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1. Introduction

The question of how many real numbers there are traces all the
way back to the beginning of set theory. It has played an important
role in the development and modernization of the subject throughout
the last century. Cantor, who was the first to consider this problem
[23], was most interested in the question of whether or not |R| = ℵ1,
also known as the Continuum Hypothesis (CH). Of course one can
more generally ask how the cardinality of the continuum relates to any
particular value of the ℵ function. A remarkable empirical discovery
over the last 50 years has been that the assertion |R| 6= ℵ2 is quite rich
in its consequences, while up to the present, the same cannot be said
for any other ℵξ. It is this phenomenon which will occupy our attention
for the duration of this article.

The starting point and inspiration for this article is [112] and in
many ways the present survey can be regarded as an expansion and
update of that article. The intention of this article is not to give a
philosophical argument in favor of |R| = ℵ2. Instead it will collect as
many proofs of ℵ2 ≤ 2ℵ0 and 2ℵ0 ≤ ℵ2 from different hypotheses as
possible and place them in their mathematical context. Whether this
is “evidence” of anything is left to the reader, although it is worth
pointing out that in some cases the hypotheses used in these proofs
are not consistent with each other. The article does not consider the
arguments in favor of, for instance, CH or try to weigh the “evidence”
for it against the “evidence” for any other value of the continuum. The
reader interested in such a philosophical discussion is referred to, for
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instance, [44], Maddy’s [74] [75], Woodin’s [127] [128] and Foreman’s
rebuttal of this argument in [46] (see also [47], [129]).

This article will begin with an examination the relationship between
the Continuum Hypothesis, the Perfect Set Property, and the Open
Coloring Axiom. The classical consequences of CH will be discussed in
Section 3, followed by Woodin’s Σ2

1-Absoluteness Theorem in Section
4. Section 5 will present a more detailed discussion of OCA and Section
6 will outline a Ramsey-theoretic proof of 2ℵ0 = ℵ2. Martin’s Maxi-
mum and its consequences will be over-viewed in Section 7. Stationary
reflection and its impact on the continuum will be described in Section
8. In Section 9, the conjectures of Chang and Rado will be introduced
and related to both the Continuum Problem and stationary reflection.
Woodin’s Pmax-extension will be briefly described in Section 10; Section
11 contains related information concerning well orderings of R which
are definable over H(ω2). Section 12 will discuss some more sophisti-
cated consequences of CH which are related to iterated forcing. The
Semifilter Trichotomy and the principle of Near Coherence of Filters
will be over-viewed in Section 13, along with a discussion of how these
principles may imply 2ℵ0 = ℵ2. The conclusion of the article contains
a long list of open problems.

One omission worth noting is Gödel’s outline of a proof that 2ℵ0 = ℵ2
in [56]. The ingredients of this proof are both diverse and unconven-
tional: the perfect set properties of uncountable Boolean combinations
of open subsets of R, an analysis of strong measure 0 sets, and scales
for Rω. Gödel’s argument was analyzed in detail recently in [21] and
the interested reader is referred there for more information. Many of
these concepts are still poorly understood in spite of the advances in
modern set theory and the “proof” remains incomplete in the sense
that it is not known that the hypotheses needed to carry it out are
consistent (although see [21, §3] for a discussion of this point). The
reference [21] also contains a number of questions which are interesting
but tangential to the present discussion and thus are not included in
the final section.

The notation and terminology in this article is mostly standard. If
X is a set and κ is a (possibly finite) cardinal, then [X]κ will denote
the collection of subsets of X of cardinality κ. If f, g ∈ ωω, then f <∗ g
means that f(n) < g(n) except for finitely many n ∈ ω (similarly one
defines f ≤∗ g). I will use ωω/fin to denote the structure (ωω, <∗).
Suppose that X is an uncountable set. A subset C ⊆ [X]ω is club if it
is the set of all f -closed sets for some f : X<ω → X (here M ⊆ X is
f -closed if f maps M<ω into M). A subset S ⊆ [X]ω is stationary if S
intersects every club. Notice that ω1 ⊆ [ω1]

ω is club. In particular, the
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stationary subsets of [X]ω are a generalization of the stationary subsets
of ω1.

2. The Continuum Hypothesis, the Perfect Set Property,
and the Open Coloring Axiom

A common philosophical justification for CH is that we cannot effec-
tively demonstrate the existence of a subset of R of cardinality strictly
between |N| and |R|. In fact the reason why we cannot effectively pro-
duce an example of such an X is that those X which are Borel or
even analytic have what is known as the perfect set property : they are
either at most countable or else contain a homeomorphic copy of the
Cantor set, also known as a perfect set. In fact, in the presence of large
cardinals, every reasonably definable subset of a Polish space has the
perfect set property. Recall that L(R) is the smallest transitive model
of Zermelo-Frankel set theory which contains all of the reals and all of
the ordinals.

Theorem 2.1. [100]1 If there is a proper class of Woodin cardinals,
then every set of reals in L(R) has the perfect set property.

Now consider the following graph-theoretic assertion for a given sep-
arable metric space X:

OCA∗(X): If G is a graph with vertex set X and whose incidence
relation is open when regarded as a symmetric subset of X2,
then G either admits a countable vertex coloring or else contains
a perfect clique.

This principle first appeared in [45] and was derived from Todorcevic’s
Open Coloring Axiom (OCA) which asserts that every open graph on
a separable metric space is either countably chromatic or else contains
an uncountable clique. Notice that by considering the complete graph
on X, OCA∗(X) trivially implies the perfect set property. Theorem
2.1 admits the following strengthening.

Theorem 2.2. [45] If there is a proper class of Woodin cardinals, then
OCA∗(X) is true whenever X is a separable metric space in L(R).

In fact both CH and OCA follow from the Axiom of Determinacy (see
[63] for an introduction to AD). It is therefore quite interesting that
in the presence of the Axiom of Choice, these two principles take on
a quite different character from each other. CH is equivalent to the
assertion that |R| = ℵ1 — i.e. that there is a well ordering of R in

1Actually this theorem is proved from the hypothesis of a supercompact cardinal
in [100]. The refinement stated here is due to Woodin and can be found in [72].
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which every proper initial segment of the well order is countable. On
the other hand, we will see that not only does OCA refute CH, but
also many of its typical consequences. In fact it is unknown whether
OCA implies |R| = ℵ2.

3. Consequences of the Continuum Hypothesis

There are many uses of CH in mathematics. It is often utilized
to build ultrafilters with special properties, nontrivial morphisms be-
tween structures, and pathological topological spaces. In many cases
the objects constructed have properties which are, to quote Gödel [55],
“highly implausible.” The vast majority of these arguments involve
a recursive construction of length continuum in order to build some
mathematical object of interest. The hypothesis |R| = ℵ1 allows one
to arrange that at each stage of the construction, there have only been
countably many previous stages. This section collects a number of
such consequences of CH. The reader is referred to [101] for additional
examples.

The first example is perhaps overly simplistic, but it illustrates the
basic idea at the core of the more complex constructions.

Theorem 3.1. Assume CH. There is an uncountable subset of R in
which every Lebesgue measure 0 subset is countable and there is an
uncountable subset of R in which every first category subset is countable.

For instance, by enumerating all Borel sets of measure 0, it is straight-
forward to recursively construct a set X which is uncountable but such
that every measure 0 subset of X is countable.

Similarly, one can build the ultrafilter described in the next theorem
of Choquet by enumerating the functions f : ω → ω in a sequence of
length ω1 and then building a base for the ultrafilter by recursion.

Theorem 3.2. [24] [25] Assume CH. There is an ultrafilter U on ω
such that if f : ω → ω then f is either constant or one-to-one on a set
in U .

Ultrafilters with the property stated in this theorem are known as se-
lective ultrafilters and are well studied in the literature [16] [34] [37]
[66] [77].

The next result, independently proved by Christensen and Moko-
bodzki (who was inspired by Choquet’s construction), asserts that CH
implies the existence of so called medial limits.

Theorem 3.3. (see [26], [78]) Assume CH. Then there exists a uni-
versally measurable µ : P(ω)→ [0, 1] which is a finitely additive prob-
ability measure such that µ(F ) = 0 whenever F ⊆ ω is finite.
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Actually CH is a much stronger hypothesis than needed for both of
these theorems; Martin’s Axiom (MA) is sufficient.

The next result shows that CH can have an influence on the phe-
nomenon of automatic continuity and provides a consistent answer to
an old problem of Kaplansky [64].

Theorem 3.4. [30] Assume CH. If X is an infinite compact space
then there is a discontinuous homomorphism of C(X) into a Banach
algebra.

Solovay and Woodin later proved that it is consistent that if X is
a compact space, then every homomorphism of C(X) into a Banach
algebra is continuous; in fact this conclusion follows from Martin’s
Maximum discussed in Section 7 (see [31]). See also [39] for a general
discussion of these results.

