
THE UTILITY OF THE UNCOUNTABLE
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In my lecture at the 2011 Congress on Logic, Methodology, and the
Philosophy of Science in Nancy, France, I spoke on an additional axiom
of set theory — the Proper Forcing Axiom — which has proved very
successful in settling combinatorial problems concerning uncountable
sets. Since I have already written a exposition on this subject [43], I
have decided to address a broader question in this article: why study
uncountability?

In some circles within logic, there has been an ongoing campaign
to stress the importance of countability in mathematics — and to
marginalize the uncountable. While much of mathematics does con-
cern objects which can be codified as hereditarily countable sets, this
often does not reflect how mathematics is discovered or developed.
More significantly, there are technical difficulties which can arise in
mathematics — often quite unexpectedly — which are fundamentally
uncountable in their character. The purpose of this article is survey
some instances where uncountability has been useful in the discovery
process, essential to the solution of a problem, or at least has offered
a fruitful perspective. We will also will examine settings in which re-
stricting attention to countable objects artificially limits the perspec-
tive and gives an incomplete picture of the mathematical phenomenon
under consideration.

In this article, we will take countable mathematics to mean the study
of that which can be encoded in the hereditarily countable sets — the
domain of discourse of second order arithmetic. For instance a complete
metric space can be encoded as the completion of a countable metric
space. Even Borel or suitably definable subsets of such a space have
a countable description and as such lie within the scope of “countable
mathematics.” Nonseparable spaces or nonmeasurable subsets of R are
typical examples of objects which are essentially uncountable in their
nature.
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None of the mathematics in this article is my own. I have generally
tried to include references to the original works when it is reasonable
to do so and otherwise provide a standard reference where the material
can be found.

1. The theory of algebraically closed fields

One of the great ironies of logic is surely that the theory of alge-
braically closed fields of characteristic 0 is complete while Peano’s Ax-
ioms for N are not only incomplete but cannot be completed in any
intelligible way. Ostensibly, ACF0 attempts to achieve more generality
through abstraction than just to axiomatize the theory of the complex
numbers. On the other hand, PA was formulated with the intention of
axiomatizing a single model, namely (N,+, ·, 0, 1, <).

Equally remarkable is how natural it is to employ uncountability to
prove the completeness of ACF0 — a statement which itself is purely
arithmetical in nature. To illustrate this, I will sketch the argument
presented in [35]. To be clear, this is not the original argument of
Robinson [48], but it is an elegant illustration of how uncountability
can play a role in proving an arithmetical statement.

The following are the two main ingredients:

Vaught’s Test. If T is a consistent theory in a countable language,
T has no finite models, and any two models of T of cardinality ℵ1 are
isomorphic, then T is complete.

Transcendence Degree. (see, e.g., [22]) If two algebraically closed
fields have the same characteristic and transcendence degree, then they
are isomorphic.

Vaught’s Test has a very short proof using the Lowenheim-Skolem
Theorem: if T does not decide φ, then there are consistent extensions T0

and T1 of T which include φ and ¬φ respectively and which have infinite
models. By the Lowenheim-Skolem Theorem, T0 and T1 have models
of cardinality ℵ1. Such models are then isomorphic, contradicting that
one satisfies φ and the other satisfies ¬φ. Notice that the form of the
Lowenheim-Skolem Theorem needed here is fundamentally uncountable
in character.

The proof that ACF0 is complete can now be finished as follows.
By Vaught’s Test, it is sufficient to show that any two algebraically
closed fields of characteristic 0 and of cardinality ℵ1 are isomorphic.
This is true by observing that the transcendence degree of an uncount-
able algebraically closed field is equal to its cardinality. As with the
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Lowenheim-Skolem theorem, we fundamentally need here the notion of
not only infinite but of uncountable transcendence degree.

2. Semigroup dynamics and Ramsey theory

Recall the following two theorems concerning partitions of N:

van der Waerden’s Theorem. [61] If N =
⋃
i<dKi, then there is an

i < d such that Ki contains arbitrarily long arithmetic progressions.

Hindman’s Theorem. [20] If N =
⋃
i<dKi, then there is an i < d

and an infinite H ⊆ N such that all finite sums of distinct elements of
H are in Ki.

