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1. INTRODUCTION

Why set theory? A bit over a century ago, there was a push to put
mathematics on a rigorous, axiomatic foundation. Since the concepts of
set and membership were so primitive and since more complex objects
such as the real line and Euclidean space can be synthesized using set-
theoretic constructions, sets made for a natural domain to carry out
the axiomatization.

This is not to say that mathematics is naturally or canonically en-
coded inside of set theory, just that it can be encoded. Nor does set
theory typically inform us with intuition as to how to resolve most
mathematical problems. Category theory is often said to provide a
competing foundation for mathematics. This is incorrect. Rather it
provides a complementary foundation for mathematics. Category the-
ory provides a high level language and methodology that facilitates
mathematical thought and intuition. Set theory provides the low level
mechanics of mathematics which allows careful and precise analysis
when intuition fails to inform or to yield a rigorous justification.

If one were to draw an analogy with computer science, category the-
ory would be object oriented programming whereas set theory would
be machine language and hardware. Both are essential aspects of com-
puter science; each complements the other. The same is true of the
foundational roles of set theory and category theory. In the physical sci-
ences, category theory would correspond to organic chemistry whereas
set theory would correspond to quantum mechanics and (sub)atomic
processes. Notice that, aside from the locations of elements on the peri-
odic table, quantum effects to are not typically required to understand
chemical reactions.

Set theory is in practice the study of the combinatorics and discrete
mathematics of infinite sets. In many cases, the basic axioms of set the-
ory — ZFC — are not sufficient to completely analyze questions of this
nature. As a result, there is a need to develop meta-mathematical tools
as well — tools to decide when set-theoretic statements are consistent
with the standard axioms. Here are some examples of mathematical
questions which are fundamentally set-theoretic in nature.

Problem 1. Is every automorphism of the Boolean ring & (N)/fin in-
duced by a function from N to N?

Problem 2. If A is an abelian group such that Ext*(A,Z) = 0, must A
be a free abelian group? (Ext'(A,Z) = 0 is equivalent to the assertion
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that whenever h : B — A is a surjective homomorphism with kernel 7Z,
there is a g : A — B such that h o g is the identity.)

Problem 3. Suppose that G is a graph on a separable metric space X
such that the adjacency relation is open as a subset of X?. Must G
either be countably chromatic or else contain an uncountable clique?

Problem 4. Is there a partition of a square into finitely many Borel
pieces such that these pieces can be rearranged through rigid motions of
the plane to partition a disc?

Problem 5. Suppose I' € 2" is a Borel set. If two players alternately
play digits of a sequence a € 2N, does either the first player have a
strategy to force the outcome to be in I' or the second player have a
strategy to force the outcome to be in the complement of I'? What if T
is the continuous image of a Borel set?

Problem 6. Is there a countably additive probability measure p defined
on all subsets of a set X such that pu({z}) = 0 for every v € X ? What
about the case X = [0,1]7

Problem 7. Does every infinite dimensional Banach space have an
infinite dimensional quotient with a basis?

The first three problems are neither provable nor refutable based on
the axioms of ZFC. The fourth problem and the first part of the fifth
have positive answers. The sixth problem and the second part of the
fiftth problem can not be proved within ZFC but can be proved using
strong forms of the Aziom of Infinity. The last problem is open but
seems to be essentially set-theoretic in nature.

The goals of this course are:

e Introduce the axioms of set theory and briefly outline how set-
theory can be used to synthesize mathematical constructions.

e Introduce basic tools in set theory: the ordinals and cardi-
nals, transfinite induction and recursion, stationary sets and
the pressing down lemma.

e Present two axiomatic extensions of ZFC — < and Martin’s
Axiom — an discuss their mathematical consequences.

e Develop Cohen’s method of forcing and use it to establish the
independence of CH from ZFC. Forcing will also be used to
establish the consistency of { and MA.

e Present Solovay’s model of ZF in which all sets of reals are
Lebesgue measurable.
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Time permitting, we will cover material on Martin’s Maximum, a
strengthening of Martin’s Axiom. While we will not be able to com-
pletely solve the problems mentioned above, students will be equipped
to understand the solutions most of these problems by the end of the
course.
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2. THE AXIOMS OF ZERMELO-FRANKEL (ZF) SET THEORY

We’ll now begin the process of formalizing the axioms of set theory.

To illustrate why some care is needed, consider the following: does
{w|x¢x}

describe a set S7 If it did, then S € S if and only if S ¢ S, which is

absurd. This is known as Russell’s Paradox.

Just as the axioms of group theory describes the properties of a single
binary operation = and the axioms of partial orders describes a single
binary relation <, the language of set theory describes the properties
of a binary relation €.

The first axiom asserts that two sets are equal if they have the same
elements.

Axiom 1 (Extensionality). YaVy((Vz((z € ) < (z € y))) = (x =y))

As natural as this may seem, it has the effect of asserting that every-

thing under discussion is a set. This is unnatural if we think ahead

to our goal of using sets to model all of mathematics: is 7 a set? is

the ordered pair (2,3)7 What are their elements? If they don’t have

elements, why aren’t they the emptyset? We’'ll return to this later.
The next axiom asserts that the emptyset exists.

Axiom 2 (Emptyset). JzVy(y ¢ z)

The Axiom of Extensionality implies that the x postulated by this
axiom is unique; we will denote it by ¢J.

The next axiom asserts that if x and y are sets, then there is a set,
which has exactly  and y as its elements.

Axiom 3 (Pairing). VaVy3zVu((ue€ 2) « ((u =z) v (u =y)))

As with ¢, the z postulated by this axiom for a given x and y is
unique; it is denoted {x,y}. Notice that Extensionality also implies
that {z,y} = {y, x}.

It’s perhaps worth pausing to point out that the convention of having
the language of set theory consist only of binary relation € for mem-
bership is one of economy and not of convenience (or is it the other
way around?). There are many set theoretic operations and constants
which are definable from € using the axioms of set theory. In practice
we work and write in an enriched language which includes symbols such
as & and the binary function {z,y}. This ambiguity in the language is
analogous the issue of whether the language of group theory includes
formal symbols for the identity and inversion. More involved exam-
ples in set theory include the Cartesian product x, which is a binary
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operation, and logical constants for things like 7, e, Z and R. This
language can always be converted into the more minimalist language
of set theory (though often with great pain!) and when proving re-
sults by induction on formulas, it is often useful to appeal to this fact.
Typically, however, we will work with the enriched language.

The next axiom asserts that the union of a set x is again a set.

Axiom 4 (Union). VazAyVz((z € y) © Fu((u € z) A (2 € u)))

The y postulated by the axiom for a given z is denoted | Jz (again,
uniqueness is ensured by Extensionality). If x and y are sets, we will
use x U y to denote | J{z,y}. That is | J denotes a unary operation on
sets and U denotes a binary operation.

Observe that the pairing and union axiom can be combined to show
that if zo, ..., 2,1 is a finite list of sets, then {zg,...,x,_1} is also a
set. Also, if  and y are sets, then we define the ordered pair (x,y) :=
{{z},{z,y}}. Tt can be shown that (z,y) = (2/,y’) if and only if x = 2’
and y =1/,

Next we turn to the Powerset Axiom. It will be useful to define
x € y is an abbreviation for Vz((z € x) — (z € y)).

Axiom 5 (Powerset). VxdyVz((z € z) < (2 € y))

The set y postulated by this axiom is called the powerset of x and is
uniquely determined by z. It is denoted & (z).

The next “axiom” is actually an axiom scheme — an infinite family
of axioms parametrized by logical formulas. Throughout this course, if
¢ is a logical formula then we will write ¢(vy,...,v,_1) indicate that
the free variables in ¢ are among vy, ..., v,_1. We will also write, e.g.,
v as shorthand for vy, ..., v,_1, in contexts like ¢(v) or v (v).

Axiom 6 (Separation Scheme). If ¢(y,w) is a formula in the language
of set theory, then the following is an axiom

Vavw3zvy((y € z) < ((y € 2) A o(y, w))).

For a given x and w, the witnessing z is typically denoted

{yex| oy w)}.

If A and B are sets, then the Cartesian product of A and B is defined
by

Ax B:={(a,b) | (ae A) A (be B)}.
That this set exists based on the axioms will be left as a homework
exercise.
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The separation scheme can be viewed as saying that subsets of sets
exist if they can be described. The next axiom scheme addresses “col-
lecting” the image of a set under a description of a function.

Axiom 7 (Collection Scheme). If ¢(z,y,w) is a formula in the lan-
guage of set theory then the following is an axiom

VXVuo(Ve e X lyp(z,y,w) — YVr e X JyeY ¢(z,y,w))

When combined with separation, it asserts that

{y |3z e X ¢(x,y,w)}

describes a set whenever ¢(z,y,w) is a formula, X is a set and w is a
tuple of sets. Moreover, we can apply Separation to conclude that

f=Alz,y) e X xY [ ¢(z,y, w)}
forms a set and hence a function. That is, a function on X can be
specified by a formula which defines it.
The next axiom asserts a key feature of €: that it is well founded. A
binary relation is well founded if every nonempty subset has a minimal
element.

Axiom 8 (Foundation). Vz((z = &) vIyex (rny = &))

The significance of this axiom is in part that it will afford us an under-
standing of how models of set theory are structured. We’ll wait to state
the final ZF axiom — the Axiom of Infinity — until as have introduced
some further definitions.

ZF~ is used to denote ZF without the axiom of foundation. We will
sometimes abbreviate the Powerset Axiom by P, the Infinity Axiom
by Inf, and Coll to denote the Collection Scheme. We will write, e.g.,
ZF — P to denote the axioms of ZF with the Powerset Axiom removed.
Some of our early development of set theory will be carried out in these
weaker systems to that we can show, for instance statements such as:

o If ZF™ is consistent, so is ZF.
e ZF proves that ZF — Inf is consistent.
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3. CLASSES, ORDINALS, AND TRANSFINITE INDUCTION

At this point it is worthwhile to discuss the difference between sets
and classes. Formally speaking, a class simply a formula ¢ (v, a) where
v is a free variable and a is a finite sequence of sets. We think of ¢(v, a)
as describing the class {x | ¢(z,a)} of all sets z such that ¢(x,a) is true.
This collection may or may not be a set, as we have seen with Russell’s
Paradox.

If x is a set, then the formula v € x describes x itself. In particular,
every set is a class. On the other hand, the formula v = v describes
the class of all sets. Since the Axiom of Foundation implies that no set
is an element of itself, this class does not correspond to a set.

Theorem 3.1 (ZF — Inf). For all z, x ¢ x.

Proof. Let = be given and apply the Axiom of Foundation to y = {z}
to obtain a z € y such that z ny = J. Since the only element of y is
x, this translates to z n {z} = J or = ¢ x. O

Often capital letters in boldface are used to denote classes. For in-
stance V denotes the class of all sets. This notation is meant to suggest
that classes should be thought of as collections while alerting the reader
to the possibility that they need not be sets. We will sometimes use
“class” as an adjective — e.g. “class relation”, “class function” — to
alert the reader that something under discussion may not be a set.
For example, a class function is a class F such that the elements of F
are ordered pairs and for each set x there is at most one y such that
(x,y) € F. The domain of a class function F is the class of all  such
that for some y (x,y) € F. If x is in the domain of F, we write F(z) to
denote the unique y such that (z,y) € F.

Unlike sets, the axioms of ZF do not directly address the properties
of classes. The Separation and Collection schemes can be viewed as
indirectly making assertions about the relationship between classes and
sets. Specifically, the Separation scheme can be interpreted as asserting
that the intersection of a set and a class is a set. The Collection scheme
is equivalent to saying that a class function defined on a set domain is
a function.

Definition 1. A set x is transitive if whenever y € x and z € y, z € x.

Phrased in another way, x is transitive if each of its elements is also
a subset of x.

Definition 2. An ordinal is a transitive set o which is well ordered by
€ — every nonempty subset of o has an e-minimum element. We will
write ON to denote the class of all ordinals.



8 JUSTIN MOORE

Informally, an ordinal is the set of ordinals which are smaller than
it. The following theorems bear this intuition out.

Theorem 3.2 (ZF~ —P —Inf). An element of an ordinal is an ordinal.

Proof. Suppose « is an ordinal and 3 € a.. Since « is transitive, 5 < «
and in particular, g is well ordered by €. If v € § and 6 € =, then
since («, €) is transitive, 6 € 5. Thus f is also transitive and hence an
ordinal. ]

Theorem 3.3 (ZF~ — P — Inf). If a and B are ordinals, then one of
the following must be true: € 8, a« = 3, or B € a.

Proof. Suppose for contradiction that the theorem is false and («, ) be
a counterexample. Using the fact that both « and [ are well ordered
by €, we may assume that additionally if o/ € a then (o, §) satisfies
the conclusion of the theorem and if 5’ € § then («, ') satisfies the
conclusion of the theorem. We'll refer to such a pair («, 8) as a minimal
counterexample.

Suppose that v € a. By our assumption, we know that either v € 3,
v =, or B €. Since 8 ¢ a, we know that v # 5. Also, if g € v, then
since « is transitive, we would have that 8 € «, which we have also
assumed is not possible. Thus oo € 5. Note however that if (a, ) is an
minimal counterexample, then so is (f,«). Thus we also have § € «
and hence, by Extensionality, a = . O

If a and B are ordinals, we will write & < [ to mean o € 3 and
a < ftomean a € f or a = . The previous theorem asserts that < is
a class linear order on ON. If «v is an ordinal, define a + 1 = o U {a}.
Notice that o < o + 1 and that if 3 is an ordinal greater than «, then
it must be that a + 1 < . An ordinal of the form « + 1 is called a
successor ordinal. All other nonzero ordinals are called limit ordinals.

We will now pause to state the final axiom of ZF.

Axiom 9 (Infinity). There is a least limit ordinal.

This ordinal is denoted w. Note that if there is a limit ordinal, there
is a least ordinal — our choice of phrasing is to ensure uniqueness and
to parallel the Emptyset Axiom. We also note the following corollary
to Theorem 3.3. It is known as the Burali-Forti Paradox.

Corollary 3.4 (ZF~ — P —Inf). The class of all ordinals is not a set.

Proof. If the class of all ordinals was a set «, then Theorem 3.3 implies
that it would be an ordinal. But then a € a by Theorem 3.1. U

The next “theorem” formalizes transfinite induction. In fact, each is
a family of theorems, one for each class.



MATH 6870: SET THEORY 9

Theorem 3.5 (ZF~ — P — Inf). If C < ON is nonempty, then C has
a least element.

Proof. Let a € C. If a n C is empty, then Theorem 3.3 implies that
a <  whenever § € C. If a n C is nonempty, then it is a nonempty
subset of a. Since « is well ordered by €, a n C has a least element
~. If B e C, then Theorem 3.3 implies that either v < 3 or else (€ 4.
If 8 € v, then since « is a transitive set, § € a n C, which contradicts
that v was minimal. It follows that v is the least element of C. U

Another useful notion related to ordinals is that of a sequence. A
sequence is a function whose domain is an ordinal. The domain of a
sequence is called its length. If o is an ordinal and X is a set, X will
denote all sequences of elements of X of length o and X =% will denote
all sequences of elements of X of length less than a.
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4. WELL FOUNDED RELATIONS AND TRANSFINITE RECURSION

We will now set up a very general framework for making recursive
definitions. This is a cornerstone to set theory and will be used through-
out the course, often in subtle ways.