In some cases, consequences of CH can actually be shown to be
equivalents of CH.

Theorem 3.5. [85] CH is equivalent to the existence of a surjection
γ : R → R2 with the property that for every t at least one of the
coordinate functions γ1 and γ2 is differentiable at t.

Theorem 3.6. [59] CH is equivalent to the assertion that there is an
uncountable subset of [0, 1]ω with the property that every finite dimen-
sional subset is at most countable.

Theorem 3.7. [101] CH is equivalent to the existence of an uncount-
able subset X ⊆ [0, 1]ω with the property that if Y ⊆ X is uncountable,
then Y is projected onto the interval by all but finitely many of the
coordinate projections.

The following are two typical examples of how CH can be used to
influence the existence of morphisms between structures.

Theorem 3.8. [36] Assume CH. If X ⊆ R has cardinality continuum,
then there exists a Y ⊆ X of cardinality continuum such that if f ⊆
Y × Y is a partial monotone injective function, then

|{x ∈ dom(f) : x 6= f(x)}| < 2ℵ0 .

In particular, CH implies that there are |P(R)|-many pairwise noniso-
morphic ℵ1-dense suborders of R.

Theorem 3.9. [62] Assume CH. If I and J are two proper Fσ-ideals
on ω, then P(ω)/I and P(ω)/J are isomorphic.

These two theorems contrast each other in an interesting way. The
first demonstrates that under CH, there are nonisomorphic suborders of
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R for which there is no apparent obstruction to an isomorphism. In fact
Baumgartner has shown that if CH is true then there is a c.c.c. forcing
extension in which all ℵ1-dense suborders of R are isomorphic [8]. Thus
the reason for the failure of the isomorphism to exist under CH is
not absolute; it simply reflects that there are “not enough” monotone
functions from R to R in models of CH.

On the other hand, in the case of the Theorem 3.9 there is no obvi-
ous reason why there should be an isomorphism between the quotients
P(ω)/fin and P(ω)/I1/n (here I1/n is the collection of subsets of ω
for which the sum of the reciprocals is convergent). CH allows the con-
struction of the isomorphism via a back and forth argument of length
continuum — at each stage of the construction one extends a count-
able partial isomorphism between the two Boolean algebras. Indeed it
is possible to show that there is no isomorphism which is induced by a
function from ω to ω or even an isomorphism between these quotients
which has a Baire-measurable lifting Φ : P(ω) → P(ω) [60]. More-
over, starting from any model of set theory, there is a forcing extension
in which P(ω)/fin and P(ω)/I1/n are not isomorphic [60]. In this
case, the existence of an isomorphism between these two structures
can be “blamed” on there not being enough subsets of ω to prevent the
existence of an isomorphism.

A relative of Theorem 3.9 is the following result of W. Rudin.

Theorem 3.10. [93] Assume CH. There are 22ℵ0 autohomeomorphisms

of the Čech-Stone remainder of ω. Equivalently there are 22ℵ0 automor-
phisms of P(ω)/fin. In particular, there is an automorphism which is
not induced by a function from ω to ω.

As in the proof of Theorem 3.9, the elements of P(ω) are enumerated
in length ω1 and partial automorphisms are constructed recursively.
The construction allows a subset of ω1 as a parameter, so that each
choice of parameter results in a different automorphism.

Unlike in the case of Theorem 3.8, there is no general means to
continue such an inductive construction following uncountable limit
stages. In fact while every countable partial automorphism of P(ω)/fin
can always be extended to an arbitrary element not in its domain, it is
a theorem of ZFC that there are partial automorphisms of P(ω)/fin
of cardinality ℵ1 which cannot be extended to certain subsets of ω.

This is perhaps best understood in terms of model theory. Recall
that a structure A is homogeneous if every partial automorphism of
cardinality less than the domain of A can be extended to an automor-
phism of A (note that this is considerably stronger than what is meant
by homogeneity outside of model-theoretic literature). A structure A
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is saturated if every partial type of cardinality less than the domain of
A is realized in A. Here a type is a collection of n-ary formulas in the
language of A which is finitely satisfiable. We now have the following
theorem.

Theorem 3.11. The following are equivalent:

(1) The Continuum Hypothesis.
(2) P(ω)/fin is a saturated Boolean algebra.
(3) P(ω)/fin is a homogeneous Boolean algebra.

The CH implication in this theorem is closely related to a reformulation
of following topological result of Parovičenko.

Theorem 3.12. [88] Assume CH. The Čech-Stone remainder of ω is
the unique 0-dimensional compact Hausdorff space having no isolated
points such that if F and G are two disjoint open Fσ-sets, then there
exists a closed and open set U such that F ⊆ U and U ∩G = ∅.

What is counter-intuitive about this theorem is that it implies that
many compact spaces are homeomorphic even when there is no appar-
ent homeomorphism: For instance the Čech-Stone remainders of the
infinite countable limit ordinals are all homeomorphic assuming CH
(contrast this with [42]).

CH also produces a wealth of exotic examples of topological spaces.
I will mention only a few; it is impossible to adequately give even a
brief survey.

Theorem 3.13. ([53]; see also [106]) If CH is true, then for each n
there is a topological space X such that Xn+1 contains an uncountable
family of pairwise disjoint open sets but such that Xn does not.

Theorem 3.14. [65] If CH is true, then there is a nonseparable com-
pact Hausdorff space K which does not contain an uncountable discrete
subspace. This space moreover supports a Borel probability measure µ
for which the following are equivalent for Y ⊆ K:

• Y is nowhere dense;
• Y is first category;
• µ(Y ) = 0;
• Y is second countable;
• Y is separable.

(Similar constructions were carried out independently by Haydon [58]
and Talagrand [104].)
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Theorem 3.15. [43] If CH is true, then for each d > 0 there is an
infinite compact Hausdorff space Kd in which every infinite closed sub-
space has dimension d. In particular, Kd contains neither convergent
sequences nor a copy of βω.

4. Woodin’s Σ2
1-Absoluteness Theorem

CH can be phrased as asserting the existence of a binary relation /
on P(ω) such that:

• (P(ω), /) is a linear ordering;
• for each y ∈ R, {x ∈P(ω) : x / y} is countable.

In particular, CH is equivalent to a Σ2
1-sentence — a sentence of the

form ∃X ⊆P(ω)φ(X) where φ involves only quantification over P(ω).
In fact many of the consequences of CH can be phrased as Σ2

1-sentences.
Moreover, it was noticed that, empirically at least, CH tended to be

sufficient to settle the truth of Σ2
1-sentences which would come up in

practice. Quite remarkably, there is a general result due to Woodin
which explains this.

Theorem 4.1. (see [72]) Assume there is a proper class of measurable
Woodin cardinals and that CH is true. Any Σ2

1-sentence which can be
forced is true.

It should be noted that some care is needed in stating this theorem.
For instance the assertion that there is a nonconstructible real is triv-
ially a Σ2

1-sentence (in fact this assertion can be formalized using only
quantification over P(ω)). By Cohen’s work it is consistent and yet
it is not true in L, which satisfies CH. Thus we cannot hope to have a
result which says that if a Σ2

1-sentence is consistent with ZFC, then it
is a consequence of CH.

5. Todorcevic’s Open Coloring Axiom

We will now return to the Open Coloring Axiom introduced in Sec-
tion 2 above. This axiom has a strong influence on structures closely
related to separable metric spaces and often helps provide an alterna-
tive mathematical theory to that imposed by CH. This axiom’s name
was based on a family of similar Ramsey-theoretic principles in Abra-
ham, Rubin, and Shelah’s [2]. The following are examples of open
graphs.

Example 5.1. Suppose that A,B ⊆ R and define a graph on A × B
by connecting (x0, y0) to (x1, y1) whenever x0 < x1 and y0 < y1 or
x1 < x0 and y1 < y0. Observe that this graph is open. It is countably
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chromatic only when either A or B is countable. On the other hand,
a clique is clearly the graph of a partial increasing function from A to
B. Thus OCA implies that if A,B ⊆ R are uncountable, then they
have uncountable isomorphic suborders. In particular, by Theorem 3.8,
OCA refutes CH.

The next examples are more typical of the use of OCA in applica-
tions. They provided Todorcevic’s motivation isolating his formulation
of OCA from the similar forms initially studied in [2].

Example 5.2. Suppose that A ⊆P(ω) and define a graph on A where
{a, b} is an edge if neither a ⊆ b nor b ⊆ a. In particular, OCA
implies that if A is uncountable, then either A contains an uncountable
chain or antichain with respect to containment (here antichain means
pairwise incomparable). This conclusion was originally deduced by
Baumgartner from PFA [10].