Both of these theorems were first proved by elementary means. Still,
these elementary proofs are quite complex and the modern perspective
is that the standard proofs of these statements go by way of semi-group
dynamics. The basic idea is as follows. We begin with the discrete semi-
group (N,+) and then form the Čech-Stone compactification βN. The
operation + extends to a semigroup operation on βN. This operation
is moreover continuous in the left argument: p 7→ p+q is continuous for
each q. The compactness of βN allows for the construction of algebraic
objects which have powerful combinatorial consequence for N.

For instance Glazer observed that the following lemma of Ellis im-
plies that βN contains an idempotent (other than 0).

Ellis’s Lemma. [11] If S is a left topological compact semigroup, then
S contains an idempotent.

Galvin had already observed that such idempotents can be used to
prove Hindman’s Theorem. If p + p = p, then any element K of p
contains a set H such that all finite distinct sums from H lie in K; the
set H can be constructed by an easy recursive procedure (see [21] or
[58]). Gowers later extended this argument in [15] to prove a stronger
combinatorial statement which he then used to draw geometric conclu-
sions about the Banach space c0. Unlike Hindman’s Theorem, there is
currently no known elementary proof of Gowers’s result.

The reader may also find Harrington’s proof of the Halpern-Läuchli
theorem interesting (see [60]). This proof utilizes both the Erdős-Rado
theorem (i.e. the partition relation i+

d → (ℵ1)
d+1
ω ) and the method

of forcing. While the other proofs of the Halpern-Läuchli theorem are
more elementary, this proof offers those comfortable with forcing a
more intuitive proof.
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3. Serre’s Conjecture

Next we will turn to an example from group theory. The point here is
not only to mention a very remarkable result, but to give an example of
how “real mathematicians” are not satisfied with limiting themselves to
second order arithmetic, even when this might seem to be a completely
natural thing to do.

A profinite group is an inverse limit of a directed system of finite
groups. These can be equivalently characterized as being those compact
topological groups which are totally disconnected — they have no non-
trivial connected subsets. Notice that, when separable, such groups
have a countable description — the inverse system of groups which
defines them is countable. Serre made the following conjecture after
proving that it is true for pro-p groups (this also was asked by Mel’nikov
in 7.37 of [40]).

Conjecture. If G is a profinite group which is topologically finitely
generated and H is a finite index subgroup of G, then H is open.

So in particular, the subgroup structure of G already determines
the topology of G; in any profinite group, the open subgroups form a
neighborhood of the identity. If the requirement thatG be topologically
finitely generated is dropped, then it is easy to construct counterexam-
ples.

Example. Let G = 2N, equipped with coordinatewise addition modulo
2. Let U be an ultrafilter on N and let H be the collection of all g in
G such that {i ∈ N : g(i) = 0} is in U . It is easily verified that H is
a subgroup of index 2 and that H is not open unless U is a principal
ultrafilter.

On the other hand, it is not difficult to show using Pettis’s Theorem
(see [27, 9.9]) that if H is a subgroup of a Polish group G and H has
finite index, then either H is open or else H fails to have the Property
of Baire (a set has the Baire Property if it differs from an open set by
a set of first category). In particular, Serre’s conjecture is true even
without the assumption that G is topologically finitely generated if we
require that H is Borel or even analytic.

Thus Serre’s conjecture becomes equivalent to asserting that H has
additional regularity properties which it obtains just by virtue of the
algebraic structure. While the analysis using Pettis’s Theorem is pre-
sumably well known (and not at all difficult), a proof of Serre’s Conjec-
ture was only given very recently by Nikolov and Segal [45]. The proof
itself is a tour de force in the theory of finite groups and brings closure
to a long line of research on the subject [18], [39], [50], [51]. It should
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be remarked that this is related to another more general pursuit: un-
derstanding when algebraic constraints on functions imply topological
constraints such as continuity. The study of automatic continuity dates
back to Cauchy; see [49] for a recent survey of work in this area.

4. The additivity of strong homology

If one wishes to have a theory of homology which extends to general
topological spaces, this becomes a rather subtle matter. One such
theory which was developed was that of strong homology. While the
development is beyond the scope of this paper (the interested reader is
referred to [34] for a complete treatment) we will discuss an example
of how a computation in strong homology reduces to a problem in
uncountable combinatorics.

In [41], Milnor proposed the following natural axiom known as addi-
tivity that a homology theory might satisfy. It asserts for every fam-
ily Xi (i ∈ I) of topological spaces, the natural inclusions of Xi into∐

i∈I Xi induce an isomorphism of groups⊕
i∈I

Hp(Xi) ' Hp(
∐
i∈I

Xi).