Suppose that R is a binary class relation. We say that R is set-like
if for every y, RY := {z | (z,y) € R} is a set. Notice that € is a
set-like relation. A relation R is well founded if for every nonempty
set x, there is a y € x such that for all z € x, (z,y) is not in R —
i.e. every nonempty class has an R-minimal element. Note that the
Axiom of Foundation simply asserts that € is well-founded. The next
theorem scheme formalizes transfinite recursion along well-founded set-
like relations.

Theorem 4.1 (ZF7). Suppose A is a class and R is a set-like well-
founded relation on A. For every class function F : A xV — V
there is a unique class function G : A — V such that for all a € A,

G(a) = F(a,GIR").

Notice that since we do not require that R is extensional in this
theorem, R® does not uniquely determine a and thus allowing a as
an input to F adds some additional generality. Before we prove this
theorem, we will need to prove two lemmas concerning set-like relations.

Lemma 4.2 (ZF 7). IfR is a set-like relation and x is a set, then there
15 a set X such that x € X and whenever y is in X, RY < X.

Proof. Let ¢(n,x,y) be the assertion n € w and there exists a k < n
and a function s with domain & such that s(0) = y, s(k — 1) = z and
forallie k—1, (s(i),s(i + 1)) € R. We claim that for all n € w there
is a unique set X,, such that y € X,, if and only if ¢(n,z,y). This is
proved by induction on n. If n = 0, then Xy = {z}. Also, X,,,1 =
X, v U{RY | y € X,,}, which is a set by our inductive assumption, the
Union Axiom, and the assumption that R is set-like; X, 1 is unique
by Extensionality. By Collection, {X,, | n € w} is a set and by Union,
X = U{X, | n € w} is a set. O

Also observe that, by taking an intersection, there is always a -
minimum set X satisfying the conclusion of this lemma (in fact this is
the set constructed in the proof). This will be called the transitive R-
closure of x. If R is the membership relation, we will simply refer to it
as the transitive closure of x and denote it tc(x). It is the S-minimum
transitive set which has x as an element.

Lemma 4.3. Suppose R is a well-founded set-like class relation. Every
nonempty class has an R-minimal element.
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Proof. Suppose that X is a nonempty class and let z € X. Define Y to
be the transitive R-closure of x. By Separation, X nY is a set. Since
reXnNnY, XNnY has an R-minimal element y. Since RY < Y, it must
be that y is an R-minimal element of X. 0

Proof of Theorem 4.1. Fix F: A x V — V and R as in the statement
of the theorem. An approzimation is a function g such that:

e the domain of ¢ is contained in A;
e if x is in the domain of g, then R” is contained in the domain
of g and g(z) = F(z,g|R").
We will first show that if g and h are approximations and z is in the
domain of both, then g(x) = h(x). Suppose for contradiction that this
is not the case and let £ be an R-minimal counterexample. Notice
though that this implies that g[R* = h[R” and hence

g(r) = F(z,gIR") = F(z, h|R") = h(z),

which is a contradiction.

Define G to be all (a,b) which are in some approximation. By the
previous observation, G is a class function defined on a subclass of A.
It suffices to show that the domain of G is all of A. Again suppose for
contradiction that this is not the case and let @ € A be R-minimal with
respect to not being in the domain of an approximation. Let A be the
transitive R-closure of a. By minimality of a, A\{a} is contained in the
domain of G. Moreover, G|(A\{a}) is an approximation — that this
is a function follows from Collection. Define g to be the extension of
G| (A\{a}) to A defined by g(a) = F(a, GIR"), noting that G|R" is a
restriction of G [(A\{a}). Since g is an approximation which is defined
at a, we have a contradiction. It must therefore be that the domain of

G is all of A. O

The special class of the Transfinite Recursion Theorem in which A
is ON and R is € is important and can be stated as follows.

Theorem 4.4. For ecvery class function F : V — V there is a unique
class function G : ON — V such that for all « € ON, G(a) =
F(Gla).

Observe that, in the statement of this theorem, it is only relevant
what the values of F are on sequences. The function F can be thought
of as specifying a recursive rule which described a class length sequence
G: it tells you how to compute G(«) given Gla. Often the actual
recursion effectively terminates at some ordinal state and continues
only nominally through the rest of the ordinals.
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5. ORDINAL ARITHMETIC

We will now turn to ordinal arithmetic. Note that if A is a set of
ordinals, then ( J A is the least upper bound of A. We will denote this
by sup A. For a fixed «, define the class function § — «a+ ( recursively
by:

« ifg=0
a+pf:=<(a+7)+1 if f=vy+1
sup{aw + | y€e p} if §is a limit ordinal
It is easily checked that + agrees with (or rather formalizes) ordinary

addition on the finite ordinals. Note, however, that + is not commu-
tative. For example,

ltw=sup{l+n|new}=w<w+1.

Observe that if a < 3, then there is a unique ~ such that a + v = 3:
v is the greatest ordinal such that a + v < .

Similarly, one can recursively define multiplication and exponentia-
tion:
(0 if =0
a-f=3(a-7)+a iftg=~v+1
| sup{a - v | vep} if Bis a limit ordinal

-

1 it =0
(@)« iff=v+1
[ sup{a” [y e B} if B is a limit ordinal

a? =

A

Proposition 5.1. For all ordinals o, 5,7, we have that if 5 < -y, then
the following inequalities hold:

at+f<a+ry a-f<a-vy > o <o
Proposition 5.2. The operations + and - are associative on ON.

Proof. As the arguments are similar, a proof will only be given that
+ is associative. We will prove by induction on ~ that if & and g are
ordinals then (o + ) +v = a+ (8 + 7). If v = 0 there is nothing to
show. If v = + 1, then
(a+p)+(0+1)=(a+B)+d)+1=(a+(B+0)) +1
=a+((B+0)+1)=a+(B+(5+1))

=a+ (B+7).
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If v is a limit ordinal, then

(a+B)+y=sup{(a+pB)+d|dey}=sup{a+ (B+0)]de~}
=sup{a+n|nef+t=a+(8+7).

The third inequality is justified by the fact that {3+ | § € 7} is a
cofinal subset of 3+~ combined with the fact that £ — a+ ¢ is strictly
increasing. U

The following proposition is left as a homework exercise.
Proposition 5.3. For all o, 8,y € ON the following identities hold:
a-B+y)=a-B+a-y, P =ad a7, (o) =a".

The next theorem shows that ordinals can be written uniquely in
any ordinal base  with 8 > 1. If (§; | ¢ < n) is a finite sequence of
ordinals, we define ) ,_ & =& + ...+ &,—1 with the convention that
the sum is 0 if n = 0.

Theorem 5.4 (Cantor Normal Form). Suppose 8 > 1 is an ordinal.
For any ordinal o there exist a unique pair of finite sequences of ordinals
(i li<my and (&; | 1 < ny such that {y; | i < n) is strictly decreasing,
0<d; <pB foralli<n, and

a=>) Br-6

<<n
The special case f = w is usually what is meant by “Cantor normal
form.” The case [ = 2 is also of interest — in this case 9; = 1 and
we simply have ov = > ._ 2% for a unique strictly decreasing sequence
{vi | i < n). Before proving this theorem, we will establish the following
lemma.

Lemma 5.5. For any ordinal § > 1, any nonnull finite strictly de-
creasing sequence (y; | i < ny of ordinals, and any sequence {&; | i < n)
of ordinals less than [ we have:

Z B .5 < B%H

<n
Proof. The proof is by induction on n. If n = 1, then 7.9y < -5 =
Bt If n > 1, then by induction

n—1
Z B g, < 6’71+1
i=1



14 JUSTIN MOORE

and therefore we have
Zﬁ’)’i 52 < /B’YO _6O+/B'Yl+1 gﬁ’}’o ,50+5’70 :/B'YO . (50_;’_1) <570+1
<n

as desired. 0

Proof of Theorem 5.4. We will prove existence by induction on « for
a given > 1. If a = 0, then we take n = 0 and the null sequences
witness the conclusion. Suppose now that a > 0. Let vy be the greatest
ordinal such that 7 < «; such an ordinal exists since § > 1. Let g
be the greatest ordinal such that 57 -y < a. Since

67°-1<Oz<5%+1=ﬁ%-,@,

it must be that 1 < dy < B. Let p be the unique ordinal such that
a = 79y + p. Since p < a, we can apply our induction hypothesis to
find sequences (v; | i < ny and {d; | i < n) such that v > -+ > 7,1,

0 <9d; < f,and
n—1
p=> 8" b
i=1

Since p < 4%, it follows that 79 > 7;. Thus a = >,._ 5% - 9.
Uniqueness is established by induction on a using the observation
that if o = Y ,_ 8% - ;, then

7o = max{y | #7 < a}
dp = max{d | f7° -0 < a}
and p = Z?;ll B -6; is the unique ordinal such that a = 7 -9g+p. O

Theorem 5.6. Suppose that § > 1. For every positive ordinal c, there
exist unique ordinals vy and 6 and 0 < p < 8 such that « = 7-(B-6+p).
In particular, for every o > 0, there are unique ordinals 8 and v such
that o = 2% - (2- v + 1).

Proof. Let o = Zign B - be the Cantor normal form for « in base f3.
Set v = v, for each i < n let & be such that v, = v+ 1+¢&;. If we define
§=Y,._, 0% and p = §,, then by Proposition 5.3, a = 87 (8- + p).
Uniqueness follows from the observation that if « = 87 (8- + p) then
the Cantor normal form of § and p in base § can be manipulated using
Proposition 5.3 into a Cantor normal form for « in base . Since « has
a unique Cantor normal form in base (3, it must be that v, 0 and p are
unique. O
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6. THE MOSTOWSKI COLLAPSE AND THE CUMULATIVE
HEIRARCHY

The construction in the next theorem is known as the Mostowsk:
collapse or transitive collapse.

Theorem 6.1 (ZF ™). Suppose that A is a class and R is a well founded
set-like relation on A. There is a unique transitive class M and a
unique class surjection m : A — M such that for allx,y € A, (z,y) € R
if and only if m(x) € w(y). Moreover, if R is extensional, 7 is injective.

Proof. Define F : A xV —V by

F(a,g) :=={y:3vre R ((z,y) € 9)}.

This definition is justified by Collection and Union. Let 7: A — 'V be
such that w(a) = F(a,7[R*) holds for all a € A; let M be the range of
m. If

(b) = F(b,7IR’) = {r(a) | (a,b) € R}.
To see that M is transitive, observe that if x € M, then z = 7(a) for

some a € A. If y € w(a), then y = 7(b) for some b € A with (b,a) € R.
In particular, y € M. O

Corollary 6.2. If (W, <) is a well ordered set, then (W,<1) is isomor-
phic to (a,€). Moreover a and the isomorphism are unique.

Proof. Take the Mostowski collapse of (W, <1) to obtain a unique tran-
sitive set a and isomorphism 7 : (W, <) = (a,€). Since < is a linear
order, (a, €) must be as well and hence « is an ordinal. O

If (W, <) is a well ordering, then the unique « such that (W, <) ~
(e, €) is called the ordertype of (W, <) and denoted otp(W,<). If W is
a set of ordinals and < is €, then we write otp(W) for otp(W, €).

Corollary 6.3. Given any two well orders, one is uniquely isomorphic
to an initial segment of the other.

Proof. By the previous corollary, we may assume that the two well
orders are ordinals o and . Since either a € 8, a = 3, or 8 € a, we
have that « is an initial part of £ or vice versa. O

Corollary 6.4. If R is any well-founded set-like relation, then
p(y) = sup{p(z) + 1| (z,y) € R}

defines an R-increasing class function into the ordinals.



16 JUSTIN MOORE

The class function p is called the rank function for R. Let WF
denote class of all well-founded sets — the class of all sets x such that
every nonempty subset of the transitive closure of x has an e-minimal
element. If p is the rank function for (WF, €) and x € WF, then p(z)
is called the rank of x. Observe that if « is an ordinal, then the rank
of a is a.

The next theorem is a routine verification modulo a syntactic con-
struction which will be needed later.

Theorem 6.5 (ZF™). (WF, €) satisfies the axioms of ZF.

In particular, if ZF~ is consistent, so is ZF. The verification of both
the Separation and Collection schemes in WF involves a wrinkle: given
a formula ¢(vy, ..., v,—1) in the language of set theory, we must show
that there is a formula ¢W¥(vy, ..., v, 1) in the language of set theory
so that whenever zg,...,z,_1 € WF, WF = ¢(xg,...,2z,1) if and
only if ¢W¥(xg,..., 7, 1) is true in the ambient model of set theory.
This is an instance of a general construction called relativization. If A
is a class and ¢ is a formula, we define ¢* recursively:

e If ¢ is an atomic formula, ¢* = ¢.
e (PAE)A = (6%) A (R), (P)* = [6%), (¢v1/1) = (¢%) v (v*
e (Fvp)d = Fv[(v € A) A (¢*)] and (Yvp)® = Vo[(v € A) —
(™)1
Thus the instance of Separation for ¢ in WF becomes the instance of
Separation for ¢W¥ in the ambient model of ZF~.
The rank function on WF can be described in a different way. For
a € ON, define V, recursively by

&) ifaa=0
Vo = @(Vg) ifa=pg+1
U{Vs|Bea} ifaisa limit ordinal.

This class length sequence of sets is known as the cumulative hierar-
chy and was first defined by John von Neumann. The next theorem
summarizes its key properties.

Theorem 6.6 (ZF~). The following are true:

(a) For every ordinal o and every set x, x is in V,, if and only if the
rank of x is less than «. In particular the class of all sets of rank
less than « 1s a set.

(b) For every ordinal o, V, is a transitive set and V, n ON = a.

(¢) For each ordinal o, (V,,€) satisfies the axioms of Extensionality,
Foundation, Union, and Separation.
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(d) If « > 0, (Va,€) satisfies Emptyset and if « > w, then (V,,€)
satisfies Infinity.

(e) For every limit ordinal «, (V,,€) satisfies the axioms of Pairing
and Powerset.

In particular, (V,,,€) satisfies ZF —Inf and (V,,.2,€) satisfies ZF — Coll.

Proof. That V,, consists exactly of the sets of rank less than « is proved
by induction on «. Suppose that this is false and let a be the least
ordinal witnessing this. Observe that o must be a successor; let o =
£+ 1. To see that V,, only consists of sets of rank less than «, suppose
that x € V,,. In this case p(x) = sup,, p(y) + 1. Since x S Vj, each
y e xisin Vz. Thus p(y) < B and p(y)+1 < . To see that V,, contains
every set x of rank less than «, observe that the elements of x must each
have rank less than . Thus < V3 and therefore x € Z2(V3) = V.

Since the class of sets of rank less than « is transitive, V,, is transitive
for each «. Since the rank function is the identity on the ordinals, V,, n
ON = a. Observe that if X is any transitive set, then (X, €) satisfies
the axioms of Extensionality and Foundation. In particular, (V,,€)
satisfies Extensionality and Foundation for each @ € ON. Moreover,
Separation holds in V,, by relativizing formulas to V,, and using the fact
that V,, is closed under taking subsets.

If z is a set, then

p(U x) = supsup p(z) + 1 <sup(supp(z) + 1) + 1 = p(x)

YET 2E€Y yeET 2E€Y

and thus if z is in V,, so is [ Jz. Finally, if « has rank less than o and
y < x, then y has rank less than «. Hence if x € V, and y < z, then
y e V.