Example 5.3. Let X ⊆ ωω×ωω consist of all pairs (a, b) for which a ≤ b
coordinate-wise. Define {(a0, b0), (a1, b1)} to be an edge of the graph if
there is an i such that

max(a0(i), a1(i)) > min(b0(i), b1(i))

Typically one considers induced subgraphs of this graph as follows.
Suppose that A,B ⊆ ωω have the property that a ≤∗ b whenever
a ∈ A and b ∈ B and that A and B are closed under making finite
modifications to their elements. Consider the subgraph in which the
vertices come from A× B. This graph is countably chromatic exactly
when there exist sets cn (n ∈ ω) such that for every a ∈ A and b ∈ B,
there is an n such that a ≤∗ cn ≤∗ b.

This second example readily gives the following classification of gaps
in ωω/fin in the presence of OCA. Here we recall that a (κ, λ∗)-gap
in ωω/fin is a pair of sequences aξ (ξ ∈ κ) and bη (η ∈ λ) such that
aξ <

∗ aξ′ <
∗ bη′ <

∗ bη for all ξ < ξ′ < κ and η < η′ < λ and yet there
is no c such that aξ <

∗ c <∗ bη for all ξ and η.

Theorem 5.4. [108] Assume OCA. If κ and λ are regular cardinals and
there is a (κ, λ∗)-gap, then either min(κ, λ) = ω or else κ = λ = ω1.

This complements the following classical results of Hausdorff.

Theorem 5.5. [57] There is an (ω1, ω
∗
1)-gap in ωω/fin.

Theorem 5.6. [57] The following are equivalent for a regular cardinal
κ:

• There is an unbounded chain in ωω/fin of ordertype κ.
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• There is a (κ, ω∗)-gap in ωω/fin.
• There is a (ω, κ∗)-gap in ωω/fin.

In particular, there exists a regular cardinal κ for which there exist both
(κ, ω∗)-gaps and (ω, κ∗)-gaps.

We will finish this section by mentioning some consequences of OCA
and MA concerning quotient algebras which contrast the influence of
CH detailed in Section 3. Building on work of Just, Shelah, Steprāns,
and Veličković, Farah proved the following general results.

Theorem 5.7. [41] Assume OCA and MA. If I and J are ana-
lytic ideals and at least one is either a P -ideal or countably generated,
then every isomorphism between P(ω)/I and P(ω)/J has a Baire
measurable lifting.

Theorem 5.8. [41] If I and J are analytic ideals, at least one is
either a nonpathological P -ideal or countably generated, and P(ω)/I
and P(ω)/J are isomorphic via a map admitting a Baire measurable
lifting, then I and J are isomorphic.

In particular the conjunction of OCA and MA implies that P(ω)/fin
and P(ω)/I1/n are nonisomorphic, in contrast to Theorem 3.9. (This
instance of Theorems 5.7 and 5.8 was first proved by Just [60] [61].)
Farah later adapted these techniques to the context of C∗-algebras [40],
complementing a previous CH construction of Phillips and Weaver [89].

Recall that the measure algebra is the quotient of the algebra of
Borel subsets of [0, 1] by the ideal of Lebesgue measure 0 sets. In the
presence of CH, P(ω)/fin is saturated and hence any Boolean algebra
of cardinality at most 2ℵ0 can be embedded inside it. On the other
hand, we have the following result of Dow and Hart.

Theorem 5.9. [35] Assume OCA. The measure algebra does not embed
into P(ω)/fin.

6. A Ramsey-theoretic proof that the continuum is ℵ2
The only precursor of OCA considered in [2] which is not a formal

weakening of OCA is OCA[ARS]:

If X is a separable metric space of cardinality ℵ1 and
c : [X]2 → {0, 1} is a continuous function, then X can be
decomposed into countably many c-homogeneous sets.

Both OCA and OCA[ARS] are consequences of Martin’s Maximum (dis-
cussed in Section 7 below) and both refute CH. Formally they are
unrelated — it is consistent that either hold but not the other. On one
hand OCA[ARS] only makes assertions about graphs which are closed
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and open and in which the underlying vertex set has cardinality ℵ1.
On the other hand, unlike with OCA, the conclusion of OCA[ARS] is
“global.”

While it remains unknown whether either of these assertions decides
the value of the continuum, we have the following result — a purely
Ramsey-theoretic proof that the continuum is ℵ2.

Theorem 6.1. [81] The conjunction of OCA and OCA[ARS] implies
that |R| = ℵ2.

We have already seen that OCA implies that all gaps are of one of the
following forms: (κ, ω∗), (ω, κ∗), or (ω1, ω

∗
1). In fact this conclusion

already implies that b ≤ ℵ2, where b is the minimum cardinality of an
unbounded subset of ωω/fin. To see this, suppose that b > ℵ2 and fix
a bounded chain aξ (ξ < ω2) in ωω/fin. It is routine to show that this
is the lower part of an (ω2, λ

∗)-gap for some λ. By Theorem 5.6, λ > ω
and thus by Theorem 5.4, OCA fails.

It is also the case that OCA implies that b > ℵ1 and thus that
b = ℵ2. This is proved via the following ZFC result.

Proposition 6.2. [117] Suppose that X ⊆ ωω/fin consists of monotone
increasing functions, is unbounded and countably directed. For every
n, there exists x, y ∈ X such that osc(x, y) = n (in particular, there
exist x 6= y ∈ X with x ≤ y).

Here osc(x, y) < n exactly when ω can be covered by n intervals I such
that x ≤ y on I or y ≤ x on I. Notice that if b = ℵ1, then there is an
unbounded chain X in ωω/fin of length ω1 which moreover consists of
monotone functions. If G is the positive oscillation graph on X, then
G is open and is neither countably chromatic nor has an uncountable
clique.

Corollary 6.3. [108] OCA implies that b = ℵ2.

The remainder of the proof of Theorem 6.1 hinges on the following
variation on Proposition 6.2.

Proposition 6.4. [81] There is a continuous partial function σ : [ωω]2 →
2<ω with an open domain such that:

• if x <∗ y, then σ(x, y) is defined and has the same length as the
common initial part of x and y;
• if X is unbounded and countably directed in ωω/fin and r is in

2ω, then there exists an x 6= y in X such that σ(x, y) is an
initial part of r.
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If r is in 2ω, then define an open graph Gr on ωω by putting {x, y} ∈ Gr

if σ(x, y) is defined and is an initial part of r. A code for r is an
uncountable clique in Gr. Observe that a given H can be a code for
at most one r. It is immediate from the previous proposition that
OCA implies that every unbounded countably directed subset of ωω/fin
contains codes for all elements of 2ω. The proof is then finished by
Corollary 6.3 and the following proposition.

Proposition 6.5. OCA[ARS] implies that if X ⊆ ωω/fin is a chain of
cardinality ℵ1, then X contains codes for at most ℵ1 elements of 2ω.

This is achieved by showing that OCA[ARS] implies that for each
n, any X ⊆ ωω/fin of cardinality ℵ1 can be partitioned into sets Xσ

for σ a length n binary sequence so that if H ⊆ X codes r ∈ 2ω,
then H is contained in Xr�n modulo a countable set. If we define
Xr =

⋂
nXr�n, then {Xr : r ∈ 2ω} is a disjoint family and hence only

ℵ1 many can be uncountable (or even nonempty). The proposition
then follows from the observation that any code for r is contained in
Xr modulo a countable set.

7. Forcing Axioms and Generic Absoluteness

Both forms of the Open Coloring Axiom follow from a much more
general set-theoretic hypothesis known as Martin’s Maximum. MM
was first formulated and proved consistent relative to the existence of
a supercompact cardinal by Foreman, Magidor, and Shelah [50]. It
is the strongest example from an important class of axioms known as
forcing axioms.

Forcing axioms are generalizations of the Baire Category Theorem
and grew out of a line of research which started with Solovay and
Tennenbaum’s proof that Souslin’s Hypothesis is consistent [102]. A
stratification of these axioms has been included below mostly for his-
torical accuracy. The reader who is not interested in fine details will
lose little of the general picture by assuming MM in place of whatever
forcing axiom is needed as a hypothesis (this may, however, mean that
the result was proved earlier and possibly by someone else).

We will now review some of the basic definitions associated to these
axioms. If θ is a cardinal and Q is a class of partially ordered sets,
then FAθ(Q) is the assertion that if Q is in Q and A is a family of
maximal antichains in Q with |A| ≤ θ, then there is a filter G ⊆ Q
which meets each element of A — such a filter is said to be A-generic.
(Here antichain means in the sense of forcing — a family of elements
of the poset such that no pair of distinct elements has a common lower
bound.) It is not difficult to show that if Q is the class of all posets, then
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FAℵ0(Q) is a theorem of ZFC. This is closely related to the assertion
that no compact Hausdorff space can be covered by countably many
nowhere dense sets, which is itself a variation of the Baire Category
Theorem. On the other hand, it is not difficult to see that if Q is the
poset of all finite partial functions from ω to ω1, then there is a family
A of ℵ1 maximal antichains in Q such that there is no A-generic filter.
In particular FAℵ1(Q) is false if Q is the class of all partial orders (or
even all partial orders of cardinality at most ℵ1).