Now consider the following example due to Mardešić and Prasolov.

Example. [33] For each d > 0, set zn = (2−n, 0, 0, . . . , 0) and define

Xd =
∞⋃
n=0

{x ∈ Rd+1 : |x− zn| = 2−n}.

Thus Xd is a sequence of nested d dimensional spheres which converge
to the origin. The space Xd is compact and its homology groups coincide
with the Steenrod homology groups:

Hp(Xd) =


ZN if p = d

Z if p = 0

0 otherwise

The additivity axiom would imply that

Hp(Xd × N) =
∞⊕
n=0

Hp(Xd).
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Mardešić and Prasolov have shown, however, that if strong homology
is used then

Hi(Xd × N) =


⊕∞

i=0 ZN if p = d

limd−pA if 0 < p < k

limdA⊕ (
⊕∞

i=0 Z) if p = 0

0 if p > d

Here A is the inverse system which is defined as follows. Set Df =
{(i, j) ∈ N2 : j < f(i)} and define

Af =
⊕

(i,j)∈Df

Z.

If f ≤ g are in NN, then Df ⊆ Dg and we have a natural restriction
map %g,f : Ag → Af . The family Af (f ∈ NN), equipped with these
restrictions, becomes an inverse system of abelian groups.

The derived limits limk A are quite complicated and only under-
stood in the single case mentioned below. They are in all cases appar-
ently sensitive to set-theoretic assumptions. In particular, Mardešić
and Prasolov have shown that if the Continuum Hypothesis is true,
then lim1 A 6= 0 and in particular that strong homology is not addi-
tive. Dow, Simon, and Vaughan have shown on the other hand, that
the Proper Forcing Axiom implies that lim1 A = 0.

Combinatorially, lim1 A = 0 is equivalent to the following assertion
[33]: if φf (f ∈ NN) is a coherent family of functions with dom(φf ) =
Df , then there is a single Φ : N2 → N such that, for each f ∈ NN,
φf is, modulo a finite error, equal to the restriction Φ � Df . Here φf
(f ∈ NN) is coherent if for each f, g ∈ NN the set

{(i, j) ∈ Df ∩Dg : φf (i, j) 6= φg(i, j)}
is finite.

So far, only lim1 A = 0 has been examined in the set-theoretic lit-
erature. It appears to be a highly non-trivial problem to determine
whether these groups can all be trivial in a single model of set theory.

5. Gaps and automorphisms of P(N)/fin

The problem of whether lim1 A = 0 discussed in the previous section
is a special instance of a more general set-theoretic problem which
frequently arises in applications of set theory: what types of gaps are
present in quotients of P(N) and under what circumstances can they
arise? What is interesting is that when questions arising outside of
set theory are boiled down to a question concerning gaps, the gaps
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involved rarely if ever come with regularity restrictions. That is, these
naturally arising questions are of an uncountable nature. Moreover,
the development of the general theory of gaps has in turn guided a
parallel theory of definable gaps.

Before proceeding, we will review some terminology. A gap in P(N)/fin
is a pair A, B of subsets of P(N) such that:

• A ∩B is finite whenever A ∈ A, B ∈ B, but
• there is no single C ⊆ N satisfying C ∩B is finite for all B ∈ B

and A \ C is finite for all A ∈ A.

Gaps in P(N)/fin where first studied by Hausdorff in [19]. Todorcevic
was the first to emphasize the Ramsey-theoretic nature of gaps and
also stress their important role in applications. In [54], he formulated
a powerful graph-theoretic dichotomy known as the Open Coloring Ax-
iom in order to study its influence on gaps:

OCA: If G is a graph whose vertex set is a separable metric space
and whose edge set is topologically open, then either G has a
countable vertex coloring or else contains an uncountable clique.

(It is interesting to note that the formulation of OCA can be traced to
problem of studying the isomorphism types of subsets of R, something
seemingly unrelated to gaps. Specifically, the definition of OCA was
derived from similar statements considered by Abraham, Rubin, and
Shelah in [1] which in turn were derived from a result of Baumgartner
[4].) Further information on gaps can be found in [55].

Next we will turn to a problem whose solution involved the analysis
of gaps.

Problem. If φ is an automorphism of the Boolean algebra P(N)/fin,
is there a function f : N→ N which induces φ?