Since Emptyset and Infinity just postulate the existence of 0 and w,
respectively, (d) follows. Finally if x and y are in V,, then & (z) is
in V41 and {z,y} is in V, 9. In particular, if « is a limit ordinal, V,
satisfies Powerset and Pairing. (l

Up to this point, we have been spelling out our assumptions for two
reasons. The first is to get used to working with the axioms and to
understand how to model fragments of them. Another is to show that
we can upgrade a model of ZF without the Axiom of Foundation to
one which satisfies the Axiom of Foundation. Thus there is no risk in
introducing inconsistency to ZF~ by adding the Axiom of Foundation
— if ZF is inconsistent, then ZF~ is already inconsistent. This is an
example of a relative consistency result. We will later prove similar
results for the Axiom of Choice and the Continuum Hypothesis.
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7. CARDINALITY

Recall that if X and Y are sets, then the cardinality of X is at most
that of Y if there is an injection from X into Y. This is denoted by
| X| < |Y|. If there is a bijection between X and Y, this is denoted
| X| = |Y|. In the presence of well orderings, the existence of surjective
maps have implications for cardinality inequalities.

Proposition 7.1. If A is a set and [ is an ordinal and there is a
surjection f: 8 — A, then |A] < |B].

Proof. a + min f~!(a) defines an injection from A to 3 and hence
Al < [B]- 0
We note the following two well known theorems on cardinality.

Theorem 7.2 (Cantor-Schroder-Bernstein). If | X| < |Y] and Y| <
| X|, then | X| =|Y].
Proof. Suppose that f: X — Y and ¢g: Y — X are injections. Define
Xo := X\g[Y] Yo := Y\ f[X]
Xnt1 1= g[Yn] Y1 = f[XN]
Set Xy, := X\ U, e, Xn and Y, := Y\, ., Y. Observe that the com-
position ¢! o f defines a bijection between X, and X, for all n.
Since X is disjoint from the range of ¢g=! o f and since ¢! o f trans-
lates Xo, ..., X,_1 to X1,..., X, for each n, it follows by induction on
n that {X,, | n € w+ 1} is pairwise disjoint. Similarly {Y,, | n € w + 1}
is pairwise disjoint. Furthermore f1Xs, is a bijection between X5, and

Yiion if n < w. Similarly ¢~ X 9, is a bijection between X4, and
Y5,. Define h: X — Y by

h(l’) - g_l(l') ifxe Unem X2n+1
f(x) otherwise

It follows that h is a bijection. U

Theorem 7.3 (Cantor). For any set x, there is no surjection from x

to Z(x).
Proof. If f:x — P(x), then {y e x|y ¢ f(y)} is not in range(f). O

Theorem 7.4 (Hartog ordinal). For each set x, there is a least ordinal
v such that there is no injection from ~ into x.

Proof. Given x, define
W= {(y,<) e Z(x) x Z(2*) | (y,<) is a well order}.
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Since W is a set, otp |W is a function whose range is contained in the
ordinals. Let v be the least strict upper bound for the range of W. If
there were an injection f : v — x, then its range y would be a subset
of x which could be equipped with a well order isomorphic to 7: define
f(a)< f(pP) if and only if « € B. Since this is contrary to our choice of
v, there is no injection from ~ into . U

If x is a set, the least ordinal + such that |y| € |z| is the Hartog
ordinal of x. The existence of Hartog ordinals allows us to give a short
proof of the following remarkable fact.

Corollary 7.5 (ZF7). If for every pair of sets x and y, |x| < |y| or
ly| < ||, then every set can be well ordered.

Proof. Let x be given and let v be an ordinal such that |y| € |z|. If
|z| < ||, then there is an injection f from x into . If we define < on
x by a<bif and only if f(a) € f(b), then < is a well ordering on z. [

The conclusion of this corollary is known as the Well Ordering Prin-
ciple. Notice that a set X can be well ordered precisely when | X| < |a]
for some ordinal a.

Corollary 7.6 (ZF7). If for every infinite X, |X| = |X?|, then the
Well Ordering Principle holds.

Proof. Let X be a given infinite set and let v be an ordinal such that
7] € | X|and set Y = X uy. If|Y]| = Y2, let f:Y — Y% be a
bijection and define

g(x) = min{§ € v [y f(§) = (z,y)}.
Notice that g(z) is always defined since otherwise n — f~!(z,n) would

define an injection from v into X. Since g is clearly one-to-one, we've
showing that |X| < |y| and hence that X can be well ordered. O
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8. CARDINALS

An ordinal x is a cardinal if |a| < |k| whenever a € k. The Well
Ordering Principle is equivalent to the assertion that every set has the
same cardinality as a cardinal. If |x| = |k| for some cardinal & it is
customary to adopt the convention that |z| := . Thus in the presence
of the Well Ordering Principle, the cardinality comparisons | X| < |Y|
and |X| = |Y| become ordinary inequalities and equalities between
cardinals.

Notice that the finite cardinals are exactly the elements of w. On the
other hand, ordinals such as w + 1, w - w, w1 etc. are not cardinals
— they all have the same cardinality as w. If |z| < w, we will say that
x is countable.

The infinite cardinals have a canonical enumeration which can be
described as follows. If « is an ordinal, define at to be the Hartog
ordinal for a. A cardinal of the form o™ is called a successor cardi-
nal. All other infinite cardinals are called limit cardinals. Define the
hierarchy of infinite cardinals recursively by

w ifa=0
W 1= 3 (wp)™" ifa=p+1
sup{wg | f € a} if a is a limit ordinal

Observe that every infinite cardinal is of the form w, for some ordinal
a (otherwise there would be a least counterexample and this is easily
shown to be impossible). Cardinals both play of role of well orderings
and as representative cardinalities of sets. If we wish to emphasize that
we, 18 a cardinal, we will instead write X,,. If, on the other hand, we want
to signal that ordinal arithmetic is involved or that the underlying e-
ordering is important, we will write w,. Generally one writes w instead
of wg but writes Ny and not N.

Theorem 8.1. The following are true for every infinite cardinal k:
(a) K is closed under addition, multiplication, and exponentiation.

(b) |5=| = k.

Proof. We will first show that, for a given x that (a) implies (b). To
see this, define F: ON — ON=“ and G : ON=* — ON by

c ifa=0
rle {wm) if 0 = 2227+ 1).

0 its=c¢
G(s) := {25 (2-Gt)+1) ifs=)t
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Here € denotes the null sequence and s”t is the concatenation of s and
t. Notice that these definitions are recursive: if @ = 2°(2 -~ + 1), then
v < a and therefore F(«) is specified as a function of F fa.. G is defined
by recursion on the (well founded set-like) relation consisting of pairs
(t,s) of finite sequence of ordinals such that ¢ is a final segment of s.
Theorem 5.6 implies that GoF = F o GG is the identity function and
hence that both F and G are class bijections. If k is closed under the
arithmetic operations, then F [k is a bijection between k and k=%
We will now prove (a) by induction on k. Define

I={¢cON|2°=¢}.
We leave the following claim as an exercise:

Proposition 8.2. A positive ordinal & is closed under the operations
of addition, multiplication, and exponentiation if and only if it satisfies
28 = €.

Observe that wis in I and if A < Iis a set, then sup(A) € I. In order
to show that every infinite cardinal is in I, it suffices to show that if
i < v are consecutive elements of I, then |u| = |v|. To this end, let
i < v be given and define h : © — v by

ha) o ifael
TS, 2M8) ifa ¢ Tand F(a) = (B | i <n)

Notice that this is a recursive definition since if F(a) = (5; | i < n),
and a < f; for some i < n, then i =0, n =1 and oo = ffy is in I. By
Proposition 7.1, it suffices to show that if v € v, v is in the range of
h. We will prove this by induction. If v € I, there is nothing to show.
If v € Y\I, then v = > 2% for some strictly decreasing sequence
(i |1 < n)ywith vy < . Applying our inductive assumption, let 5; < p
be the least ordinal such that h(f5;) = 7; and set o := G({f; | i < n)).
Since p is closed under the arithmetic operations, a < v and we have
h(a) = 7y as desired. O
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9. Tur AxioM oF CHOICE

Up to this point, all of our analysis has been carried out just using
the ZF axioms. We will now introduce the final axiom of ZFC, the
Axiom of Choice.

Axiom 10 (Choice). If X is a set and every element of X is nonempty,
then there is a function f: X — | J X such that f(x) € x for allz e X.

Frequently the Axiom of Choice is used through one of its many
equivalent forms. Recall that Zorn’s Lemma asserts that whenever
(P, <) is a partially ordered set in which every totally ordered subset
has an upper bound, P has a maximal element.

Theorem 9.1. Assuming the axioms of ZF, the following are equiva-
lent:

(a) The Aziom of Choice.
(b) Zorn’s Lemma.
(¢) The Well Ordering Principle.

Proof. We will show (a)=(b)=(c)=>(a). To see (a) implies (b), let
(P,<) be a partially ordered set satisfying the hypothesis of Zorn’s
Lemma. Define

C:={CeZP)|(C,<) is a total order}.
If C € C, define
B(C) :={pe P | pis a strict upper bound for C'}

and set B := {B(C) | C € C}. If B(C) is empty for some C € C,
then C' has an upper bound p but no strict upper bound. This means
that p is a maximal element of P. Suppose for contradiction that no
element of B is empty. By the Axiom of Choice, there is a function
f B — |UB such that f(B) € Bforal Be B. If s: a - P
is a strictly increasing sequence, define F(s) = f(range(s)). By the
Transfinite Recursion Theorem, there is a G : ON — V such that
G(«a) = f(range(Gla)) for all . But then G is a strictly increasing
— and in particular injective — class function from ON into P, which
is absurd.

To see (b) implies (c), define @ to be the class of all injections from
an ordinal into X. Observe that if v is the Hartog ordinal for X, then
Q < (v x X) and hence @) is a set. Order @ by p < ¢ if pis a
restriction of ¢. If C' < @ is a chain, then | JC is also in @ and is
an upper bound for C. By Zorn’s Lemma, () has a maximal element
p:a— X. If pis not a surjection, then g U {(a, )} : @+ 1 — X is an
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injection where x € X is not in the range of p. Since such a ¢ would be
strictly above p, it must be that p is a surjection.

To see that (c) implies (a), let X be given and let < be a well ordering
of [JX. Define f : X — [JX so that f(z) is the <-least element of
x. U

We've also established the following theorem.

Theorem 9.2. The following are each equivalent to the Axiom of
Choice:

(a) If X and Y are sets, then either | X| < |Y| or |Y| < |X]|.
(b) If X is an infinite set, then | X =] = | X]|.
(¢) If X is an infinite set, then | X x X| = |X]|.

Proof. Combine Corollaries 7.5 and 7.6 and Theorems 8.1 and 9.1. [

From this point forward, all proofs will be carried out in ZFC unless
explicitly stated otherwise.

If « is a ordinal limit, then the cofinality of o, denoted cof(«), is the
minimum cardinality of a subset A € a such that sup(4) = a. If k is
an infinite cardinal and cof (k) = K, we say that  is a regular cardinal;
if an infinite cardinal is not regular it is singular. The cardinals N,
for n € w are all regular cardinals whereas X, = sup{X,, | n € w} has
cofinality w and hence is singular.

Theorem 9.3. Fvery infinite successor cardinal is reqular.

Proof. Let k be an infinite cardinal and suppose for contradiction that
thereis an A < k% such that sup(A) = x* and |A| < k. Fix a surjection
f ik —> Ax k. Foreach a € A, define E, to be the collection of all
surjections from x to . Since {F, | a € A} exists by Collection and
since each E, is nonempty by hypothesis, there exists a function e with
domain A such that e(a) € E, for all « € A. Writing e, for e(«) define
g : k — kT by g(a) = eg(y) where f(a) = (8,7). Clearly g is a
surjection: if £ € k™ then there is a S € A with £ € 8 and a ~ € k such

that eg(y) = & If f(a) = (B,7), then g(a) = es(7) = &. O
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10. INACCESSIBLE CARDINALS AND THE REFLECTION THEOREM

A cardinal & is a strong limit cardinal if whenever a < k, |2 (a)| < k.
A cardinal is weakly inaccessible if it is an uncountable regular limit
cardinal and strongly inaccessible if it is a uncountable regular strong
limit cardinal. Notice that w is both regular and a strong limit cardinal.

Theorem 10.1. Assume ZFC. If k is a strongly inaccessible cardinal,
then (Vi €) satisfies ZFC.

Proof. Assume that k is strongly inaccessible. By Theorem 6.6, (V,;, €)
satisfies ZF — Coll. To see that (V, €) satisfies the Axiom of Choice, it
suffices to show that it satisfies the Wellordering Principle. Let X € V,
and let o < k be such that X € V,,. Since X can be well ordered and
since any well ordering of X is in V, ., Vi contains a wellordering of
X.

It remains to show that (V, €) satisfies the Collection Scheme. Sup-
pose that X € V,, ¢(u,v,w) is a formula, and a € V.= are such that

(Viye) EVre X 3y o(z,y,a).

By Separation applied to X x V,, and ¢"* — the relativization of ¢ to
V. — there is a function f : X — V, such that if z € X, (V,,€)

o(z, f(x),a). Let A:={p(f(x))|ze X} < k.
Claim 10.2. If Z € V,, then |Z| < k.

Proof. Since every element of V. is a subset of some V,, for a < &, it
suffices to show that |V,| < k for each o« < k. The proof is by induction
on a. Clearly |Vo| =0 < k. If @ = + 1, then since |V3| < k and & is a
strong limit cardinal, |V, | = |Z?(V3)| < k. If a is a limit ordinal, then
{|Vs| | B € a} is a subset of k of cardinality |a| < k. Since & is regular,

Vel = sup{[Vs| | 5 € o}

is less than k. U

Since po f : X — A is a surjection, A is bounded in k. Let § < k
be a strict upper bound for A. We now have that for each x € X, the
rank of y = f(z) is less than #. Thus

(Ve,€) EVz e X Jye Vs ¢(z,y,a)
n

Theorem 10.3. If (V,,€) satisfies ZFC, then k is a strong limit car-
dinal.
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Proof. Now suppose that (V, €) satisfies Collection for some uncount-
able limit ordinal k. As we have noted already, this means that (Vj,€)
satisfies ZF. Let a € k be arbitrary and observe that & («a) € Vj,. Since
the Axiom of Choice holds, there is a well ordering < of &?(«) which
is therefore also in V. Since (V,,¢€) satisfies Collection, there is an
ordinal § € V, which is isomorphic to (£?(«a),<1). Since |Z(a)| = |f|
and since « is a cardinal, | Z(a)| < k. Since a < k was arbitrary, & is
a strong limit cardinal. 0

It will be useful throughout the course to connect truth in an ambient
model of set theory to truth in transitive sets. Given a formula ¢(v)
and transitive classes M € N, we say that ¢(v) is absolute for M and
N if whenever a is a tuple from M, (M, €) = ¢(a) is true if and only
if (N,€) =¢(a). If N is V, we will just say that ¢ is absolute for M.

Certain formulas are always absolute for transitive models. A -
formula is a formula ¢(v) in the language of set theory such that all
quantification in ¢ is bounded. Namely all atomic formulas are -
formulas, the Yy-formulas are closed under conjunctions, disjunctions,
and negation, and if ¢(u,v) is a Xp-formula, so are Ju € w ¢(u,v) and
Vu € w ¢(u,v). The following proposition is very useful; its proof is a
routine induction on formulas and is left as an exercise.