If Q is the class of c.c.c. partial orders (those in which all antichains
are countable), then FAθ(Q) is denoted MAθ and known as Martin’s
Axiom for θ antichains. This was historically the first forcing axiom. It
was isolated by D. A. Martin from the proof that Souslin’s Hypothesis
is consistent [102] and provided the template for the stronger forcing
axioms which followed later. Unlike Souslin’s Hypothesis, Martin’s
Axiom turned out to be widely applicable in analysis and point-set
topology. The reader is referred to the encyclopedic [52] for a full
account of the consequences of MAθ. While it is trivial that MAθ

implies that 2ℵ0 > θ, MAθ has no other influence on the cardinality of
the continuum other than that 2ℵ0 = 2θ and hence that cf(2ℵ0) > θ
(see Theorem 11.1 below).

Forcing Axioms for broader classes of posets than c.c.c. posets are
typically inconsistent if θ > ℵ1 and it is therefore common to use
FA(Q) to denote FAℵ1(Q). (Note however that MA typically denotes
the assertion that MAθ holds for all θ < 2ℵ0 .) A poset Q is said
to be proper if forcing with it preserves stationary subsets of [X]ω

whenever X is an uncountable set. The Proper Forcing Axiom (PFA)
is FA(proper). Martin’s Maximum is the forcing axiom for posets which
preserve stationary subsets of ω1. These axioms were proved consistent
relative to the existence of a supercompact cardinal by Baumgartner
and by Foreman, Magidor and Shelah, respectively.

Theorem 7.1. (see [32]) If there is a supercompact cardinal κ, then
there is a forcing extension which satisfies PFA.

Theorem 7.2. [50] If there is a supercompact cardinal κ, then there is
a forcing extension which satisfies MM.

MM is the strongest forcing axiom in the sense that if Q is a poset
which does not preserve some stationary subset of ω1, then there is a
family A of ℵ1 maximal antichains such that there does not exist an
A-generic filter.

The theory of MM has been the subject of extensive study, both for
its set-theoretic consequences and for its applications to other branches
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of mathematics — see for instance [52], [82], [115]. The following are
some of its most important early consequences.

Theorem 7.3. [50] MM implies that the nonstationary ideal on ω1 is
saturated: if Sξ (ξ < ω2) are stationary subsets of ω1, then there exist
ξ 6= η < ω2 such that Sξ ∩ Sη is stationary.

Theorem 7.4. [50] Assume MM and let κ > ℵ1 be a regular cardinal.
Suppose that 〈Aξ : ξ ∈ ω1〉 are pairwise disjoint stationary subsets of
ω1 and 〈Bξ : ξ ∈ ω1〉 are stationary subsets of κ which each consist
of ordinals of countable cofinality. There is a continuous increasing
sequence 〈γξ : ξ ∈ ω1〉 in κ such that for all ξ ∈ ω1, if ξ is in Aξ, then
γξ is in Bξ.

An immediate consequence of the second result is that, assuming
MM, κℵ1 = κ whenever κ > ℵ1 is a regular cardinal. In particular,
MM implies that 2ℵ1 ≤ ℵ2ℵ1 = ℵ2; this is historically the first use of a
forcing axiom to produce a bound on the cardinality of the continuum.
Since it is trivial that MM refutes CH, we also have that 2ℵ0 = ℵ2 is a
consequence of MM.

Woodin showed that Theorem 7.3 leads to a more dramatic failure
of CH.

Theorem 7.5. [126, Ch.3] If the ideal of nonstationary subsets of ω1

is saturated and P(ω1)
] exists, then δ˜12 = ω2.

Here δ˜12 is the supremum of the lengths of all δ˜12 pre-wellorderings of R.

The hypothesis P(ω1)
] exists is a consequence of MM as well; it also

follows from the existence of a measurable cardinal. In particular, MM
not only refutes CH, but in fact gives an effective failure of CH — one
at the level of descriptive set theory. This addressed question raised in
[49].

PFA, which is a weakening of MM, plays an important role in clas-
sifying structures of cardinality ℵ1.

Theorem 7.6. [8] If CH is true and X and Y are ℵ1-dense suborders
of R, then there is a c.c.c. forcing extension in which X and Y are
isomorphic as linear orders. In particular PFA implies that any two
ℵ1-dense suborders of R are isomorphic.2

Theorem 7.7. [107] Assume PFA. Every directed system of cardinality
at most ℵ1 is cofinally equivalent to one of the following: 1, ω, ω1,
ω × ω1, [ω1]

<ω.

2PFA had not been formulated at the time of [8].



WHAT MAKES THE CONTINUUM ℵ2 15

This classification was extended to the transitive relations on ω1 in
[111].

Next recall that an Aronszajn line is an uncountable linear order in
which all separable and scattered suborders are countable. Such linear
orders were first constructed by Aronszajn and Kurepa (see [67]). A
Countryman line is an uncountable linear order with the property that
its Cartesian square is a countable union of chains. Such orders are
necessarily Aronszajn and were first constructed by Shelah [95] (see
also [116]). The following results show that there is a rather strong
analogy between the Aronszajn lines and the countable linear orderings
(with Countryman lines playing the roles of ω and −ω).

Theorem 7.8. Assume PFA. The following are true:

• [1] Every pair of normal Countryman lines are isomorphic or
reverse isomorphic.
• [79] Every Aronszajn line contains a Countryman suborder.
• [84] If C is a Countryman line, then

dirlimC × (−C)× · · · × (−C)

is a universal Aronszajn line.
• [76] The Aronszajn lines are well quasi-ordered by embeddability.

Much of the theory of MM can be developed through the combina-
torial consequences of PFA. We have already noted that both OCA
and MAℵ1 follow from PFA. Another useful consequence of PFA is
Todorcevic’s P -Ideal Dichotomy (PID):

If S is any set and I ⊆ [S]ω is a P -ideal, then either:
• there is an uncountable X ⊆ S such that [X]ω ⊆ I

or else
• there is a decomposition S =

⋃∞
n=0 Sn such that for

each n, no infinite subset of Sn is in I .

(Here I is a P -ideal on S if it is an ideal which includes all finite
subsets of S and which is countably directed under ⊆∗.) PID was
analyzed in detail for sets of size ℵ1 in [3]. That paper also briefly
mentions the general case and how to prove its consistency based on
methods in [108], although a detailed analysis of its consequences and
a proof of its consistency were first given in [113]. This axiom has a
similar influence on gaps as OCA does:

Theorem 7.9. [113] Assume PID. If κ and λ are regular cardinals
and there is a (κ, λ∗)-gap in ωω/fin, then either min(κ, λ) = ω or else
κ = λ = ω1.
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In particular, PID implies b ≤ ℵ2. On the other hand, unlike OCA,
PID is consistent with CH [113]. PID also influences the combinatorics
of sets which are far removed from R.

Theorem 7.10. [3] PID implies that every uncountable tree either con-
tains an uncountable chain or an uncountable antichain.

Theorem 7.11. [124] PID implies that if κ is a singular strong limit
cardinal, then 2κ = κ+.

Another general consequence of MM which we will discuss is the
Strong Reflection Principle (SRP):

If ω1 ⊆ X and S ⊆ [X]ω, then there is a continuous
⊆-chain 〈Nξ : ξ ∈ ω1〉 such that ξ ⊆ Nξ for all ξ ∈ ω1

and if ν ∈ ω1 is a limit ordinal and there is an ω1-end
extension of Nν which is in S, then Nν is in S.

Here N is an ω1-end extension of M if M ⊆ N and M ∩ ω1 = N ∩ ω1.
SRP was first formulated by Todorcevic who abstracted it from ar-

guments in [50]. SRP captures a number of consequence of MM which
were originally directly deduced in [50], including the saturation of the
ideal of nonstationary subsets of ω1 (NSω1), Chang’s Conjecture, and
the conclusion of Theorem 7.4 [13]. SRP was also the inspiration for
the Mapping Reflection Principle (MRP), another related consequence
of PFA [83] which played an important role in the solution of the basis
problem for uncountable linear orders [79]. We will discuss some of the
consequences of SRP in the next section; see [13] for more details on
how to derive its consequences.