That is, is there an f such that φ([A]) = [B] if and only if the image
of A under f and B differ by a finite set? If this is the case, we say
that φ is a trivial automorphism. It is interesting to note here that
while an automorphism of P(N)/fin is not a priori an object of second
order arithmetic, a trivial automorphism is.

It turns out that the answer to the above problem is independent
of ZFC. If one assumes the Continuum Hypothesis, then P(N)/fin is

ℵ1-saturated and there are 22ℵ0 automorphisms of P(N)/fin (and so
in particular not all are induced by a map from N to N). On the
other hand Shelah has shown that it is consistent with ZFC that all
automorphisms of P(N)/fin are trivial [52]. Later Shelah and Steprāns
showed that PFA implies all automorphisms of P(N)/fin are trivial [53].
Their proof was further simplified and carried out under the weaker
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assumption of OCA and MA by Veličković [63]. The reader is referred
to [25], [24], and [12] for subsequent work on this subject. More recently
Philips-Weaver [47] and Farah [13] have adapted this method to solve
a longstanding problem in the theory of operator algebras originating
in [5].

What is also interesting about Shelah’s solution of the automorphism
problem was that it was later discovered that there is an effective analog
of Shelah’s theorem: any automorphism of P(N)/fin which has a Baire
measurable lifting is trivial [62]. It is important to note, however, that
this effective theorem — which could be regarded as a result in second
order number theory — was discovered by analyzing the combinatorics
of Shelah’s independence proof and the Shelah-Steprān’s proof from
PFA. Moreover, while proofs which utilize PFA often yield effective
counterparts as corollaries, the converse is not true.

There are, in fact, other instances where solutions to effective ver-
sions of problems have been given while the original problem remains
open and apparently intractable. The following are two examples.

Problem. (see [16]) Suppose that C is a compact convex subset of a
locally convex topological vector space. If every closed subset of C is a
Gδ set, is C necessarily metrizable?

Problem. [3] (see [42]) If G is a separable Fréchet group, must G be
metrizable?

In the case of the first problem, Todorcevic has shown that the an-
swer is positive if C is homeomorphic to a compact subset of the the
Baire class one functions on a Polish space [56] (this is a natural reg-
ularity assumption on C in this context). In the case of the second
problem, it is not difficult to show that the problem reduces to the
case in which G is countable. Todorcevic and Uzcágeti have shown
that if G is a countable Fréchet group and the topology on G is an-
alytic as a subset of the compact metric space P(G) ≡ 2G, then G
is metrizable [59]. Consistent counterexamples to both problems are
known (see [32] and [42] respectively).

6. The Separable Quotient Problem

Next we turn to another instance in which restricting attention to
objects of countable character does not give the full picture. One of
the most basic questions about Banach spaces concerns the existence
of Schauder bases in these spaces. The following question is often
attributed to Banach himself, although it was only later that it was
made explicit in print.
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Problem. (see [46]) Does every infinite dimensional Banach space
have an infinite dimensional quotient with a basis?

Nothing about this problem suggests that the problem concerns “un-
countability” — which in this context should be interpreted as nonsep-
arability. Still, Johnson and Rosenthal were able to prove that this
problem has a positive answer within the class of separable Banach
spaces [23]. This reduced Banach’s original problem to the following
form, which is more prevalent in the literature today.

Separable Quotient Problem. Does every infinite dimensional Ba-
nach space have an infinite dimensional separable quotient?

The reader is referred to [44] for a survey of this problem. I will note
two more recent results in the positive direction.

Theorem. [57] Assume PFA. Every Banach space of density ℵ1 admits
a nonseparable quotient with a basis.

Theorem. [2] If X is an infinite dimensional Banach space, then X∗

has an infinite dimensional separable quotient.

7. The determinacy of Gale-Stewart games

One of the most profound examples of how large sets can influ-
ence countable combinatorics is surely the determinacy of Gale-Stewart
games. Recall that in a Gale-Stewart game, two players alternately
play elements xn of some set X, one element for each natural number.
Both players have perfect information. Player I wins if the outcome
〈xn : n < ∞〉 is in some pre-specified set Γ; Player II wins otherwise.
Such a game is determined if one of the two players has a winning strat-
egy. The simplest theorem concerning the determinacy of Gale-Stewart
games was already known to Gale and Stewart.

Closed Determinacy. If Γ ⊆ XN is closed, then the Gale-Stewart
game specified by Γ is determined.