Proposition 10.4. If M is a transitive set, then any >q-formula is
absolute for M.

Now we turn to the statement of the Reflection Theorem. A stratified
transitive class is a class length sequence (M, | « € ON) such that:

e for all « € ON, M, is a transitive set;
o if a € B € ON, then M, < Mpg;
e if « € ON is a limit ordinal, M, = {Jse, M-
We will let M denote | J{M, | « € ON}.
The Reflection Theorem is actually a scheme of theorems one for
each stratified transitive class M and one for each formula ¢(v).

Theorem 10.5. Let (M, | « € ON) be a stratified class and ¢ be a
formula. The class

{a € ON | ¢ is absolute for M, and M}

contains a closed and unbounded class E < ON.

Proof. If ¢ is an atomic formula, then ¢ is absolute for M, for all
a € ON. Observe that the set of formulas for which the Reflection
Theorem holds is closed under taking conjunctions, disjunctions, and
negations. Suppose now that the conclusion of the reflection theorem
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holds for every proper subformula of ¢. We may assume without loss
of generality that ¢ is of the form Juip(u,v). Let E be a closed and
unbounded class contained in

{a € ON | ¥(u,v) is absolute for M,}.

Define F : E — E by F(a) is the least element § of E such that o < 8
and for all a € M, if (M,€) = Juy(u,a) then (Mg, €) = Jup(u,a).
Notice that F is defined on all of E by our assumption that E is closed
and unbounded and by Collection. Observe that if F(«) = «, then ¢

is absolute for M, and M. Also observe that if & = sup(E n «), then

F(a) = sup{F(5) | e E n a}.
In particular, {o € E | F(a) = a} is closed under taking supremums.
It suffices to show that for each « in E there is a § > « in E such that
F(B) = B. Define o := «, a1 := F(ay,) and 8 := sup{a, | n € w}.
{a, | n € w) exists by the recursion theorem and hence [ exists. It
follows that

F(3) = sup{F(an) | n € w} = f.

Corollary 10.6. ZF is not finitely axiomatizable.

Proof. Suppose that this is true and observe that then there is a single
sentence ¢ such that ¢ proves all of the axioms of ZF. Then ¢ proves
that there is a least « such that (V,,€) = ¢. But now

(Va,€) =38 € ON ((Vs,€) = ¢).
This is impossible since this implies (V3,€) | ¢, contradicting the
minimality of ¢. U
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11. TRUTH, DEFINABILITY, AND THE LOWENHEIM-SKOLEM
THEOREM

Suppose that we are working in an ambient model of ZF and, within
this model L is the signature of a language. If S is the set of all logical
symbols (including a countable set of variables), then the collection of
L-formulas constitutes a set by Separation — it is contained within
(L U S8)=¥. Moreover, the operation which returns the sequence of
variables which are free in a given formula is in fact a function. For
any L-formula ¢(v), there is an £ u {€}-formula 1 (u,v) such that for
an M and a with the same length as v, ©)(M,a) is true if and only if
M is an L-structure, a is a sequence from M and M |= ¢(a). Contrast
this with the following theorem of Tarski (formulated here for ZF).

Theorem 11.1 (Undefinability of Truth). ZF does not prove the fol-
lowing statement: there is a {€}-formula ¢(v) such that for all formulas
W, ¢(1p) <> . Furthermore,

{(d(voy .- Un1), (ag, - an_1)) | &(0) is a formula and ¢(a) is true}
s not a class — it can not be formalized.

In particular, while for each finite set F' of formulas in the language
of set theory, the Reflection Theorem implies that

Er := {6 € ON | F is absolute for Vs}

is a closed unbounded class, it is meaningless to talk about the intersec-
tion of these classes over the countable set of formulas. Note, however,
that if x is an ordinal, then

{Er n k| F is a finite set of formulas}

is a set. This gives the following proposition.

Proposition 11.2. Suppose that k is a strongly inaccessible cardinal.
There is a closed and unbounded subset & < k such that if 0 € E, then
every formula in the language of set theory is absolute between Vs and
Vie. In particular, (Vs,€) is a model of ZFC if § € E.

Proof. If F is a finite set of formulas in the language of set theory, let
Er denote the set of all § € xk such that all formulas in F' are absolute
between Vs and V,.. By the Reflection Theorem, applied in V,,, Er € &
is closed and unbounded. Let E be the intersection of the Er’s. Clearly
E' is closed. That E is unbounded will be verified momentarily as part
of a more general phenomenon. 0

If X isaset and M < X, we say that M is an elementary submodel
of X if every formula in the language of set theory is absolute between
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M and X. We will write M < X to denote that M is an elemen-
tary submodel of X. Our next goal will be to prove the (Downward)
Lowenheim-Skolem Theorem which ensures the existence of many ele-
mentary submodels when X is uncountable.

Theorem 11.3. For any X and infinite cardinal k < |X|, if Xo € [X]",
there is an elementary submodel M of X of cardinality k which contains
X as a subset.

This theorem will be a consequence of two propositions. In order to

state these propositions, we need to develop some terminology. If X is
aset and f: X% — X, define

Cp = {Me 2(X)| f[M=] < M}.

A set of this form is said to be club in Z(X).

A set S is stationary if S intersects every club in Z(|JS). If E
is stationary, we will say that S s stationary in E if S is stationary
and | JS = (JE. If S is stationary and C < S, then we say that C
is club in S if € = S n Cf for some f: X~ — X. If X is a set and
K is a cardinal, define [X]" to be the collection of all subsets of X of
cardinality &.

Proposition 11.4. For any X, {M € P(X) | M < X} contains a
club.

Proof. First recall the Tarski-Vaught criterion for elementarity.

Lemma 11.5. M < X if whenever ¢(v,w) is a formula in the language
of set theory, a is a tuple from M, and (X,€) = ¢(a,b) for some b in
X, then b can be found in M.

Observe that if X is finite, then X < X and there is a function
f: X=¥ — X such that X is the only f-closed set. Let (x, | n € w) be
a list of elements of X without repetitions and let < be a well ordering
of X. Let ¢, (n € w) list the formulas in the language of set theory
in such a way that there are at most n free variables in ¢,. Define
f: X~ —> X by

o ifa=ce
fla):=< x4 if a = (x,)
<min{be X | (X,€) = ¢,(@li,b)}  if fh(a) = 22(2j + 1)

Observe that if M is f-closed, then M < X by the Tarski-Vaught
criterion. 0
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Proposition 11.6. If X is any infinite set, k < |X| is any infinite
cardinal, then and Xy € [X]", then
{M e [X]"| Xo € M}
18 stationary.
Proof. Let X, k, and Xy be given. Define X1 := X,, u f[X 7] and
set Y := [ J{X, | n € w}. Notice that Y= = [ J{X7“ | n € w}. Since it
follows that
1=l = | JUIX] | ne wh € | JXa [ new) = V.

[
Lemma 11.7. Suppose that X is a nonempty set and {fy | k € w) is
such that f, : X=Y — X 1is a function for each k € w. There is single

g: X~ — X such that if M < X s g-closed, then M 1is fi.-closed for
all k. In particular, a countable intersection of clubs contains a club.

Proof. If X is finite, then it is possible to find a g such that the only
g-closed subset of X is X. Thus we may assume that X is infinite. Let
{ay, | k € w) be sequence of distinct elements of X and define

aop ifz=c¢
9(Z) =< apyr  if T ={ag)
fe(@) i 2 = Car)"y (ao)
Clearly any g-closed set is fi-closed for each k. O

Lemma 11.8. Suppose that X < Y are nonempty. For every f :
Y=Y Y, there is a g : X< — X such that if M <Y is f-closed,
then M n X s g-closed.

Proof. For each (x; | i < ny € X< the g-closure of {x; | i < n} is
a countable set. Choose functions f : X< — X such that {f(Z) |
k € w} is the intersection of X with the g-closure of {z; | i < n}. By
Lemma 11.7, there is a function f : X=“ — X such that any f-closed
set is fg-closed for all k € w. If M < Y is g-closed, then M n X is
fr-closed for all k and hence f-closed. O

This lemma has the following useful consequence.

Lemma 11.9. If X € Y are uncountable sets and E is club in [Y],
then {M n X | M € E} contains a club in [X]¥. In particular if 0 is a
reqular uncountable cardinal, then for any countable X < Hy,

{M nw | (Me[Hp”) A (M < Hp)}

contains a closed unbounded subset of wy.
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12. INTERSECTING CLUBS AND THE PRESSING DOWN LEMMA

An important family of examples of stationary sets is provided by
the uncountable regular cardinals. In fact this is the original historical
context for the defintion.

Proposition 12.1. If k is a reqular uncountable cardinal, k is station-
ary. Moreover, if A < Kk is a reqular cardinal, {« € K | cof(a) = A} is
stationary.

Notice that if x is a regular uncountable cardinal and F < « is club
in K, then I/ € k is unbounded in « and closed in the order topology.
The converse is not true, since if f : k=% — k, then the least element
of k closed under f is either not a limit ordinal or else has countable
cofinality. On the other hand, every closed and unbounded subset of x
contains a club.

Proof. Noting that | Jx = &, suppose that f : k=¥ — & is a function.
Define g : kK — k by

g(a) := max(a + 1,sup{f(s) | s € a=*}).

Notice that g(a) € & since & is a regular cardinal. Define {(a¢ | £ € k)
by recursion:

0 iteE=0
ag =3 flay) if&=n+1
sup{a, | n e &} if € is a limit ordinal
Observe that this sequence is strictly increasing and if £ is a limit

ordinal, then f[aF“] = a¢ and cof(ag) = cof(§). In particular, if A <
is a regular cardinal, cof(ay) = A. O

It should be pointed out that the converse of Proposition 12.1 is also
true: if «v is a positive ordinal which is not a regular cardinal, then « is
not stationary. To see this, observe that if « is not a regular cardinal,
thereisa € a and a g : f — « with cofinal range. Define f : a=* — «

f(s):{a if s=cof sg¢a

f(so) if sp€ea

and observe that if v € « is closed under f, then o € 7, g[a] < v and
hence v = a.

Proposition 12.2. If k is an uncountable regular cardinal and £ is a
family of fewer than k club subsets of k, then | J € is club. In particular
every club in k is stationary and a partition of a stationary subset of
k into fewer than k pieces has at least one stationary piece.
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We will derive this proposition from a more powerful lemma known
as the Pressing Down Lemmoa.

Lemma 12.3. Suppose that S is a stationary set and r is a function
defined on S such that r(M) e M for all M € S. There is an x € | JS
such that {M € S| r(M) = x} is stationary.

Proof. Suppose for contradiction that that the lemma is false for some
S and r and set X := [ JS. For each z in X, let f, : X~ — X be
such that if M < X is f-closed, then r(M) # x. Define f: X< — X
so that f({(x)"y) = f.(y). By assumption, there is an M in S such
that M is f-closed. Observe, however, that if x € M, then M is f,-
closed and hence (M) # . But this contradicts our assumption that
r(M)e M. O

The pressing down lemma is equivalent to the following assertion.

Lemma 12.4. Suppose that X is a nonempty set and f, : X~ - X
1s a function for each x € X. The following set is a club:

{MeZ(X)\{D}|VeeM (MeCy,)}

The club in the conclusion of the previous theorem is called the di-
agonal intersection of the clubs {C}, | z € X} and is denoted A,exCY, .
In particular, the previous lemma shows that any two clubs intersect
and hence any club is stationary.

The following corollary captures the content of the Pressing Down
Lemma for stationary sets of ordinals.

Corollary 12.5. Suppose that k is a reqular cardinal and S < kK is
stationary in k. If r: S — Kk satisfies r(a) < « for all a € S, then r is
constant on a stationary set.

Proof. Suppose that S € k and r : S — & satisfies that r(a) € « for
all « € S. For each a € 5, let E, < S be club in x and disjoint from
r~}(a). By Lemma 12.4,

E:={aeS|Vyealae FE,)}
is club in k and disjoint from S. Thus S is not stationary. 0

To see how to prove Proposition 12.2, suppose that £ = {E¢ | £ € A}
is a list of club subsets of k for some A\ < k. Let S be the set of ordinals

in x which are greater than A. If ()& is not closed and unbounded,
then S := k\(A U [)€) is stationary. Define r : S — X by

r(o) =min{€ € A\ | « ¢ E¢}.
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Clearly r is regressive since A < minS. Let £ € X be such that T :=
{a e S| r(a) = ¢} is stationary. But 7' is disjoint from E, which is a
contradiction.

We’ve seen that any two closed unbounded sets must intersect. What
about stationary sets? This is addressed by the following result of
Ulam.

Proposition 12.6 (Ulam). Suppose that k is an infinite cardinal. If
S C k™, then S can be partitioned into k™ many stationary sets.

Remark 12.7. In fact any stationary subset of a regular uncountable
cardinal A can be partitioned into A stationary sets, but we will not
prove this.

Proof. Using the Axiom of Choice, fix a sequence {eg | 5 € k) such

that for each € k™, €5 : f — K is an injection. For a € k and § € k™,
define

Sapi={7€ S| e (B) = a}.
Observe that for each o« < K, {Sa3 | B € Kk} is pairwise disjoint.
On the other hand, for each f € k%, S = | J{Sap | @ € kK}. By
Proposition 12.2, for each 3 € x* there is an ag € x such that S, s
is stationary. Since k" is regular, there must be a single « € k such
that B := {f € k* | @ = as} has cardinality x*. We now have that
{Sap | B € B} is a pairwise disjoint family of stationary sets. O
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13. THE CONSTRUCTIBLE UNIVERSE L

We will now turn to the task of proving the following result of Kurt
Godel.

Theorem 13.1. There is a class L with the following properties:

(a) L is transitive;

(b) ZF proves (L,€) = ZFC;

(c) if M is any transitive class such that M = ZF and ON < M,
then L < M.

(d) if M is a transitive class such that M = ZF, then M |= x € L if
and only if v € L.

(e) (L,€) satisfies that for every infinite set X, |2(X)| = |X]|T.

The basic idea behind this theorem is to revisit the construction of
the cumulative hierarchy so as to only add sets to L when it is required
by the Separation Scheme. First we will need to develop a variant of
the powerset operation, which we will denote 2. Let {(¢; | i € w) be a
recursive listing of the formulas in the language of set theory so that
¢; has at most ¢ free variables. If A is a set, define Z(A) to be the
collection of all sets of the form

{be Al (A €) E gi(a,b)}
where i € w and a € A*.

Proposition 13.2. For any set A, the following are true:
(a) every finite subset of A is in P(A) < P(A) and Z(A) is a

Boolean algebra;

(b) if A is transitive, then A < P(A);

(c) if A can be well ordered, then so can P(A) and moreover |A| <
DA < A] +Ro;

(d) there is a Xo-formula ¢(u,v,w) such that ¢(A, B,w) is equivalent
to Be 9(A);

(e) if M is a transitive class, (M,€) = ZF, and A € M, then
P(A) < M;

Proof. Ttems (a) and (b) are immediate from the definition of Z(A).
To see the second, suppose that a € A. Since A is transitive, a < A.
Thusa = {be A| (A,e) Ebea}isin Z(A).

