Moore, A five element basis for the uncountable linear orders, Annals of Mathematics

(2) 163: 669-688, 2006.

[19] J. T. Moore, A solution to the L space problem, J. Amer. Math. Soc. 19(3): 717–736, 2006.
[20] J. T. Moore, Persistent counterexamples to basis conjectures, notes of Aug. 2004.

[21] P. J. Nyikos, Problem K.6, p. 385, in Topology Proceedings 7, 1982.
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