The proof is quite simple: Player I always plays to maintain that
Player II does not have a winning strategy. Either this is impossible
and Player II has a winning strategy from the beginning of the game
or else Player I has arranged that at no point in the game did Player
II have a winning strategy. The key point is that, in a closed game, if
Player II wins a play of the game, she has already won at a finite stage
of the game (i.e. all further plays are irrelevant).

The determinacy of Gale-Stewart games is of interest primarily be-
cause regularity properties of subsets of R and other Polish spaces
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can be recast in terms of the existence of winning strategies in games
which are associated to these sets (see, e.g., [27, §21]). In general,
Gale-Stewart games need not be determined; the Axiom of Choice can
readily be used to construct games which are not determined. On the
other hand, sets Γ ⊆ NN which are in some sense regular do tend to
specify determined games.

Borel Determinacy. [37] If Γ ⊆ NN is Borel, then Γ is determined.

What is remarkable is that all known proofs of determinacy ulti-
mately rely on the determinacy of closed games: one reduces the de-
terminacy of Γ ⊆ NN to the determinacy of some equivalent closed
game Γ∗ ⊆ XN. The set X underlying this “unraveled” game is typi-
cally much larger than N. For instance, H. Friedman has shown that
Borel Determinacy is not provable in ZFC without the powerset axiom
[14]. In fact any proof of Borel determinacy must use, in an essential
way, ℵ1 iterations of the power set operation.

Earlier, Martin had proved the determinacy of analytic games from
the existence of a measurable cardinal [36]. Harrington proved that the
determinacy of analytic games is equivalent to the existence of x] for
each x ⊆ N, thus demonstrating the necessity of large cardinals in Mar-
tin’s proof [17]. The determinacy of projective games was proved by
Martin and Steel from the existence of infinitely many Woodin cardi-
nals [38] — an assumption which was shown by Woodin to be essentially
optimal.

Notice that the determinacy of projective games is formalizable in
second order arithmetic and concerns the properties of the hereditarily
countable sets. Even the proof of the determinacy of Borel games, how-
ever, already makes essential use of transfinite iterates of the powerset
operation. In the case of analytic determinacy, the proof moreover
requires the use of large cardinals. The reader is referred to [26] for
further reading on determinacy and large cardinals, as well as an ex-
tensive bibliography on the subject. Some further information on the
history of determinacy can be found in [28].

8. Large cardinals, braids, and left self distributivity

Next we turn to an example where very large sets have proved use-
ful both in establishing facts about finite algebraic structures and in
improving the efficiency of algorithms for comparing braids. A binary
system (S, ∗) is called a LD system if it satisfies the left self distributive
law :

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)
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Left self distributivity showed up independently in the literature in two
very different contexts. On one hand, it came naturally out of attempts
by Brieskorn, Joyce, Kauffman, and their students to develop invariants
for studying the braid group [8]. Roughly speaking, one colors the
strands at the top of a braid using colors of a binary system (S, ∗). The
operation dictates how the strands change the colors of other strands in
a diagram representing the braid. In order for this procedure to yield
an invariant for braids, (S, ∗) must be an LD system. The reader is
referred to [8] for more details. Suffice it to say that this use of an LD
system makes it desirable to understand free LD systems — those not
satisfying any laws other than those which follow logically from the LD
law.

In a separate branch of mathematics, LD systems were being studied
for a completely different purpose. It was part of the folklore in set
theory that the family Eλ of non-identity elementary embeddings from
Vλ into itself formed an algebraic structure which moreover satisfied
the left self distributive law [8]. Such embeddings are known as rank-
to-rank embeddings. Postulating the existence of a λ for which there is
a non-identity elementary embedding from Vλ to Vλ is an example of
a large cardinal axiom; in fact it is among the strongest of the large
cardinal axioms (see [26]). In particular, the existence of rank-to-rank
embeddings cannot be proved within ZFC.

In [30], Laver proved that if j is a rank-to-rank embedding, then
the algebra (A, ∗) generated by j is free. This was in sharp contrast
to the LD systems — such as a group equipped with conjugation —
which had been employed previously in the study of braids. Then in
[29], Laver used the existence of a rank-to-rank embedding to prove
that the word problem in LD systems is decidable. This in turn led to
efficient new algorithms for comparing braids [7] [31]. Only later was
Dehornoy able to remove the use of large cardinals from solution to the
decision problem for LD systems [6].