To see (c), suppose that A can be well ordered. If A is empty then
P(A) = {&} and there is nothing so show. Suppose now that f: o —
A be a surjection for some infinite ordinal «. Define g : =% — Z(A)
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by
_J{be Al(Ae) = oif(&r), . f(&))} & =i<k
9(607"'7£k)_ .
9(0) otherwise
Clearly g is a surjection. Since we've seen that |a~“| = |a/|, this com-

pletes the proof.
To see (e), suppose M is a transitive class and (M, €) &= ZF. Let

A € M and suppose that B € 2(A). Fix an i and a € A’ such that

B={be Al(A¢) = di(a,b)}

Observe that (t,€) &= ¢,(0,w) is expressible by a Yg-formula. By

Separation applied in M and Extensionality, B must be in M. O
For each a € ON, define L, recursively as follows:

(& if a =0

Lo =< 2(Lg) ifa=p0+1

|U{Ls | Bea} if aisa limit ordinal

Similarly, if X is a set, define L,(X) recursively so that:

(tc({X}) if =0

Lo(X) =1 2(Ls(X)) ifa=p0+1

|U{Ls(X) | Bea} if aisa limit ordinal

Set L := [ J{Lq | « € ON} and L(X) := [ J{La(X) | « € ON}.

Theorem 13.3. The following are true:

(a) for each o € ON and set X, L, and L.(X) are transitive sets
and L and L(X) are transitive classes;

(b) if « € f € ON, then L, € Lg;

(c) (L,€) and (L(X),€) both satisfy ZF;

(d) if M is a transitive class and (M, €) = ZF, then L € M.

(e) if M is a transitive class with X € M and (M, €) = ZF, then
L(X) < M.

Proof. We will only give the proofs for L; the arguments for L(X) are
similar. That each L, is transitive is proved by induction on a. If
a = 0, this is trivial. If « = 8 + 1 and Lg is assumed to be transitive,
then every element of L, is a subset of Lg € Z(Lg) = L,. lf ais a
limit ordinal, then L, is (inductively) a union of transitive sets and
hence is transitive. Since clearly L, € Z(L,), it follows by induction
on 3 that L, € Lg whenever o € f3.

To see that (L,€) satisfies the axioms of ZFC, first observe that
Extensionality and Foundation are satisfied by virtue of L being a



MATH 6870: SET THEORY 35

transitive class. Also, Emptyset and Infinity hold since 0 and w are
in L, respectively. Pairing holds in L since if z,y € A, {z,y} € Z(A).
Similarly, L satisfies Union since if A is transitive and B € A, then
UBe2(A).

In order to verify the Separation Scheme, suppose that A,z € L and
¢(u,v) is a formula. By the Reflection Theorem, there is an ordinal
0 such that A,z € Ls and ¢ is absolute between Ls and L. It follows
that

fae A (Lo,e) - 6(a,2)} = {ac A| (Le) F 6(a,a)}.
The former set is in Ls,; while the latter collection is the subset of A
postulated to exist by Separation for ¢, A, Z.

The Collection Scheme is handled in a similar way: if A,z € L and

¢(u,v,w) is a formula such that

(L,e) EVue A ve(a,v,T)
then find a § such that Yu € s 3vo(u, v, w) is absolute between Ls and
L.

Finally, to see that L satisfies the Powerset Axiom, it is sufficient to
show that if A € L, then there is a ¢ such that #(A) "L < Ls. Define
p: P(A) - ON by p(B) := min{faw € ON | B e L,} if B e L and
p(B) := 0 if B is not in L. By Collection, the range of p is a set; let
0 € ON be any strict upper bound for the range of p. U
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14. THE AXIOoM OF CHOICE AND THE GENERALIZED CONTINUUM
HyPOTHESIS IN L

We've already seen the basic mechanism for why L satisfies the Ax-
iom of Choice: if A can be well ordered, then so can D(A). With a
little more care, we can prove the following result.

Theorem 14.1. There is a formula ¢(u, v) in the language of set theory
such that all quantification in ¢ is restricted to L and such that the
following are theorems of ZF':

(a) VaVy(p(z,y) = (e L) A (xe L) A (z #y)))
(b) Vre L VyeL (¢(z,y) v oy, ) v (x = y))
()VXeL (X=gvireXVyeX (z=y)vo(zr,y)))

It is customary to write z <r, y to denote ¢(x,y). The theorem
asserts that ZF proves <y, is a class well-ordering of L. In particular,
(L, €) satisfies the Axiom of Choice. The ordering <y, is defined recur-
sively: given <y, |L,, we define <y, [Loy1. lf 2 € L, and y € Loy 1\ La,
then © <g, y. If © € Lyi1\La, then there is a tuple (i,a) such that
i€w,ace L, and

xr = {Z € Lq ’ (LQ,E) ): ¢l(x7a)}

Let p, denote the lexicographically least such tuple with respect to <g..
If 2,y € Lot1\La, define x <g, y if and only if p, <jex py. Thus if v
is the ordertype of (L, <r), then the ordertype of (L,.1,<r) is (at
most) sup,, >, _, 7" = 7.

Now we turn to the task of proving that L satisfies the Generalized
Continuum Hypothesis (GCH): for every infinite cardinal &, |2 (k)| =
k*. Let us begin by noting that for each infinite o, |L,| = |a|. Thus
it suffices to prove the following theorem.

Theorem 14.2. For every infinite cardinal k, P (k) "L S L+.

The proof that GCH holds in L. makes use of a general phenomenon
known as condensation which is both powerful and characteristic of
L. In order to prove this, it will be helpful to give an alternate, more
elementary description of Z(A).

Proposition 14.3. For every set A, there is a unique sequence (Def(A,n) |
n € w) of sets such that:
(a) Def(A,n) < P(A™);
(b) for each n and i,j < n the following sets are in Def(A,n): {a €
A" | a; € aj} and {a € A" | a; € a;};
(c) Def(A,n) is closed under taking intersections and complements;
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(d) if R € Def(A,n + 1), then {a € A™ | b € A (a~<{b))} is in
Def(A,n);

(e) if (Def’ (A, n) | n € w) is any other sequence satisfying the above
conditions, Def(A,n) < Def (A, n) for all n € w.

Moreover for every A, 2(A) equals
{B< A|3IndReDef(A,n+1) dJae A" (B={be A|a"(b)e R})}.

The proof is left as an exercise. Let A be the conjunction of:

e the axioms of Pairing, Foundation, Union;

e “There is a least infinite ordinal w”;

e “For every A there is a unique sequence (Def(A,n) | n € w)
satisfying the main conclusion of Proposition 14.3”;

o “for every A, Z(A) exists,” taking the definition of Z(A) from
the conclusion of Proposition 14.3;

e “for every ordinal «, L, exists.”

“for every x, there is an ordinal « such that x € L,.”

Notice that assertions such as “L, exists” are really shorthand for an
assertion like “There is a sequence (L¢ | £ € o + 1) which satisfies
the recursive definition of the L-hierarchy.” The key feature of A is
captured by the following proposition, whose proof is self-evident.

Proposition 14.4. If (M, E) is a set equipped with a well founded
relation, then (M, E) = A if and only if there is a limit ordinal v > w
such that (M, E) = (L,,€).

Proof of Theorem 14.2. Let X < k be in L and fix a limit ordinal
v = k such that X isin L,. Let M < L, such that k € M, X € M and
|M| = k. Observe that (L,, €) satisfies A and therefore (M, €) satisfies
A. Let m: M = L, be the transitive collapse of (M, €). Since |M| = k,
k < o < kT. It therefore suffices to show that 7(X) = X, since then
X e L, < L,+. This followed from the following general fact.

Proposition 14.5. Suppose that M is a set and A € M is transitive
and a subset of M. If m : M — N 1is the transitive collapse, then
7w(B) = B for every B < A in M.

Proof. Suppose that the proposition is false and let A be an e-minimal
counterexample. By minimality, we have that 7| A is the identity. Thus
if B< A, then n(B) = {n(b) | b€ B} = B. But this contradicts that
A was a counterexample. O

t
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15. THE CONSTRUCTIONS OF Z, Q, AND R

Now we’ll turn to showing that familiar mathematical constructions
can be carried out in a model of set theory. The main difficulty is to give
a set theoretic definition of Z, Q, and R — more involved constructions
such as rings of polynomials, function spaces, manifolds, and tangent
bundles are themselves usually defined set-theoretically in terms of N,
Z, Q, and R via Cartesian products.

Let N denote w\{0}. In order to define Z and Q, we need to work
with equivalence relations and their quotients. We've already seen how
to formalize the Cartesian product. The quotient of a set by an equiv-
alence relation is also a fundamental construction which we will need.
Recall that an equivalence relation E on a set X is a reflexive, sym-
metric, transitive binary relation. We define X /FE to be the collection
of all F-equivalence classes. That this is a set is a consequence of the
Powerset Axiom and the Separation Scheme:

X/E :={Ae P(X)| Aisan E-equivalence class}
where A is an E-equivalence class abbreviates
(A# D) A (Vae AVre X ((a,x) € E — x € A))

The integers are defined as formal differences, up to an appropriate
equivalence. Define ~ on w? by (m,n) ~ (m/,n’) if m +n' = m/ + n.
Here + refers to ordinal arithmetic on w. Intuitively a pair (m,n)
is thought of as representing a formal difference m — n. Addition,
inversion, and multiplication on w?/ ~ are defined by

[(m,n)] +[(m', )] =[(m+m/ n+n)|.

_[(m7 n)]~ = [(n’ m)]~
[(m,n)]< - [(m',n)].=[(m -m +n-n'm-n"+m' n)]..

It is left to the reader to check that this is well defined. Next ob-
serve that each ~-class contains a unique representative (m, n) in which
min(m,n) = 0. We define Z to be the set of all such representative
pairs which the operations +, -, and — induced by those on w?/ ~. The
advantage of defining Z formally in terms of canonical representatives
of ~-classes instead of ~-classes themselves is that then Z < V,, as
opposed to Z < V1. It is common to abuse notation and write n
for (n,0) and —n for (0,n). Notice that this embedding of w inside Z
respects the operations + and -.

Similarly, one defines Q to be the set of representatives of equivalence
classes of pairs (m,n) € Z x N. Specifically (m,n) is equivalent to
(m/,n’) if m-n' = m’-n, noting that each equivalence class contains a
unique element (m,n) where there is no k > 1 which divides into both
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m and n. The advantage of working with representatives becomes
even more apparent here: with this definition Q < V,, whereas if we
defined both Q and Z in terms of equivalence classes, Q would only be
contained in V4.

Define R € Z(Q) to consist of all Dedekind cuts: all r € Q such
that that » # J, r # Q, r has no last element, and r is an initial
interval in Q. The order on R is simply containment. We view Q as a
subset of R via the map ¢ — {s € Q | s < ¢}. Tt is left to the reader
to check that the operations of +, -, and — extend continuously to R
where Q and R are given the order topology.
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16. SOME NONMEASURABLE SETS OF REALS

Suppose now that (G, -) is a locally compact topological group (i.e.
the group operation and the inversion operation are both continuous).
Recall that the Borel subsets of G are the smallest o-algebra which
contains the open sets.

Theorem 16.1. For any locally compact topological group G, there is
a function p defined on a subset M of P(G) such that the following
are true:

o / is a o-algebra including the Borel subsets of G and u takes
values in [0, 0],

e if {A; | i€ w} is acountable collection of elements of M, then
(U2 Ai) = 2020 n(As);

e if U is an open set with compact closure, then 0 < p(U) < oo;

o if Ac M and g € G, then u(gA) = u(A);

o if X € G, then X is in A if and only if there are Borel sets
B,E < G such that XAB < E and pu(E) = 0.

Moreover, if o and py satisfy the above conditions, then their domains
coincide and for some 0 < C' < o0, pui(A) = Cug(A) for all A in their
common domain.

The measure p in the previous theorem is called Haar measure. If
G is compact, then generally p is chosen so that pu(G) = 1. In other
cases, there is typically a natural choice of an open set with compact
closure which is chosen to be measure 1.

Some important examples of Haar measure are given by R? with
coordinatewise addition. The unique invariant measure on R assigning
measure 1 to (0,1)? is Lebesgue measure. If we regard 2* as a compact
group with coordinatewise addition modulo 2, then the normalized
Haar measure is the same as the product measure where {0, 1} is given
the uniform measure. We also note the following general fact, which is
a form of Kolmogorov’s 0-1 law.

Theorem 16.2. Suppose that G is a locally compact metric group
and H < G 1is a dense subgroup. If B < G is Haar measurable and
w(BARB) =0 for all he H, then u(B) =0 or u(G\B) = 0.

It is natural to ask whether .Z is all of &(G). In the presence of
the Axiom of Choice, this is not the case. We’ll consider three different
examples.

The first is the classic construction of a nonmeasurable subset of R
known as a Vitali set. Define ~ on [0,1] by  ~ y if y — x is in Q.
By the Axiom of Choice, there is a function f : [0,1]/ ~— [0, 1] such
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that f(a) € a whenever a € [0,1]/ ~. Let X be the range of f and
observe that X < [0, 1] meets each ~-class in exactly one point. We
claim that X must be nonmeasurable. Suppose that this is not the
case. Then {27 + X | n € w} is an infinite pairwise disjoint family: if
2€2™M4+XNn27"+ X, then 2 =27 +2 =27"+y for x,y € X which
are necessarily distinct which would contradict that X meets each ~-
class in a unique point. Since U{27"+ X | n € omega} < [0, 2], it must
be that A(X) = 0. On the other hand, [0,1] < | J{¢g+ X | ¢ € Q} which
violates countable additivity.

Next suppose that { £, | « € 8} is a collection of measure 0 subsets of
[0, 1] whose union is not measure 0 such that if o € 8, then E, < Eg.
Notice that such a collection exists (assuming only ZF) if there is a
well orderable collection of measure 0 sets whose union does not have
measure 0. We claim that either X := | J{E, | o € 8} is nonmeasurable
or else R := | J{E, x (X\E,) | @ € 8} is a nonmeasurable subset of
[0,1] x [0,1]. Suppose that X is measurable. Observe that for each
xe Xifz e E,, xr(z, y) = 1if y € X\E, and 0 otherwise. Thus
So So Xr(z,y) dy dx = So X)xx dr = AX)% On the other hand,
for each y € X if y € E,, then xg(z,y) = 0 unless z € FE,. Thus
Sé Sé Xr(z,y) dx dy = Sé 0 dy = 0. Since we assumed A\(X) > 0, this
violates Fubini’s Theorem.

Finally, suppose that % is a nonprincipal ultrafilter on w: % <
P(w) is closed under taking supersets and finite intersections, con-
tains X or w\X for every X < w, and does not contain any singletons.
Notice that & (w) is also a compact group when given the operation
of symmetric difference (it is in fact isomorphic to 2¥ equipped with
coordinatewise addition mod 2). We claim that any ultrafilter is non-
measurable with respect to the Haar measure. This follows from two
observations. First, the map X — wAX preserves Haar measure and
maps % to its complement and vice versa. Thus if % were measurable,
it would have to be that

W) = WU + p(P)N\U) =1

and hence that (%) = 1/2. On the other hand consider the collection
Z of finite subsets of w. This is a dense subgroup of Z(w). It follows
from the definition of an ultrafilter that if F' € .%#, then FA%Y = % .
Thus (%) = 0 or u(%) = 1, both of which contradict our previous
observation. This argument shows, in particular, that if # € £ (w) is
a filter — it is closed under finite intersections and supersets — and it
contains the complement of every finite subset of w, then .# is measure
0 provided it is measurable.
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17. SOUSLIN’S PROBLEM

Recall that a linear order is a set L equipped with a binary relation
< which is transitive, reflexive, antisymmetric, and satisfies that for all
x and y in L, either x < y or y < x. A linear order is dense if it has
no first or last element and for every x < y in L, there is a z in L such
that * < z < y. A subset D of a linear order is dense if it intersects
every nonempty open interval. A linear order is separable if it has a
countable dense subset. A linear order is complete if every bounded
subset has a supremum. Cantor proved the following result.