We will finish this section with two more variants on the theme
of forcing axioms which will be needed the sections which follow. If
membership to Q is an invariant of forcing equivalence, then BFA(Q)
is the weakening of FA(Q) in which the families A consist only of
antichains of cardinality at most ℵ1. By work of Bagaria [6], this is
equivalent to the assertion that H(ℵ2) is a Σ1-elementary substructure
of any generic extension by a poset from Q. The assertion FA+(Q) is
the following strengthening of FA(Q): If Q is in Q, A is a family of at
most ℵ1 maximal antichains in Q and Ṡ is a Q-name for a stationary
set, then there is an A-generic filter G ⊆ Q such that

{ξ ∈ ω1 : ∃p ∈ G(p 
 ξ̌ ∈ Ṡ}

is stationary; FA++(Q) is the strengthening in which ℵ1-many names
for stationary sets are allowed.
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8. Stationary set reflection and 2ℵ0 ≤ ℵ2
This section contains an outline of why the reflection of stationary

sets in [ω2]
ω implies that 2ℵ0 ≤ ℵ2. Let θ ≥ ω2 be a cardinal. A

stationary subset S ⊆ [θ]ω is said to reflect if there exists an X ⊆ θ of
cardinality ℵ1 such that ω1 ⊆ X and S ∩ [X]ω is stationary in [X]ω.
This notion was perhaps first considered by Baumgartner, who proved
the following results.

Theorem 8.1. (see [9, §8]) If there is supercompact cardinal, then
there is a forcing extension in which PFA++ holds.

Theorem 8.2. (see [9, §8]) PFA++ implies that every stationary subset
of [X]ω reflects.

The assertion that stationary subsets of [θ]ω reflect is a natural hy-
pothesis and one which has been studied extensively in the literature
[27], [28], [29], [99], [103], [110]. We will begin by noting that it follows
from MM both directly and also via the principle SRP.

Theorem 8.3. [50] MM implies that if θ ≥ ℵ2 is a cardinal, then every
stationary subset of [θ]ω reflects.

Theorem 8.4. [13] SRP implies that if θ ≥ ℵ2 is any cardinal, then
every stationary subset of [θ]ω reflects.

In fact if S ⊆ [θ]ω and Nξ (ξ < ω1) satisfies the conclusion of SRP for
S, then

{M ∈ S : M ∩ ω1 6∈ {ξ ∈ ω1 : Nξ ∈ S}}
is nonstationary. Since the set of all M ∈ [θ]ω which ω1-end extend an
element of {Nξ : ξ ∈ ω1} is club, it follows that {ξ ∈ ω1 : Nξ ∈ S} must
be stationary if S is stationary.

Quite remarkably, we have the following result.

Theorem 8.5. [118] If every stationary subset of [ω2]
ω reflects, then

2ℵ0 ≤ ℵ2.

The reason for this is twofold. On one hand, it is a result of Baum-
gartner and Taylor that every club in [ω2]

ω has cardinality at least 2ℵ0

[12]. On the other, Todorcevic proved that there is a subset F of [ω2]
ω

of cardinality ℵ2 whose complement is either nonstationary or else is
equal to a nonreflecting stationary set modulo the club filter [118].

In fact by appealing to a result of Gitik [54], Todorcevic was able to
draw an even stronger conclusion.

Theorem 8.6. [110] Suppose that every stationary subset of [ω2]
ω re-

flects. If N is an inner model such that ℵ2N = ℵ2V , then R ⊆ N . In
particular |R| ≤ ℵ2.
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Todorcevic’s set F can be described as follows. Fix for a moment a
sequence ~e = 〈eβ : β ∈ ω2〉 such that eβ is an injection from β into ω1.
A subset X of ω2 is ~e-closed if X ∩ ω1 is an ordinal and whenever β is
in X and α ∈ β, eβ(α) is in X if and only if α is in X. If we define
E to be the collection of all ~e-closed elements of [ω2]

ω, then it is easily
checked that E is club. Also, observe that if ω1 ⊆ X ⊆ ω2 and X is
~e-closed, then X is an ordinal. Define

Fα,β = {ξ ∈ β : eβ(ξ) < α}

F = {Fα,β : α < ω1 ≤ β < ω2}
and let A be the set of all ~e-closed subsets of ω2 which are not in
F . Notice that if δ ∈ ω2, then {e−1δ ξ : ξ ∈ ω1} is club in [δ]ω. In
particular, if ω1 ⊆ X ⊆ ω2 and X has cardinality ℵ1, then A ∩ [X]ω is
nonstationary in [X]ω.

Gitik’s result can be described as follows. Suppose that a, b0, b1 are
countable subsets of ω2 and ξ ∈ a and define r ∈ 2ω and (ξk)k ∈ ωω2
recursively as follows:

r(k) = 1 if and only if min(b0 \ ξk) > min(b1 \ ξk)

ξ0 = ξ and ξk+1 = min(a \min(br(k) \ ξk))
Set hξ(a, b0, b1) = r. Gitik proved that for every club E ⊆ [ω2]

ω and
r ∈ 2ω, there exist a, b0, b1 ∈ E and ξ ∈ a such that hξ(a, b0, b1) = r.
Thus if an inner model contains a club subset of [ω2]

ω, that inner model
also contains all the reals.

It is worth noting that Todorcevic has a different method for prov-
ing that club subsets of [ω2]

ω have cardinality at least 2ℵ0 which is
particularly elegant. First recall that, by work of Shelah [94], there is
a sequence 〈Cδ : δ ∈ limω(ω2)〉 such that:

• each Cδ is a cofinal ω-sequence in δ and
• if E ⊆ ω2 is closed and unbounded, then there exists a δ such

that Cδ ⊆ E.

Fix such a sequence and if x ⊆ θ has no last element, define

pat(x) = {|α ∩ Cδ| : α ∈ x}

where δ = sup(x). For each infinite r ⊆ ω, it can be verified that

Sr = {N ∈ [ω2]
ω : patω2

(N) = r}

is stationary; clearly {Sr : r ⊆ ω} are pairwise disjoint. The proof
that Sr is stationary was generalized considerably by Foreman and
Todorcevic in [51].
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9. The Conjectures of Chang and Rado

This section will introduce two conjectures which arose outside of
set theory and which relate to the phenomenon of stationary reflection
described in the previous section. Each implies 2ℵ0 ≤ ℵ2 and moreover
that the conclusion of Theorem 8.6 holds. The first is a strengthening
of a well known model-theoretic transfer principle known as Chang’s
Conjecture. Chang’s Conjecture (CC) is the assertion that if A is a
structure of cardinality ℵ2 and |XA| = ℵ1 for some unary relation X,
then there is an elementary substructure B ≺ A such that |B| = ℵ1 and
|XB| = ℵ0. Chang’s Conjecture has been well studied in the literature;
see [63] for further reading. The following strengthening allows one
to readily build the elementary substructure B via a recursive process
(see Theorem 1.3 of [97]).

CC∗: If θ ≥ ω2 is a sufficiently large regular cardinal, / is a well
ordering of H(θ), and M ≺ (Hθ,∈, /) is countable, then there
is an M ≺ H(θ) such that M ⊆ M , M ∩ ω1 = M ∩ ω1, but
M ∩ ω2 6= M ∩ ω2.

The relevance to the present discussion is the following result.

Theorem 9.1. [50] If every stationary subset of [2ω1 ]ω reflects, then
CC∗ is true.

The hypothesis CC∗ implies that the set F described above contains a
club regardless of the choice of the sequence ~e = 〈eβ : β ∈ ω2〉 used to
define it. In particular, we have the following result.

Theorem 9.2. [110] CC∗ implies 2ℵ0 ≤ ℵ2.

Next we turn to a conjecture made by Richard Rado who was moti-
vated by an analogous theorem which he proved in finite combinatorics.
Recall that an interval graph is the intersection graph of a collection of
intervals in a linear order. Rado proved that if the chromatic number
of an interval graph is greater than n, then there is a (necessarily com-
plete) subgraph on n+ 1 vertices which already has chromatic number
greater than n [90]. He then made the following conjecture [91]:

RC: If an interval graph is not countably chromatic, then it has
a subgraph of cardinality ℵ1 which is not countably chromatic.

Todorcevic showed that Rado’s Conjecture is equivalent to the asser-
tion that every nonspecial tree has a subset of cardinality ℵ1 which is
nonspecial. Here we recall that a tree of height ω1 is special if it is a
union of countably many antichains. Notice that there are many trees
of cardinality continuum which have no uncountable branch and yet
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are non-special — the well ordered subsets of Q ordered by end ex-
tension and the tree of all closed subsets of a stationary co-stationary
subset of ω1 are two standard examples. Thus while Rado’s Conjecture
implies a number of consequences of Martin’s Maximum, it is inconsis-
tent with MAℵ1 , which implies that all trees of cardinality ℵ1 without
uncountable branches are special [11].