Still, large cardinals played a remarkable and unique role in this de-
velopment. Furthermore, there are questions concerning certain finite
LD systems which so far have only been settled using large cardinal
assumptions. An LD system is cyclic if it has a single generator a and
there is a p > 1 such that the left associated power

a[p] = ((a ∗ a) . . . ∗ a) ∗ a

equals a. Laver has shown that any cyclic LD system has 2n elements
for some n and is unique up to isomorphism. If for a given n ∈ N we
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define ∗ on {1, . . . , 2n} by

a ∗ 1 =

{
a+ 1 if a < 2n

1 if a = 2n

then there is a unique extension of ∗ a binary operation which is left self
distributive. This LD system is the nth Laver table An. The following
summarizes the important properties of the Laver tables:

• a ∗ p = (a+ 1)p if a < 2n and 2n ∗ a = a.
• if m < n, then the function π : An → Am defined by π(a) = b

if a ≡ b mod 2m is a surjective homomorphism.
• if a ∈ An, then there is a p ≤ n such that a ∗ b = a ∗ b′ if b ≡ b′

mod 2p and a ∗ b < a ∗ (b+ 1) if 1 ≤ b < 2p.

In fact if a ∈ An and 2p is the period of row a, then b 7→ a ∗ b de-
fines a monomorphism of Ap into An (this is nothing more than the
left self distributive law). Moreover, since each An is cyclic, all such
monomorphisms arise in this way.

If we work within the category of one generator LD systems, then
the Laver tables have an inverse limit A∞. We now have the following
result which is a consequence of work of Laver and Steel (see [8]).

Theorem. If there is a rank-to-rank elementary embedding, then A∞
is free.

It is not known whether this result can be proved in ZFC. On the
other hand, it still is possible that one might be able to prove this
theorem within Peano Arithmetic.

The freeness of A∞ has many equivalents, even working over a weak
base theory such as Primitive Recursive Arithmetic [10]. One equiva-
lent is that for every p there is an n such that the period of row 1 in
An is at least p. On the other hand, Dougherty has shown that the
function p 7→ n which witnesses this cannot be primitive recursive [9].
Moreover he has shown that the least n for which the period of row 1
is at least 32 is A9(A8(A8(254))), where Ak(n) is the kth level of the
Ackermann function [9].

In addition to the original sources mentioned above, further reading
can be found in [8], which serves as a comprehensive source on this
subject.

9. Concluding remarks

Of course there has been no attempt at being comprehensive in
choosing the topics presented above; I do not even pretend to have
taken a representative selection. The examples all appear to have a
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somewhat ad hoc character to them. There is some truth to this and
in fact that is partly the point — it is very difficult to predict from
the outset of one’s study of a problem whether uncountability or some
higher order of infinity is at all relevant. For instance, the conventional
wisdom even among set theorists would be that uncountability should
not be at all relevant understanding to the completeness of ACF0, the
Ramsey theory of the countably infinite, or the freeness of A∞. The
above discussion shows that even when it can be avoided, uncountabil-
ity can still play an illuminating role in understanding the countable.

Additionally, the study of uncountability for its own sake sometimes
leads to unexpected results about objects of a countable or even finite
nature. Even if the use of uncountability ultimately turns out to be
inessential, its role in the discovery process should not be ignored. This
can be seen in Dehornoy and Laver’s algorithm for the word problems
for LD systems and braids. It can also be seen in Veličković’s obser-
vation that Shelah’s proof shows that if an automorphism of P(N)/fin
has a Baire measurable lifting, then it is induced by a function from N
to N.

Finally, there is the lesson illustrated in Serre’s conjecture and the
Separable Quotient Problem: mathematicians do care about arbitrary
subsets of Polish spaces and sets of unrestricted cardinality. All too
often logicians make assumptions about what “real mathematicians”
care about, what they are interested in, and what their biases are,
without spending enough time exploring real mathematics itself. Even
if these biases are as prevalent as we’ve come to believe they are (some-
thing I doubt), the examples above (and many more) are compelling
testimony as to why these biases are misinformed and unnecessarily
restrictive.
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[62] B. Veličković. Definable automorphisms of P(ω)/fin. Proc. Amer. Math. Soc.,

96(1):130–135, 1986.
[63] OCA and automorphisms of (ω)/fin. Topology Appl., 49(1):1–13, 1993.

Department of Mathematics, Cornell University, Ithaca, NY 14853–
4201, USA

E-mail address: justin@math.cornell.edu