Theorem 17.1. Any countable dense linear order is isomorphic to
(Q, <) and any separable complete linear order is isomorphic to (R, <).

Observe that if L is separable, then every collection of pairwise dis-
joint open intervals must be countable. Such a linear order is said to
satisfy the countable chain condition (c.c.c.). Souslin asked whether
separability can be relaxed to the c.c.c. in Cantor’s characterization.
This is become known as Souslin’s Problem; a positive answer is known
as Souslin’s Hypothesis and a counterexample is a Souslin continuum.

It turns out that while completeness plays a crucial role in Cantor’s
theorem, it is quite irrelevant to Souslin’s problem. Specifically, we say
that an uncountable linear order is a Souslin line if it is c.c.c. but the
closure of every countable subset is countable. We will first establish
some properties of c.c.c. linear orders.

Proposition 17.2. If L is a c.c.c. linear order, L does not contain
any uncountable chain of intervals which is well ordered by either < or
D. In particular, L does not contain an uncountable well order or the
reverse of an uncountable well order.

Proof. Suppose that (I | £ < wy) is a sequence of intervals which is
either strictly increasing or strictly decreasing with respect to <. Let J¢
be the symmetric difference of I and ¢, ;. It follows that {J¢ | £ < wi}
is an uncountable family of pairwise disjoint intervals. O

Proposition 17.3. If L is a c.c.c. linear order and % is a collection
of open subsets of L, then there is a countable subcollection Uy < U
which has the same union.

Proof. Since every nonempty open set is a union of basic intervals,
we may assume that % consists of open intervals. Since L has the
c.c.c., there is a countable ¥ < % such that every element of %
intersects some element of 7. Otherwise, we could recursively con-
struct an uncountable pairwise disjoint family of elements of 7. Now
let Ve 7. It suffices to show that there is a countable subset of
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{Ue % | UnV # &} which has the same union. Suppose not. Re-
cursively construct (U, | a € wy) consisting of elements of % which
intersect V' such that I := (J{U, | o < &} is a proper subset of
U{Us | @ < & + 1}. Since the union of two intersecting intervals is
an interval and since an increasing union of intervals is an interval, it
follows that (I¢ | £ < wy) is a strictly increasing sequence of intervals,
which contradicts Proposition 17.2. 0

Proposition 17.4. If L is a c.c.c. linear order and D < X < L, then
the closure of D with respect to the order topology on X differs from
the closure with respect to the subspace topology by a countable set.

Proof. Homework. O

Theorem 17.5. The following are equivalent:

(a) There is a c.c.c. nonseparable linear order.
(b) There is a Souslin continuum.
(c) There is a Souslin line.

Proof. Trivially (c) implies (a). To see that (a implies (b), suppose that
L is a c.c.c. and nonseparable. Let % be the collection of all separable
open intervals in L. By Proposition 17.3, there is a countable subset
of % with the same union. It follows that | J % is separable and that
L' == I\U% is nonempty and has the property that every every
nonempty interval in L’ is nonseparable. Let Lo € L’ consist of all x in
L' which do not have an immediate predecessor in L’ and which are not
the greatest of least element of L. If x < y are in Ly, then (z,y) n L'/
is nonempty. Furthermore, observe that the least element of L' — if it
exists — does not have an immediate successor in L’ since otherwise
L' would have a nonempty finite and hence separable open interval. It
follows that Ly has no least elements and, by an analogous argument,
no greatest elements. Let K be the collection of Dedekind cuts of Ly
ordered by <. Since Lg is dense, c.c.c., and nonseparable and since K
contains a dense suborder isomorphic to Ly, K is a Souslin continua.
To see that (b) implies (c), suppose that K is a Souslin continuum
and construct a sequence of points {z, | @ € wi} in K by transfinite
recursion. Given {z, | a € (3}, let x5 be any element of K not in
the closure of {z, | @ € }. This is always possible since K is not
separable. Let L = {z, | a € wy} with the order inherited from K.
Clearly L is uncountable and it inherits the countable chain condition
from K. Since the closure of any countable subset of L in the subspace
topology is countable, Proposition 17.4 implies that the closure of any
countable subset of L in the interval topology is countable. 0
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18. TREES AND LINEAR ORDERS

Often it is useful to translate questions about linear orders into ques-
tions about trees. A tree is a partially ordered set (7', <) such that for
all t € T, {s € T | s < t} is well ordered by <. The ordertype of
({se T |s <t},<) is called the height of t. The set of all elements of
T of height « is called the a'® level of T and is denoted T,,. The height
of T is the least « such that T, is empty.

An example of a tree is ¢Q, which consists of all subsets s of QQ which
are well ordered by the usual order on Q. ¢Q is ordered by s < t if s
is an initial part of ¢t. This is isomorphic to the collection of all strictly
increasing sequences of rationals. The a'!-level of 0Q consists of those
s € 0Q which have order type a. The tree ¢Q has no uncountable
chains — the union of such a chain would be an uncountable well
ordered subset of Q, which is absurd. We have seen previously in
the homework that ¢Q does not admit a strictly increasing map into
Q. Trees which admit a strictly increasing map into Q are precisely
those which are countable unions antichains — pairwise incomparable
subsets of the tree.

A typical example of a tree is a set of sequences, equipped with the
order of extension: s < t if ¢ extends s as a function. In fact this is a
completely general example of a tree. To see this, suppose that (T, <)
is any tree. If ¢ is in 7" and « is at most the height of T, there is a
unique t' € T,, such that ¢’ < t; this is the projection of ¢ to level o and
is denoted t'|,. Define a function o on T so that o(t) is a sequence of

length ht(t) + 1 where o(t)(§) = t|¢ if £ < ht(¢t).

Proposition 18.1. If L is a linear order, then L is isomorphic to a
set of binary sequences equipped with the lexicographic order.

Proof. Fix a well ordering < of L and let 6 be the ordertype of (L,<).
Let z¢ denote the ™ element of L with respect to < and define f; :
6 — 2 by fe(n) = 1if 2, < x¢ and fe(n) = 0 otherwise. If fact for
any £,n,a < 0, if fe(a) = 0 < f,(a), then z¢ < 2, < x, and so in
particular x¢ <jex T,. Since ¢ <jex T, implies fe(n) = 0 < f,(n) = 0,
this implies that z¢ — f¢ is an order preserving map from (L, <) to

({f§ | 5 < 9}’ <lex)' ]

Now suppose that (T, <) is a tree. Let € (T") denote the collection of
all maximal chains in 7. Observe that if = is in €' (T") and ¢ € x, then
maximality of x implies that {s € T' | s < t} < s. If x " T¢ is nonempty,
it contains a unique element which we will denote z¢. Observe that the
set of all £ such that  n T¢ is nonempty is an ordinal. Also, if z # y
are in € (T'), then there is a { such that ¢ # ye and both are defined.
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Define A(z,y) to be the least such £&. Now fix a linear order < of 7.
Define x <oy y if 25 < ys.

Lemma 18.2. If (a,b) is a nonempty open interval in € (T), then it
contains a set of the form {x € €(T) | t € x}. Moreover for every
teT, {xe€(T)|tex} is anonempty interval in € (T).

Proof. Suppose that a <jex ¢ <jex barein € (7). If € := max(A(a, ), Alc, b)),
then t := ¢¢ is defined. If x € €(T’) has t € x, then x¢ = t and hence

a <jex T <jex b. To see that {x € €(T) | t € z} is a nonempty interval

in ¢(T), first observe that Zorn’s lemma implies that any element of

T is contained in a maximal chain. Now suppose = <jex ¥ both have ¢

as an element. If t ¢ z for z € €(T), then

A(z,y) > ht(t) = max(A(z, z), Ay, 2))
which implies that x <jo z if and only if y <jx 2. O

Now suppose that L < 27 for some ordinal # and L is equipped with
the <jx ordering. Define T'(L) to be the set of all sequences ¢ such that
there exist x # y in L with ¢ an initial part of both. Elements of L
naturally correspond to elements of €' (T'(L)): for every f in L, there
is a unique « in € (7") such that | J= < f. Moreover if we define s < ¢
if s <t orsandt are incomparable and s <., t, then < induced the
order on L. Thus for any L, L embeds into € (T'(L)).

Observe that if s and ¢ are in a tree T, then s and t are comparable
in the tree order precisely when they have a common upper bound.
An antichain in a tree T is a subset A which is pairwise incomparable.
A tree T is a Souslin tree if T is uncountable but has no uncountable
chains and no uncountable antichains. Observe that any level in a
Souslin tree is at most countable and hence the elements of a Souslin
tree of height «v is countable whenever o < wy. A tree T is an Aronszajn
tree if every level and every chain of T is countable. ZFC proves that
Aronszajn trees exist where as we will see it is not sufficient to prove
that Souslin trees exist.

Theorem 18.3 (Aronszajn, Kurepa). Aronszajn lines exists.
Proof. This construction is guided by the homework set. U

Proposition 18.4. There is a Souslin tree if and only if there is a
Souslin line.

Proof. We have already seen that every c.c.c. nonseparable linear order
contains a Souslin line. Thus for the forward implication, it is sufficient
so show that if T' is a Souslin tree, then (€(T), <jex) is c.c.c. and
nonseparable. Suppose that .# is an uncountable collection of intervals
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in €(T). For each I in .#, Lemma 18.2 implies there is a uy € T such
that {z € €(T) | ur € } < I. Since T is c.c.c., there are I # J
in .# such that u; < uy. Then {x € €(T) | uy e x} <€ I nJ and in
particular .# is not pairwise disjoint. To see that €’(T") is nonseparable
suppose that X < € (T') is countable. Let ov < wy be such that if z # y
are in X, then A(z,y) < a. Since T is uncountable and the set of
elements of height less than « is countable, there is a t € T, such
that {u € T | t < u} is uncountable. Since each element of €(T) is
countable, there are uncountably many elements of € (7") having ¢ as
an element. Let a <jex ¢ <jex b be three such elements. It follows from
Lemma 18.2 that (a,b) is a nonempty interval disjoint from X.

To see the reverse implication, suppose that L is a Souslin line and
observe that we may take L to have cardinality w; and moreover to
have the form L = {f¢ | £ < w1} € 2 with the ordering being the
lexicographic ordering. If ¢t € T(L), then I, := {f € L |t € f} is an
interval in L. If I,n1; are nonempty, then s and ¢t are comparable. Thus
T'(L) has no uncountable antichains. Also observe that if s < ¢, then [¢]
is properly contained in [s]. If {(t¢ | £ < w;) were an uncountable chain
in T, then ([t¢] | £ < wy) would be an uncountable strictly decreasing
sequence of intervals in L, contradicting Proposition 17.2. Finally, to
see that T'(L) is uncountable, suppose not and let & be an upper bound
on the heights of elements of T'(L). This means that for every g, ¢’ € L,
g = ¢ provided that {{ < | fe < g} = {¢ < a| fe < ¢'}. This implies
{fe | £ < a} is countable and dense, contrary to our assumption. [

Finally, we note the following theorem of Kurepa, which demon-
strates a striking property of Souslin lines.

Theorem 18.5 (Kurepa). If L is a nonseparable linear order, then
L x L contains an uncountable family of pairwise disjoint rectangles.

Proof. If L isn’t c.c.c., then this is trivially true so suppose that L is
c.c.c.. By removing countably many points if necessary, we may assume
that every interval in L is uncountable. Recursively construct intervals
1., J,, and K, for a € w;y such that if a < (3, no endpoint of J, is in
I3 and Jz and K3 are two disjoint intervals contained in Ig. It suffices
to show that {J, x K, | @ € wy} is pairwise disjoint. Suppose that
a<p. It J,nJsz# J, then J, nIg # . Since Iz does not contain
an endpoint of J,, it must be contained in J,. But then Kz < J,,
which is disjoint from K,. Thus

(Jo x Ku) 0 (Jg x Kg) = &.
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19. JENSEN’S <

Thomas Jech and Stanley Tennenbaum independently established
that ZFC is consistent with the existence of a Souslin tree by adapting
Cohen’s method of forcing (Jech in 1967, Tennenbaum in 1968). We
will soon see that even the assertion that there are c.c.c. topological
spaces whose product is not c.c.c. is something not provable in ZFC —
in particular ZFC does not prove or refute Souslin’s Hypothesis. After
Jech and Tennenbaum’s works, Jensen proved that L satisfies that
there is a Souslin tree — and therefore a Souslin continuum. Jensen’s
construction of a Souslin tree under the assumption V = L proceeds
by a combinatorial consequence of V = L which itself is extremely
important in set theory: <> is the assertion that there is a sequence
(A | @ € wy) such that for every X < wy

{aew | X na= A}
is stationary.

Proposition 19.1. The following are equivalent:
(a) &
(b) There is a sequence (<, | a € wy) such that for each o € wy,
o, S P(a) is countable and for every X < wy, there is an
infinite a such that X N« € o,.

Proof. This will be part of the next homework set. O
Theorem 19.2 (Jensen). L satisfies <.

Proof. Assume V = L. Define h : w; — w; so that h(«) is the least
ordinal 3 such that Lg contains an injection from « into w. Define
Ay = P(a) N Lya, noting that a7, is countable. By Proposition
19.1, it suffices to show that for every X < w; in L, there is an « such
that X na € «,. Let M < L,, be countable such that X € M. By
condensation, (M, €) is isomorphic to (L., €) for some v € wy. Let 7
denote the isomorphism and set o := M n wy, noting that m(w;) = a.
In particular, v < h(f) and hence L, n Z(«) < ,. Since 7(X) < a,
it follows that 7(X) = X n a € 4. O

Theorem 19.3 (Jensen). Assume . There is a Souslin tree.

Proof. Let (A, | a € wy) be a {-sequence. We will construct a tree
ordering <r on the successor ordinals below w; by recursion. If m,n e
w, define m <y n if m < n and there is a k such that m < 2* and
n —m is divisible by 2**!. Notice that the height of m with respect to
<r is the number of occurrences of 10 in the binary expansion of m.
The minimal elements of (w, <7) are those elements of w of the form
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2" — 1. In particular (w, <r) has infinitely many elements of height 0
and every m has infinitely many immediate successors.
Our recursive construction will satisfy the following conditions:

(1) for every limit ordinal « if 5, @ < «, there is a v < « such that
B <r~vand a < 7;

(2) for any £ € w; and m,n € w, m <y n if and only if w-& +m <r
w- &+ n;

(3) for any £ € wy,

{ht(a) |[w- ¢ <a<w-{+wl=|w-{w-{+w)

(4) if o is a limit ordinal and A, is a maximal antichain in (o, <7),
then A, is a maximal antichain in (o + w, <r).