Theorem 9.3. [105] If there is a supercompact cardinal, then there is
a forcing extension in which Rado’s Conjecture is true. Moreover, the
forcing extension can be arranged to satisfy either 2ℵ0 = ℵ1 or 2ℵ0 = ℵ2.
Theorem 9.4. [110] Rado’s Conjecture implies CC∗ and that θℵ0 = θ
whenever θ ≥ ℵ2 is a regular cardinal. In particular, Rado’s Conjecture
implies 2ℵ0 ≤ ℵ2.

10. Woodin’s Pmax-extension of L(R)

The hypothesis Martin’s Maximum discussed in Section 7 above has
been highly successful in proving consistency results and developing a
rich mathematical theory extending that axiomatized by ZFC. It has
long been empirically observed that the theory of MM is quite close
to being complete, at least as far as the theory of H(ℵ2) is concerned.
This is partially explained by the following recent result of Viale.

Theorem 10.1. [125] There is a strengthening MM+++ of MM++

which holds in the standard models for MM and with the property that
any two generic extensions by NSω1-preserving forcings which satisfy
MM+++ have the same theory for H(ℵ2).

It has long been a mystery whether a result such as this can be proved
if the assumption of preserving stationary sets is dropped. There is no
known canonical model of MM and there is no known sense in which
its theory is optimal or canonical.

Woodin’s Pmax-extension of the model L(R) is motivated in part by
these sorts of philosophical considerations. The next theorem is the
starting point for the development of Pmax.

Theorem 10.2. [100]3 If there are a proper class of Woodin cardinals,
then L(R)V is elementarily embedded in L(R)V [G] whenever G is V -
generic for a set forcing. In particular, if there is a proper class of
Woodin cardinals, then the theory of L(R) cannot be changed by forcing.

Notice that the inner model L(P(ω1)) is correct about CH and that
many mathematical statements which are independent of ZFC are ac-
tually assertions about what is true in this model. In light of Theorem

3The comment in the footnote to Theorem 2.1 applies here as well.
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10.2, it is natural to speculate whether the theory of L(R) might be
used to generate a canonical theory of L(P(ω1)) which extends ZFC.
Woodin has shown that this is indeed the case.

Theorem 10.3. [126] Assume there is a proper class of Woodin car-
dinals. In L(R) there is a forcing Pmax with the following properties:

• Pmax is homogeneous;
• Pmax is σ-closed;
• If G ⊆ Pmax is L(R)-generic, then L(R)[G] satisfies AC;
• If G ⊆ Pmax is L(R)-generic and A ⊆ ω1 is in L(R)[G] \ L(R),

then L(R)[A] = L(R)[G].
• If φ is a Π2-sentence in the language of the structure

(H(ω2),∈, ω1,NSω1)

and φ is Ω-consistent, then Pmax forces H(ω2) satisfies φ.

I will not define Ω-logic here; see [126] and also [7]. Suffice it to say
that if ZFC proves that φ can be forced, then φ is Ω-consistent. Notice
that since Pmax is σ-closed, forcing with it does not change L(R). Since
Pmax is homogeneous, the theory of the generic extension coincides with
the set of sentences which are forced by every condition. In particular,
the theory of the generic extension does not depend on the generic
filter and can be computed in the ground model. Furthermore, in the
presence of a proper class of Woodin cardinals the theory of L(R) is
fixed by forcing and hence the theory of the Pmax-extension of L(R) is
fixed as well.

Much of the theory of this generic extension has been worked out and
it extends the known consequences of MM for the structure L(P(ω1)).
In particular, both theories include the equality 2ℵ0 = ℵ2; this is ex-
plored in more detail in the next section. It remains an open problem
whether the technical strengthening MM++ of Martin’s Maximum im-
plies that L(P(ω1)) is a Pmax-extension of L(R); see [4], [70], [71],
[125].

11. Simply definable well orderings of R

A highly nontrivial feature of the Pmax-extension of L(R) is that it
satisfies the Axiom of Choice. By contrast, in the presence of large
cardinals, L(R) satisfies the Axiom of Determinacy which negates AC
in a number of essential ways. (For instance AD implies all subsets of
R satisfy the perfect set property, are Lebesgue measurable, and have
the Baire Property.) Since the Pmax-extension is of the form L(P(ω1)),
the task of verifying the Axiom of Choice reduces to exhibiting a well
ordering of P(ω1) which is definable in L(P(ω1)).
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Before proceeding, let us first note that in the presence of MAℵ1 ,
there is a bijection between P(ω) and P(ω1) which is definable over
H(ω2). This often reduces the task of defining a well ordering of P(ω1)
to the task of defining a well ordering of P(ω). There are many means
of achieving this; one is Solovay’s almost disjoint coding.

Theorem 11.1. (see [52, 23A]) Assume MAθ. If {Aξ : ξ ∈ θ} is a
family of infinite subsets of ω which have pairwise finite intersection
and X ⊆ θ, then there is a Y ⊆ ω such that

X = {ξ ∈ θ : Aξ ∩ Y is infinite}.

Woodin was the first to show that MM implied that L(P(ω1)) con-
tained a well ordering of R. This is done by mimicking the proof of
Theorem 7.4 but utilizing a definable family of stationary subsets of
ω2. Suppose for a moment that S ⊆ ω1 is stationary. Define S̃ ⊆ ω2

to consist of all ordinals γ such that ω1 ≤ γ < ω2 and if E is a well
ordering of ω1 isomorphic to γ, then

{ν ∈ ω1 : otp(E � ν) ∈ S}

contains a club. That is, S̃ is the set of all γ ∈ [ω1, ω2) such that every
condition in P(ω1)/NSω1 forces that γ ∈ j(S), where j is the induced
generic elementary embedding. Observe that if S and T are disjoint,
then so are S̃ and T̃ .

Theorem 11.2. [126, Ch.5] Assume MM. If S ⊆ ω1 is stationary, then
{γ ∈ S̃ : cof(γ) = ω} is also stationary.

Woodin’s coding principle can now be described as follows.

φAC: Whenever 〈Si : i ∈ ω〉 and 〈Ti : i ∈ ω〉 are sequences of
pairwise disjoint sets such that each Ti is stationary, there exists
a continuous increasing sequence 〈γξ : ξ ∈ ω1〉 in ω2 such that

if ξ is in Si, then γξ is in T̃i.

An immediate consequence of φAC is that if 〈Ti : i ∈ ω〉 is a sequence
of pairwise disjoint stationary sets, then for every x ⊆ ω, there is a
δ < ω2 of cofinality ω1 such that

x = {i ∈ ω : T̃i ∩ δ is stationary}.

Let δx denote the least such ordinal. If we define x / y to mean that
δx < δy, then / is a well ordering of P(ω) which is definable from the
parameter 〈Ti : i ∈ ω〉.

Theorem 11.3. [126, Ch.5] MM implies φAC and φAC is true in the
Pmax-extension of L(R).
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The following is a variation of φAC which has technical advantages
in certain contexts.

ψAC: Suppose that S, T ⊆ ω1 are stationary and co-stationary.
There exists an uncountable γ < ω2 such that T corresponds to
the truth value of the formula γ ∈ j(S) in the generic extension
by the forcing P(ω1)/NSω1 .

Woodin has also shown that, like φAC, ψAC both is a consequence of
MM and holds in the Pmax-extension of L(R) [126, Ch.5].

A subtle point in the case of both φAC and ψAC is that, even though
both sentences are in the language of (H(ω2),∈, ω1) and both follow
from MM, it is not clear if ZFC proves that an instance of these as-
sertions can always be forced with a NSω1-preserving forcing (Woodin
has showed that this is the case if a measurable cardinal exists [126,
10.95]). Todorcevic developed the following coding for this purpose,
which relies instead on an ω1-sequence of reals as a parameter.

θAC: If 〈rξ : ξ ∈ ω1〉 is a sequence of distinct reals, then for every
A ⊆ ω1, there exist α < β < γ < ω2 such that for some
continuous ⊆-increasing sequence 〈Nξ : ξ < ω1〉 of countable
sets which covers γ we have that for all ξ ∈ ω1, ξ ∈ A if and
only if

∆(rNξ∩α, rNξ∩β) > ∆(rNξ∩β, rNξ∩γ)

Here ∆(r, s) = min{n : r(n) 6= s(n)} and rN = rotp(N) if N is a
countable set of ordinals.

Theorem 11.4. [114] Any instance of θAC can be forced with an NSω1-
preserving forcing. In particular, BMM implies θAC holds.

Previously Woodin had proved that BMM together with the exis-
tence of a measurable cardinal implies ψAC [126, 10.95]; Asperó previ-
ously proved (unpublished) that BMM implies d = ℵ2.