Observe that these conditions hold for <7 [w. Now suppose that we
have defined <7 [« for some limit ordinal « so that the above condi-
tions are satisfied. Let B, denote the collection of all chains in (a, <r)
which meet every level. By condition (1), the union of B, is all of
a. Moreover if A is a maximal antichain in («, <r), then the union of
those elements of B, which contain some element of A is also all of a.
Let (b, | n € w) be a sequence of distinct elements of B, whose union
is « such that, if A, is a maximal antichain in «, each b, contains an
element of A,. There is now a unique definition of <7 [(« + w) such
that oo + (2" — 1) is an upper bound for b,, and such that condition (2)
is satisfied. Notice that the height of o+ (2" — 1) is a — the predeces-
sors of this element are the set b,, which has ordertype a with respect
to <r. Thus the height of a + n is a + ht(n). Conditions (1), (3),
and (4) therefore hold for (o + w, <r). This completes the recursive
construction.

Observe that since every element of (w;,<7) has more than one
immediate successor, if (w1, <7) contains an uncountable chain, it must
contain an uncountable antichain. Suppose that A < w; is a maximal
antichain. Define f : w; — wy by f(«) the least 8 such that there is
an element of A n 8 which is <p-comparable with «. Observe that
is f-closed if and only if AN ¢ is a maximal antichain in (6, <7). Since
(Ay | @ € wy) is a $-sequence, there is a § which is f-closed such that
And = As. It follows that AN is a maximal antichain in (§ + w, <7).
If there were an o € A which is greater than ¢ + w, there would be
an o <7 « of height §. This o' would satisfy § < o’ < § + w and
also would be incomparable with every element of A n . This would
contradict that An¢ is a maximal antichain in (6 +w, <7). Thus A < ¢
and hence A is countable. U
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20. MARTIN’S AXIOM

In 1971, Robert Solovay and Stanley Tennenbaum developed the
technique of iterated forcing in order to prove the consistency of Souslin’s
Hypothesis with ZFC. Tony Martin observed that their technique could
be used to establish the consistency of a more general principle, now
known as MAy,, which itself is sufficient to prove Souslin’s Hypothesis.

In order to state the principle, we need to develop some terminology.
Let (P,<) be a partial order. In the definitions which follow, it is
useful to think of P as being the collection of nonempty open sets in a
topological space, ordered by <. Two elements of P are compatible if
they have a common lower bound in P; otherwise they are incompatible.
It is common to write p || ¢ to mean that p and ¢ are compatible and
p L g to denote that p and ¢ are incompatible. In the context of set
theory, an antichain in a partial order is pairwise incompatible subset.
Note that this is stronger than being pairwise incomparable. We say
that P has the c.c.c. if every antichain in P is countable.

A subset of P is a filter if it is nonempty, upward closed, and down-
ward directed. A subset D of a partial order P is dense in P if for
every p in P there is a ¢ in D such that ¢ < p. If Z is a collection of
dense subsets of P, then a filter G < P is Z-generic if G n D # J for
every D € 9.

We can now state Martin’s Axiom for # many dense sets (MAy):
whenever () is c.c.c. and Z is a collection of at most 6 dense subsets
of @, there is a filter G < Q) which is Z-generic. Historically Martin’s
Axiom is the assertion that MAy holds for every cardinal 0 less than
2% That said, MAy, is become much more important as a hypothesis
than Martin’s Axiom. Many papers in the 1970s and 1980s in set
theory state results under the hypothesis MA + —CH but really only
invoke MAy, .

MAy is actually an assertion about Baire category. Recall that if K
is a topological space, a subset F of K is nowhere dense if the closure
of E has empty interior. This is equivalent to the assertion that for
every nonempty open set U of K, there is an nonempty open set V < U
such that £ n'V is empty.

Theorem 20.1. For any infinite cardinal 6, MAg is equivalent to the
assertion that a c.c.c. locally compact space cannot be covered by 0
nowhere dense sets.

Before proving the theorem, we’ll establish the following lemma,
which will later be an important part of our proof that MAy is consis-
tent with ZFC.
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Lemma 20.2. For any cardinal 0, if the conclusion of MAg holds for
all c.c.c. posets of cardinality at most 0, then MAy is true.

Proof. Suppose that () is any c.c.c. partial order and Z is any collection
of dense sets of cardinality at most . Let A be a regular cardinal such
that @ and & are in H) and let M be an elementary submodel of H)
of cardinality # such that Q € M and ¥ <€ M. Let Qy = Q@ n M. By
elementarity, any two elements of )y have a common lower bound in
Qo if and only if they have a common lower bound in ). Thus Qg is
also c.c.c.. Also by elementarity, if D € &, then D n () is dense in Q.
By our hypothesis, there is a filter G < )y which meets each element
of . 1t follows that {pe Q| 3¢ € G (¢ < p)} is a P-generic filter. O

Proof of Theorem 20.1. For the forward implication, let K be given
and & be a collection of nowhere dense subsets of K of cardinality at
most #. Define ) to be the collection of all nonempty open subsets
U of K. Since K is c.c.c., sois Q. If F is in &, define Dg to be the
collection of all U € @ such that the closure of U is disjoint from F.
Since E is nowhere dense, Dy is dense. Let G < @) be a filter which
intersects Dy for each £ € & and let x € ({{U | U € G}. Since G
is a filter and K is compact, this intersection is nonempty. Since G
contains an element whose closure is disjoint from £, x is not in | &.

For the reverse implication, let () be a c.c.c. poset. By Lemma 20.2
we may assume that () has cardinality at most 6. A subset G of @ is
centered if every finite subset of G has a common lower bound in Q.
Let K be the collection of all X < @ such that X is upwards closed and
centered. It is easily checked that K is a closed subset of the compact
space 2(Q) ~29. If gisin Q, set U, := {X € K | g€ X}. Tt is readily
checked that each U, is a nonempty open set and that every nonempty
open subset of () contains U, for some ¢. Furthermore, p and ¢ are
compatible if and only if U, n U, is nonempty. It follows that since @
is c.c.c., so is K. For each p € GG, define

Wog = U [ (r<pg)v(pLr)v(gLr)

Observe that for every p,q,7 € Q, W, , n U, # . In particular, W, is
a dense open set for every p € ). Next observe that if D < @ is dense,
then (J{U, | p € D} is dense open in K. If Z is a collection of at most
0 dense subsets of (), let G € K be such that for all D € &, GG is in
\U{U, | p€ D} and for all p e Q, G is in W,,. We first claim that since
G e ﬂpeQ W,, G is a filter. To see this, suppose that p,q € G. Since
G isin Wy, n U, n U,, there is an r € G such that r < p,q. It follows
that G is a filter. Since G is in | J{U, | p € D} if and only if G n D is
nonempty, it follows that G is Z-generic. U
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21. CONSEQUENCES OF MAy

We'll now give some consequences of MAy. First we’ll show that
MAy, implies Souslin’s hypothesis. If K is a complete linear order,
then K is locally compact and hence homeomorphic to a dense open
set in a compact space. Also observe that if K is a Souslin continuum,
then there is a closed P < K such that K\P is separable and every
separable subspace of P is nowhere dense in P. In particular, the next
theorem implies that M Ay, implies Souslin’s Hypothesis.

Theorem 21.1. If K is a Souslin continuum such that separable sub-
spaces are nowhere dense, KK can be covered by X1 many nowhere dense
sets.

Proof. Recursively construct a S-increasing sequence of countable sets
(D, | o € wy) such that D, intersects every maximal open interval of
K which is disjoint from D,,. We claim that K = | J{D, | @ € w;}. This
is sufficient since our hypothesis implies that each D, is nowhere dense.
Suppose for contradiction that some x € K be outside | J{D, | a € w;}.
For each «, let I, be the maximal open interval containing x as an
element and disjoint from D,. By construction (I, | @ € wy) is strictly
C-decreasing, contradicting Proposition 17.2. U

We will now turn to a striking consequence that MAy has for cardinal
arithmetic. A [ is a countable set, a collection A of infinite subsets of
I is almost disjoint if every pair of elements have finite intersection.
If r € 2¥, define a, := {rin | n € w}. It follows that {a, | r € 24}
is an almost disjoint family of subsets of 2<% of cardinality 2%°. Since
|2<¥| = Ny, there is an almost disjoint family of infinite subsets of w of
cardinality 2%0.

Theorem 21.2 (Solovay’s almost disjoint coding). Assume MAy. If
A< P(w) is an almost disjoint family of cardinality 0, then for every
B < A, there is an x S w such that a n x is infinite iof and only if
a e B. In particular, 2° = 2%,

Proof. Assume MAy and let B < A be given as in the statement of the
theorem. Define @) to be the collection of all pairs ¢ = (z,, A;) such
that:

e 1, is a finite subset of w;
e A, is a finite subset of A\B.

If p,q € Q, define ¢ < p to mean:
e 1, is an initial part of z, and A, = Ag;
e if a € A,, then a is disjoint from z,\z,.
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Observe that if © € w is finite then @, = {g € Q | x, = z} is centered:
if ' < Q. is finite, then (z,|J,cr Ap) is a lower bound for F. Thus
@ is o-centered and hence c.c.c.. Next notice that if @ € A\B, then
D, :={qeQ|aec A} is dense.

Claim 21.3. For eachbe B and n € w,
Dyy={qe Qb >n}
s dense.

Proof. Let p € Q be arbitrary. Since A is almost disjoint and A, is
finite, | J{b na | a € A,} is finite. Let k be a strict upper bound
for this set and let m > k be such that |b n [k,m]| = n. Define
q:=(zp,u (bn[k,m]),A,). Since x,\z, < b\k, z,\z, is disjoint from a
for every a € A,. It follows that ¢ < p is in Dy,,. O

Now let G < @ be a filter which intersects D, for each a € A\B and
Dy, for each b € B and n € w. Define z := ( J{z, | ¢ € G}. We will
show that for a € A, x n a is infinite if and only if a € B.

Suppose that a € A\B and let p e G n D,. We claim z\z, is disjoint
from a. If k € 2\z,, let ¢ € G be such that k € x, and let r € G such
that r < p,q. It follows that k € x,\z, < x,\x,, which is disjoint from
a. Now suppose that b € B and let n € w be arbitrary. Let p e G Dy,
Then x,nb < xnband |z, nb| = n. It follows that x N b is infinite. O
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22. CHAIN CONDITIONS

We'll now turn to the study of a family of assumptions that the
compatibility relation of a given partial order might satisfy. For histor-
ical reasons, these types of assumptions are known as chain conditions
even though they really concern antichains more than chains. A subset
of a partial order P is linked if every two elements have a common
lower bound, n-linked if every n elements have a common lower bound
and centered if every finite subset has a common lower bound. The
modifier “o-” means “is a countable union of” so, e.g. P is o-centered
means that P is a countable union of centered sets. Also, a partial
order P satisfies Knaster’s condition (or has property K) if every un-
countable subset contains an uncountable linked subset. Trivially every
o-centered poset is o-linked, every o-linked poset has property K, and
every property K poset is c.c.c.. Observe that if K is a compact space,
the partial order of nonempty open subsets of K ordered by contain-
ment is o-centered if and only if K is separable.

Theorem 22.1. Assume MAy for o-centered posets. Suppose that
F < P(w) has the property that every finite subset of F has infi-
nite intersection. Then there is an infinite x < w such that x * y for
every y € 7.

Remark 22.2. The minimum cardinality of a family # < Z(w) for
which the conclusion of the theorem fails is commonly denoted p. Mur-
ray Bell proved that p is the minimum cardinality of a cover of a separa-
ble compact space by nowhere dense sets or, equivalently, the minimal
cardinal @ for which MAy fails for a o-centered poset.

Proof. We may assume without loss of generality that .# is closed under
finite intersections. Define @) to be the set of all ¢ = (z,, F,) such that
r, € w is finite and F, € .#. Define ¢ < p if z, is an initial part
of z,, F, < F,, and x,\z, < F,. If x is a finite subset of w, then
Q. = {q e Q| z, = x} is centered and therefore @) is o-centered. If
F e % and n € w, define

Dpn:={q€ Q| (lzg| = n) » (F, = F)}.

To see that each Dp,, is dense, let p € () be given. Let y < F, n F" be
such that |y| > n and max(z) < min(y). Then ¢ := (z, Uy, F, N F)
satisfies ¢ < p and ¢ € Dp,,. Now let G < (@) be a filter which intersects
Dp,, for each F' € % and n € w. Define z := | J{z, | p € G}. Suppose
that F' € .# and n € w are arbitrary. Let p e G n Dp,,. As in the proof
of Theorem 21.2, z,, is an initial part of z and z\z, < F. Since n was
arbitrary, it follows that x is infinite and z <* F'. U
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Theorem 22.3. Assume MAy. If & is a collection of Lebesgue measure
0 sets and |&| < 0, then | J& has measure 0.

Remark 22.4. If .7 is an ideal of set (i.e. closed under subsets and finite
unions), then add(.#) is defined to the minimum cardinality of a subset
of .# whose union is not in .#. The previous theorem asserts that MAg
implies add(.4") = 0 where ./ is the ideal of measure 0 subsets of R.
Tomek Bartoszynski has shown that ZFC implies add(.#) = add(.4"),
where . is the ideal of first category subsets of R.

Proof. Observe that £ < R has measure 0 if and only if its intersection
with [a, b] has measure 0 for each a < b. It therefore suffices to consider
collections & of subsets of [0, 1]. We will need the following claim.

Claim 22.5. The following are equivalent for a subset E of [0, 1].

(a) E has measure 0;

(b) for every compact K < [0, 1] of positive measure and everye > 0,
there is a K' € K of measure at least A\(K') — € which is disjoint
from E;

(c) for every compact K < [0, 1] of positive measure and there is a
K' € K of positive measure which is disjoint from E.

Proof. To see (a) implies (b), suppose that E has measure 0 and let
K < [0,1] have positive measure and ¢ > 0. Since \(K\E) = A\(E),
there is an increasing sequence (K, | n € w) of compact subset of K\E
such that lim, A\(K,,) = A(K). Let n be sufficiently large that \(K,,) >
AK) — e. Trivially (b) implies (c¢). To see that (c) implies (a), let &7
be a maximal pairwise disjoint collection of compact subsets of [0, 1]\ E
of positive measure. Notice that o/ is countable. If A\({ J.</) = 1, then
A(E) = 0 and we're done. Suppose for contradiction that A(| J /) < 1
and let K < [0,1]\|J«/ be a compact set of positive measure. By
hypothesis, there is a compact K’ < K of positive measure which is
disjoint from E. This contradicts the maximality of 7. O

Returning to the main proof, by the claim, it suffices to show that
if K < [0,1] is a compact set of positive measure, there is a compact
K’ € K of positive measure which is disjoint from ué&. Let K be given
and define () to be the collection of compact subsets g of K such that
the measure of ¢ is greater than r := A\(K)/2.

Claim 22.6. () is o-linked.

Proof. Let % be the collection of all U < R such that U is a finite
union of rational open intervals and A(U n K) > r. For each U € %,
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define Q)y to be all g € () such that ¢ < U and
1

N\ < L) ~ 1),
Observe that % is countable and that @ = (J{Qu | U € #}. If
p,q € U, then

AMU\pnq) < AU\p) + NU\q) < A\U) —r

and thus A\(p n ¢) > r. In particular, Qy is linked for each U. O

If E has measure 0, define Dg to be the collection of all ¢ € @
such that ¢ is disjoint from F. By Claim 22.5, Dg is dense. My
MAy(o — linked), there is a G < @ be a filter which intersects Dg for
each ¥ € &. Observe that since GG consists of closed sets, there is a
countable filter Gy < G such that [ Gy = [ G. Since every element of

Gy has measure greater than r, the measure of K’ := ()G is at least
r > 0. It follows that | J& is disjoint from K’ and hence is measure
0. d

Next we turn to question of whether the c.c.c. is preserved by taking
products. If P and @) are partial orders, then their product has P x )
as its underlying set, with (po, o) < (p1,¢1) if and only if py < p; and
go < ¢1. Observe that a poset P is c.c.c. if whenever (p¢ | £ € wy) are
elements of P (possibly not all distinct), there exist & # 7 such that
pe and p, are compatible. Similarly, P has property K if whenever
(pe | € € wy) are elements of P, there is an uncountable X < w; such
that if £ # n are in X, then pe and p, are compatible.