The statements φAC, ψAC, and θAC all (seemingly) require the use of
forcings which are improper — they destroy stationary subsets of [θ]ω

for some uncountable cardinal θ. They also a priori require substantial
a large cardinal hypothesis for their consistency. The next combinato-
rial statement was isolated in [83]. It follows from the Proper Forcing
Axiom and can be forced assuming only the existence of an inaccessi-
ble cardinal. In order to formulate the coding principle, we need the
following specialized notation. For each countable limit ordinal δ, fix
a ladder Cδ ⊆ δ. If M ⊆ N are countable sets of ordinals of limit or-
dertype and M is bounded in N , then define w(M,N) = |Cν ∩ π(M)|
where π : N → ν = otp(N) is the transitive collapse.



24 JUSTIN TATCH MOORE

υAC: For every ladder system ~C on ω1 and every A ⊆ ω1 there is
an uncountable δ < ω2 and a continuous ⊆-chain 〈Nξ : ξ ∈ ω1〉
cofinal in [δ]ω such that for all limit ν < ω1, there is a ν̄ < ν
such that if ν̄ < ξ < ν, then

w(Nξ ∩ ω1, Nν ∩ ω1) < w(Nξ, Nν) iff Nν ∩ ω1 ∈ A.
This coding principle was the inspiration for the Mapping Reflection
Principle (MRP) [83]. MRP implies υAC and played a central role in
the solution to the basis problem for uncountable linear orders [79]. It
also implies κℵ0 = κ for regular κ > ℵ1 [123] and the failure of �(κ)
for all regular κ > ℵ1 [83].

A careful examination of the sentences φAC, ψAC, θAC, and υAC re-
veals that all yield a well ordering which is Σ1-definable over the struc-
ture (H(ω1),∈,NSω1). These sentences naturally define well orderings
of P(ω1)/NSω1 and the the transference of this well ordering to one of
P(ω1) depends on a fixed partition of ω1 into disjoint stationary sets.
In [22], Caicedo and Veličković modified the ideas of [83] and combined
them with those from [54] and [122] in order to remove the reference
to the predicate NSω1 . This improvement has important structural
implications concerning models of MM and other forcing axioms.

Theorem 11.5. [22] BPFA implies there is a well ordering of R which
is ∆1-definable with a parameter which is a ladder system on ω1.

The details require somewhat more specialized notation and rather
than develop the coding here, we refer the reader to [22]. The Caicedo-
Veličković coding also played an important role in the proof of Theorem
12.2 below.

12. Iterated forcing and the Continuum Hypothesis

It is somewhat rare to encounter consequences of CH which require
an elaborate proof. Typically the argument proceeds by a diagonaliza-
tion argument of length ω1 in which a continuum of tasks are handled
by appropriate book keeping. In some cases, however, the argument is
more subtle and less effective.

The following theorem is a special case of the main result of [33].

Theorem 12.1. Suppose that if 〈Cδ : δ ∈ lim(ω1)〉 is a ladder system
and f : ω1 → 2, then there is a function g : ω1 → 2 such that for all
limit ordinals δ,

g � Cδ ≡∗ f(δ)

(here g ≡∗ n means that {ξ ∈ dom(g) : g(ξ) 6= n} is finite). Then
2ℵ0 = 2ℵ1 and in particular CH is false.
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To see why this is true, assume the hypothesis of the theorem and fix
functions p, q : ω → ω such that n 7→ (p(n), q(n)) is a surjection onto
ω × ω and so that p(n + 1) ≤ n for all n. Given an f : ω1 → 2,
construct a sequence 〈gn : n ∈ ω〉 by recursion such that g0 = f and
gn+1 : ω1 → 2 satisfies:

gn+1 � Cδ ≡∗ gp(n)(δ + q(n)).

It is now readily verified that

f 7→ 〈gn � ω : n ∈ ω〉

is a one-to-one function.
It can be shown, however, that for any ladder system and any f ,

there is a forcing extension with the same reals (and hence the same
ω1) in which there is a g satisfying the conclusion of Theorem 12.1.
This theorem therefore represents an obstruction to being able to iter-
ate within a certain class of forcings while not introducing new reals.
Theorem 7.5, which implies that if NSω1 is saturated and there is a
measurable cardinal then CH is false, is another example of this phe-
nomenon: the forcing to seal antichains in P(ω1)/NSω1 does not add
new reals.

The theory of iterated forcing in the presence of CH is much more
complex than the theory of iterated forcing which preserves ω1; see
[98] and also [38]. One reason for this is that, unlike in the case of
preserving ω1, there is no heuristically largest class of forcings which
we can iterate while preserving that no reals are added. This was first
formally demonstrated in the course of proving the following result,
which is in contrast to Theorem 10.3.

Theorem 12.2. [5] There are two Π2-sentences ψ0 and ψ1 in the lan-
guage of (H(ω2),∈, ω1) such that for i = 0, 1

(H(ω2),∈, ω1) |= ψi ∧ CH

can be forced if there is an inaccessible limit of measurable cardinals
but such that ψ0 ∧ ψ1 implies 2ℵ0 = 2ℵ1.

Since both ψ0 and ψ1 can be regarded as fragments of Martin’s Maxi-
mum, this result can be interpreted as saying that there is no strongest
forcing axiom which is consistent with CH. The next result gives an-
other consequence of CH which is also related to the breakdown of a
theory of iterated forcing for not adding reals.

Theorem 12.3. [80] Assume CH. There is a tree T of height ω1 with
no cofinal branch such that T is completely proper as a forcing but such
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that

{(s, t) ∈ T 2 : ht(s) = ht(t) but s 6= t}
is a countable union of antichains (i.e. T 2 is special off the diagonal).

Here complete properness is a condition which rules out the coding of
Devlin and Shelah described in the beginning of this section. Shelah has
shown [98] that this condition can be supplemented by quite different
hypotheses in order to prove that reals are not introduced in iterated
forcing constructions.

Theorem 12.3 shows in particular that CH implies that there is a
Baire tree whose square is special off the diagonal; it is not known
whether this is a theorem of ZFC. (A tree is Baire if the intersection
of any countable family of dense open subsets is dense.)

13. The Semifilter Trichotomy

Next we will examine a combinatorial statement whose origins lie
outside of set theory. While this statement has a wide variety of con-
sequences and may imply 2ℵ0 = ℵ2, it is incompatible with Martin’s
Axiom (and in particular with MM). Consider the following two ques-
tions:

Question 13.1. Does the Čech-Stone remainder of [0,∞) have only
one composant?

Question 13.2. Is it impossible to express the ideal of compact oper-
ators on a separable Hilbert space as the sum of two smaller ideals?

(Recall here that a composant of a point in a continua is the union of
all proper subcontinua which contain the point.) These questions have
no apparent relationship to each other and indeed come from different
areas of mathematics — continua theory and functional analysis, re-
spectively. M.E. Rudin proved that under CH, the remainder of the
half-line has more than one component [92]. Similarly, Blass and Weiss
demonstrated that question 13.2 also has a negative answer under CH
[20].

Blass and Weiss [20] isolated the following statement — now known
as the Near Coherence of Filters (NCF) — which is equivalent to each
of the above questions having a positive answer [15]:

NCF: If p and q are two nonprincipal ultrafilters on ω, then there
is a finite-to-one map f : ω → ω such that βf(p) = βf(q).

This statement was soon after proved consistent by Shelah [18]. In
fact, NCF holds in any forcing extension of a model of CH obtained by
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iterating rational perfect set forcing ℵ2 times with countable supports
[19].

It turns out that NCF is a consequence of an inequality involving
cardinal invariants of the continuum. Recall that a family G of infinite
subsets of ω is said to be groupwise dense if G is closed under modulo
finite containment and whenever f : ω → ω is a finite-to-one function,
there is an infinite set X ⊆ ω such that f−1X is in G. The cardinal g
is the minimum cardinality of a family of groupwise dense sets which
have empty intersection. Recall that the cardinal u is the minimum
cardinality of a base for a nonprincipal ultrafilter on ω.

Theorem 13.3. [17] The inequality u < g implies NCF.

This inequality holds in the models originally used to prove that NCF is
consistent as well as the model obtained by iterating rational perfect set
forcing. In fact u < g is equivalent to a strengthening of NCF known as
the Semifilter Trichotomy : if S ⊆ [ω]ω is closed under taking almost
supersets then there is a finite-to-one function f : ω → ω such that
{f ′′S : S ∈ S} is either a family of co-finite sets, an ultrafilter, or [ω]ω

[14] [68].
It is worth noting at this point that Larson has proved the following

result, contrasting Theorem 3.3 above.

Theorem 13.4. [69] The Semifilter Trichotomy implies that medial
limits do not exist.

Quite remarkably, u < g places rather strong restrictions on the
other cardinal invariants of the continuum.

Theorem 13.5. [14] Assume u < g. Then u = b < g = d = c.

In [120], Todorcevic posed the following question in the context of
Theorem 13.5.

Question 13.6. Does u < g imply u = ℵ1?
Recently Shelah proved the following result:

Theorem 13.7. [96] The inequality g ≤ b+ always holds.

Therefore Todorcevic’s question is equivalent to asking whether u < g
implies 2ℵ0 = ℵ2.

14. Open Problems

I will conclude this paper with a collection of open problems which
in some way connect to the relationship between the continuum and
the second uncountable cardinal. There are many themes represented
in these problems:
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• What are the simplest hypotheses which imply 2ℵ0 = ℵ2?
• Are there foundational principles which entail 2ℵ0 = ℵ2?
• Does classification ever necessitate 2ℵ0 = ℵ2?
• Are there consequences of 2ℵ0 = ℵ2 which are verifiable?

The bulk of these questions concern the inequality 2ℵ0 < ℵ3, although
I have included some questions relating to ℵ1 < 2ℵ0 as well.

Problem 14.1. (Todorcevic [108]) Does Todorcevic’s Open Coloring
Axiom imply that the continuum is ℵ2?

Problem 14.2. (Todorcevic; see [115]) Does the P-Ideal Dichotomy
imply that the continuum is at most ℵ2?

As noted above, both OCA and PID imply that b ≤ ℵ2 because of
their influence on gaps in ωω/fin.

In Section 6, we saw that it is possible to supplement OCA with an-
other, related Ramsey-theoretic hypothesis OCA[ARS] in order to prove
2ℵ0 = ℵ2 [81]. It is similarly unknown if OCA[ARS] implies that the con-
tinuum is ℵ2, although the difficulties in this problem are of a different
nature than in the case of OCA.

Problem 14.3. (Abraham, Rubin, Shelah [2]) Does the OCA[ARS] im-
ply that the continuum is ℵ2?

It is natural to ask whether there is an analog of Theorem 12.2 for
2ℵ0 > ℵ2.

Problem 14.4. Are there two Π2-sentences in the language of the
structure (H(ω2),∈, ω1) which are each forcibly consistent with 2ℵ0 >
ℵ2 but whose conjunction implies 2ℵ0 ≤ ℵ2?

Presumably if this question has a negative answer, then the reason for
this is the existence of a Pmax-like forcing extension of L(R) in which
2ℵ0 is large.

Problem 14.5. (Foreman, Magidor [49]) Assume that L(R) satisfies
the Axiom of Determinacy. Is ΘL(R) ≤ ω3?

The relationship between the Pmax-extension of L(R) and more con-
ventional forcing extensions is still not well understood. For instance,
the following problem remains unresolved.

Problem 14.6. (Woodin [126, Ch.11]) Is it possible to force, starting
from a large cardinal hypothesis, that L(P(ω1)) is a Pmax-extension of
L(R)?



WHAT MAKES THE CONTINUUM ℵ2 29

Woodin conjectured that the existence of ω2 Woodin cardinals sufficed
for a positive answer. It is also interesting to ask whether this can be
achieved by a semiproper forcing; this is closely related to the following
question (compare to [126, 11.15]).

Problem 14.7. (Woodin [126, Ch.10]) Does MM++ imply that L(P(ω1))
is a Pmax-extension of L(R)?

The reader is referred to [4], [70], [71] for partial results concerning this
problem.

Problem 14.8. (Woodin [126, §3.2]) Is it consistent with CH that the
nonstationary ideal on ω1 is saturated?

Problem 14.9. (Woodin [126, 11.7]) Assume that the nonstationary
ideal on ω1 is ℵ1-dense. Must the continuum be ℵ2?

Set-theoretic hypotheses which are needed to prove classification re-
sults about structures of cardinality ℵ1 are closely related to those
which imply that 2ℵ0 = ℵ2.
Problem 14.10. (Moore [82]) Is there a consistent classification of
structures which entails that the continuum is ℵ2?

A candidate is the classification of Aronszajn lines. MM implies that
this class is in many ways analogous to the class of countable linear
orderings (see [73]): it has a two element basis [79], it has a universal
element [84], and it is well quasi-ordered by embeddability [76]. More-
over, this development was precipitated by the discovery of a new proof
that MM implies that 2ℵ0 = ℵ2 [83].

Problem 14.11. (Moore [82]) Suppose the following are true: (a) ev-
ery two ℵ1-dense nonstationary Aronszajn lines are isomorphic or re-
verse isomorphic, (b) every Aronszajn line can be embedded into ηC,
and (c) the class of Aronszajn lines is well quasi-ordered by embeddabil-
ity. Must the continuum be ℵ2?

The following problem is naturally suggested by the results of [14].

Problem 14.12. Does the Semi-Filter Trichotomy imply that the con-
tinuum is ℵ2?

As noted above, this is equivalent to Todorcevic’s question which
asks whether u < g implies u = ℵ1.

While it is comparatively easy to influence the combinatorics of
[ω1]

ω1 , more powerful forcings are required to alter the properties of
the club filter on ω1. This is illustrated, for instance, by the fact that
the club filter in V generates the club filter in any generic extension
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V [G] by a c.c.c. forcing. By contrast, MAℵ1 has a substantial impact
on the combinatorics of [ω1]

ω1 and can always be forced by a c.c.c.
forcing. Since methods for producing models in which 2ℵ0 6= ℵ2 via
iterated forcing are more limited, it may be that 2ℵ0 6= ℵ2 impacts
the combinatorial properties of the club filter. This is the motivation
behind the following question.

Problem 14.13. (Moore) Suppose that whenever 〈Dα : α ∈ ω1〉 satis-
fies that Dα ⊆ α is closed for each α ∈ ω1, then there is a club E ⊆ ω1

such that for all limit α ∈ ω1, there is a ᾱ < α such that (ᾱ, α) ∩ E is
either contained in or disjoint from Dα. Must the continuum be ℵ2?
The combinatorial assertion (µ) in this problem is an immediate con-
sequence of MRP which itself does imply 2ℵ0 = 2ℵ1 = ℵ2. Whether (µ)
is consistent with CH seems to be a good test question for extending
the theory of iterated forcing in the context of CH.

Next we turn to a pair of questions which concern whether certain
consequences of 2ℵ0 ≤ ℵ2 are verifiable. The first is a topological prob-
lem posed by Peter Nyikos.

Problem 14.14. (Nyikos [86]) Does there exist a separable, first count-
able, countably compact, noncompact Hausdorff space?

Notice that ω1, with the order topology, satisfies all of the properties
in the problem except separability. It is known that this question has
a positive answer if either t = ℵ1 or if b = 2ℵ0 . Since t ≤ b, any model
in which this problem has a negative answer must necessarily satisfy
2ℵ0 > ℵ2. A survey of this question can be found in [87].

The next question comes from partition calculus and Todorcevic’s
and Veličković’s Ramsey-theoretic analysis of Martin’s Axiom [109]
[121].

Problem 14.15. (Todorcevic [119, 9.3.2]) Is it true that
(
ω3

ω3

)
→
(
ω
ω

)1,1
ω

?

Here we recall that
(
θ
θ

)
→
(
ω
ω

)1,1
ω

means that if f : θ × θ → ω is any
function, then f is constant on the Cartesian product of two infinite
sets. The least θ for which this is true is at most (2ℵ0)+. In fact any
ZFC bound on this θ which does not involve cardinal exponentiation

would be of interest. It is know that if
(
κ
κ

)
6→
(
ω
ω

)1,1
ω

, then MAκ is
equivalent to the assertion that every κ sized subset of a c.c.c. partial
order has a centered subset of cardinality κ [109]. It has also been

shown that, in the presence of MAℵ2 ,
(
ω2

ω2

)
→
(
ω
ω

)1,1
ω

is equivalent to

Chang’s Conjecture [109].
I will finish the article with the following open-ended question: Is

there a natural hypothesis which implies that the continuum is ℵ3? The
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cardinal ℵ3 is of course somewhat arbitrary — what is relevant is that
it is accessible and greater than ℵ2. It would not be of particularly
great interest to adapt combinatorial statements which imply 2ℵ0 = ℵ2
so that they imply 2ℵ0 = ℵ3. (This may, however, be interesting at a
technical level.) The point is that the proofs that 2ℵ0 = ℵ2, from various
hypotheses, all employ combinatorial ideas which cannot be modified
to produce a proof of 2ℵ0 = ℵ1. Typically these ideas concern the
combinatorial properties of ℵ1. Are there transcendent combinatorial
phenomena at ℵ2 which are related to proofs that 2ℵ0 = ℵ3?
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de Matemática, No. 51).

[27] J. Cummings. Compactness and incompactness phenomena in set theory. In
Logic Colloquium ’01, Lecture Notes in Logic, 20:139–150, Assoc. Symbol.
Logic, Urbana, IL, 2005.

[28] Large cardinal properties of small cardinals. In Set theory (Curaçao,
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