Proposition 22.7. Suppose that P satisfies the c.c.c. and @) has prop-
erty K. Then P x ) has the c.c.c..

Proof. Let {(pe, g¢) | £ € w1) be a sequence of elements of P x (). Since
@ has property K, there is an uncountable X < w; such that if £ # n
are in X, then g¢ and g, are compatible. Since P is c.c.c., there are
§ # n in X such that p. and p, are compatible. Thus (pe, ) and
(py, gy) are compatible and hence P x () has the c.c.c.. d

Proposition 22.8. Assume MAy,. FEvery c.c.c. partial order has
property K.

Proof. Let () be a c.c.c. partial order and suppose that (p¢ | £ € wy) is
a sequence of elements of (). We will first show that, for some p € Q,
if ¢ < p then there are uncountably many & such that p, is compatible
with ¢. If not, let g¢ < pe be such that for all but countably many
N, q¢ is incompatible with p,. It follows that for all { € wq, g¢ is
compatible with ¢, for only countably many 7. It follows that for some
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uncountable X < wy, {¢¢ | £ € X} is an uncountable antichain, which
is a contradiction.

Let Qg be the partial order of all g € () such that ¢ < p and order ()
with the order inherited from ). Clearly @)y is c.c.c.. For each £ € wy,
define

D¢ :={qeQo|In=>¢ (¢<py)}
To see that D is dense, let ¢ < p and £ be given. By assumption, there
is an 1 > £ such that ¢ is compatible with p,. If r is a lower bound
for ¢ and p,, then 7 € D¢ and r < ¢q. Let Gy S @ be a filter which
intersects D for each £ € w; and let G be the upwards closure of Gy

in Q. It follows that G is linked and contains p, for uncountably many
5 € W1q. l

Corollary 22.9. MAy, implies that the product of c.c.c. partial orders
18 c.c.C..

Remark 22.10. The proof of Proposition 22.8 actually shows that if @)
is a c.c.c. partial order and X < (@) is uncountable, then X contains an
uncountable centered family. Stevo Todorcevic and Boban Velickovi¢
have shown that in fact MAy, is equivalent to this assertion. It is an
open problem whether MAy, is equivalent to the assertion that every
c.c.c. partial order has property K. It is also unknown whether MAy, is
equivalent to the assertion that the product of two c.c.c. partial orders
is c.c.c..
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23. SPECIALIZING TREES

Given a tree T', it is very natural to ask when it has an uncountable
chain. An obstruction to a tree T' containing an uncountable chain is
the existence of a cover of T' by countably many antichains. Trees with
such a cover are said to be special. It was shown in the exercises that a
tree T'is special precisely when there is a function f : T"— Q such that
f(s) < f(t) whenever s < t. Many examples of nonspecial trees with-
out uncountable chains. Perhaps the easiest to describe is ¢@Q, which
consists of all strictly increasing sequences of elements of Q, ordered by
extension. We will see, however, that MAy implies that every tree of
cardinality at most 6 is special unless it contains an uncountable chain.
We will begin by the following general consequence of MAy.

Theorem 23.1. Assume MAy. If Q is a c.c.c. poset and |Q| < 0,
then () is o-centered.

Proof. If § = N, this is trivially true, so we may assume that § > X;. In
particular Q" is c.c.c. for all n € w. Let ()=“ be the partial order of all
finite sequences of elements of ) ordered by ¢ < p if dom(p) < dom(q)
and whenever ¢ € dom(p), ¢(i) < p(i). Notice that since each Q" is
c.c.c., so is Q=“. For each p € @), define D, € Q=¥ to consist of all
q € Q=¥ such that for some n, ¢(n) < p. Clearly D, is dense for all p:
if ¢ € Q=¥ then ¢"(p) is in D, and is below ¢. By MAy, there is a filter
G<Q¥Ysuchthat GnD,# Jforallpe Q. If G, = {q(n) | g € G},
then G, is centered and Q = | J{G, | n € w}. O

Lemma 23.2. Suppose that T is a tree with no uncountable chains. If
A, B < T are uncountable, there are uncountable A’ < A and B’ < B
such that every element of A’ is incomparable with every element of B’.

Proof. Let U be the set of all u € T such that there are uncountably
many s € A with u < s and let V' be the corresponding set for B. First
suppose that U # V. Without loss of generality, we may assume that

there is a u € U\V. Define
Ali={seAlu<s} B :={teB|(ugt)(t£u)l}

Clearly A’ is uncountable and every element of A" is incompatible with
every element of B’. To see that B’ is uncountable, observe that if
t € B\B', then either ¢t > u or t < u. Since the predecessors of u form
a chain, there are only countably many elements of B below u. Since
u ¢ V', there are only countably many ¢ € B with ¢ > uw. Thus B\B' is
countable hence B’ is uncountable.

Now suppose that U = V. If there exist u, v € U which are incompa-
rable, then define A" := {se€ A |u < s} and B’ :={te B|v <t} and
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observe that A" and B’ are as desired. The alternative is that U = V/
is a chain, which therefore is countable by our assumption. If U has
a greatest element u, then let Ay and By be the set of immediate suc-
cessors of u which have elements of A and B respectively above them.
Observe that since v is a maximal element of both U and V', Ay and
By are uncountable. Let A < A, and Bj, < By be uncountable disjoint
sets and define A’ be the set of elements of A above some element of
Aj and B’ be the set of elements of B above some element of B’. Since
Aj, and B are disjoint subsets of a single level of 7', it follows that
every element of A’ is incomparable with every element of B” (in fact
A" U B’ is an antichain). Finally suppose that U = V is a chain but
has no greatest element. If u € U, define

A, ={seA|lu<s} B,:={teB|(u<t)A(t<<u)}

noting that every element of A, is incomparable with every element
of B,. By definition of U, each A, is uncountable. Since U has no
last element B = | J{B, | v € U}. Since U is countable, some B, is
uncountable and for this u, A, < A and B, < B satisfy the conclusion
of the lemma. U

The following lemma is useful in establishing the c.c.c..

Lemma 23.3. Suppose that K < [w1]? has the property that whenever
A, B € wy are uncountable, there are uncountable A’ < A and B' < B
such that {«, B} € K for every a € A" and 5 € B'. The poset Q) of finite
q S wy such that [q]* € K ordered by reverse containment is c.c.c..

Proof. Let {(g¢ | £ € wy) be a sequence of elements of (). By refining
the sequence of necessary, we may assume that each g¢ has cardinality
n for some n € w. Let g¢¢ = {¢e(i) | i € n}. Construct uncountable
Ay, B, € w; for k < n? such that:

e A1 € A and By € B if k < n? —1 and

o if K =i+ jn, then for all £ € Ay and n € By, {q:(i),q,(j)} € K.
If € A2y and € By2_q, then g U g, is in K. 0

Theorem 23.4. Assume MAy. If T is a tree with no uncountable
branches such that |T| < 6, then T is a countable union of antichains.

Proof. Let @) be the poset of all finite antichains in 7. By Lemmas 23.2
and 23.3, @ is c.c.c.. By Corollary 23.1, there a countable collection of
centered sets {G,, | n € w} whose union is (). Set A4, := | JG,, noting
that A, is an antichain. Since {t} € @ for each t € T, | J{A,, | n e w} =
T. O
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24. PRESSING DOWN AND VERIFICATION OF THE C.C.C.

The pressing down lemma is often useful in verifying the c.c.c. in
situations where posets are not o-linked. Suppose that X is a set and
Z is a set consisting of finite subsets of .%. We say that .% is a A-
system with root R if R < F for every F' € F and {F\R | F € Z} is
pairwise disjoint and consists of sets of the same cardinality. The next
lemma is known as the A-System Lemma.

Lemma 24.1. Suppose that .F is a collection of finite sets and |.F| is
a reqular uncountable cardinal. Then F contains a A-system %y such
that |.%y| = |.F].

Proof. Set X := | J.# and observe that | X| = |.#|. Define k := |.7|
and observe that, by replacing .# by its image under a bijection, we
may assume that X = k. Let (F¢ | £ < k) enumerate .# without
repetition. Define f : K — k by f(a) := sup{max(F;) + 1| € a} and
let 2 < k be the set of all limit ordinals o which are f-closed. If o < &
is a limit ordinal, let () = max((F, n «) u {0}) + 1. By the pressing
down lemma, there is a stationary S < FE consisting of limit ordinals
and an v < k such that r(«a) = v if « € S. By shrinking S if necessary,
we may assume that for some n € w and R < :

e |F,| =nforall a €S,

e Fi,na=Rforallae S
To see that %y := {F, | @ € S} is a A-system, it suffices to check that
it @ < B are in S, then F,, n Fg = R. This follows from the fact that
Fona=Fsnfp=Rand

max(F,) < f(a) < 8 < min(Fs\f).
U

Corollary 24.2. Suppose that 0 is any cardinal and Q) is the poset
consisting of all functions q : Dy — 2 such that D, < 0 is finite,
ordered by q < p if q extends p. If X < @ has regular uncountable
cardinality k, then X contains a centered family of cardinality k.

Remark 24.3. A subset of this poset is centered if and only if it is
linked. If 6 is larger than 2%, this poset is not o-linked.

Proof. By the A-System Lemma, there is an X’ < X of cardinality
k such that {dom(q) | ¢ € X} forms a A-system with root D. Let
X" < X' have cardinality s be such that if p,q e X", pID = ¢q|D. It
follows that X" is centered. O

Sometimes the Pressing Down Lemma needs to be used more directly.
In order to illustrate this, we will prove another consequence of MAy, .
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A ladder system on w; is a sequence (C,, | a € lim(w;)) such that if
a € lim(w), C, € « is cofinal and has ordertype w. Recall that if f
and ¢ are functions with a common domain D, then f =* ¢ denotes
the assertion that {x € D | f(x) # g(x)} is finite.

Theorem 24.4. Assume MAy,. If (C, | o € lim(wy)) is a ladder
system and {f, | o € lim(wy)) is a sequence of functions such that
fa 1 Cq — w, then there is a function g : wy — w such that for all limit
ordinals o, g1 Cy, =% fq.

Proof. Let ) be all functions ¢ : D, — w such that:

e D, =|J{C, | a € F,} for some finite Fj, < lim(w;) and

o if o € Dy, then ¢|C, =* f,.
Order ¢ < p if ¢ extends p. Observe that for each v € wy, {¢!v | ¢ € Q}
is countable.

We'll first show that () is property K. Suppose that (p¢ | £ € wy) is

a sequence of conditions from @ and let F¢ denote Fj,.. If {F¢ | § € w1}
is countable, then we can an uncountable X < w; such that if £{,ne X
such that p = p,. Otherwise, there is an uncountable X < w; such
that {F; | £ € X} forms a A-system with root R. For each o € wy,
let £ € X be such that « is not in F,,. Let £ < w; be the closed
and unbounded set consisting of all limit ordinals § such that if o < 9,
then max(Fe,) < 0. If o € E, define r(a) to be the least upper bound
for | J{C,, na | n € F¢,}. By the Pressing Down Lemma, there is a
stationary S € FE such that r is constantly v on S. By refining §' if
necessary, we may assume that if «, 8 are in S, then ¢,y = g¢gl7.
Now observe that if « < § are in S, then dom(ge,) < 5 and hence
dom(ge, ) N dom(ge,) < 7. It follows that {g, | @ € S} is linked.

Claim 24.5. If a is a limit ordinal, {q € Q | a € F,} is dense.

Proof. Let p € @) be arbitrary. If o € Fj, there is nothing to show. If
not, then C, n dom(p) is finite. Define

q:=puv (foe f(Ca\dOHl(p)))
and observe that ¢ < p and g € D,,. O

By MAy,, there is a filter G < ) which meets D, for every limit
ordinal a.. Define

o6 = {q(f) if g€ G and € € dom(q)
0

otherwise

This function satisfies the conclusion of the theorem. O
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25. FORCING AND ITS SYNTAX

Paul Cohen developed the method of forcing to establish that the
Continuum Hypothesis is not provable from the axioms of ZFC. This
method was refined considerably by Solovay and has become the pri-
mary tool for proving that set theoretic hypotheses are consistent with
ZFC. In order to get an intuitive understand of what we will formalize,
let us begin with two thought experiments. First consider the follow-
ing “paradox” in probability: if Z is a continuous random variable,
then for any possible outcome z in R, the event Z # z occurs almost
surely (i.e. with probability 1). How does one reconcile this with the
fact that, in a truly random outcome, every event having probability
1 should occur? Recasting this in more formal language we have that,
“for all z € R, almost surely Z # 2", while “almost surely there exists
azelR, Z =27

Next suppose that, for some index set I, (Z; | i € I) is a family of
independent continuous random variables. It is a trivial matter that
for each pair ¢ # j, the inequality Z; # Z; holds with probability 1.
For large index sets I, however,

{Ziliel}| =|I|

holds with probability 0; in fact this event contains no outcomes if I
is larger in cardinality than R. In terms of the formal logic, we have
that, “for all 7 # j in I, almost surely the event Z; # Z; occurs”, while
“almost surely it is false that for all ¢ # j € I, the event Z; # Z;
occurs”.

It is natural to ask whether it is possible to revise the notion of al-
most surely so that its meaning remains unchanged for simple logical
assertions such as Z; # Z; but such that it commutes with quantifi-
cation. For instance one might reasonably ask that, in the second
example, [{Z; | i € I}| = |I| should occur almost surely regardless of
the cardinality of the index set. Such a formalism would describe truth
in a necessarily larger model of mathematics, one in which there are
new outcomes to the random experiment which did not exist before
the experiment was performed.

We will now be more formal. A forcing is simply a set () equipped
with a transitive, reflective relation < which has a greatest element 1.
This will serve as an abstraction of the set of events of positive probabil-
ity in a probability space. We will be interested in studying the logical
properties of a “generic” filter in () — something that corresponds to
the analysis of a random outcome in probability. The central objects
of study in forcing are the forcing relation |- and the Q-names. These
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are the abstractions of “almost surely” mentioned above and of random
variables, respectively. It will turn out that the formal definitions of
I- and of ()-names are not as informative as their properties. We will
therefore introduce their properties axiomatically first and then later
return to given them a formal definition.

Unless we explicitly state otherwise, we will assume the forcing () is
separative: whenever p,q € Q, if p € ¢, then there is a p’ < p such that
p' L q. That is, for all p,q € @), p = ¢ if and only if the set of conditions
compatible with p is the same as the set of conditions compatible with
g. This assumption is a minor one: () is any forcing, we can define
p=gqif

{re@lplry={re@laqlr}
The relation < on ) naturally induces an order on the quotient @)/ =.
Thus we lose little generality in assuming all forcings are separative.
If @ is the collection of all Borel subsets of [0, 1] of positive measure,
then (@), <) is not separative: in this case p = ¢ if p and ¢ differ by a
measure 0 set.

Fix for the moment a forcing (). There are two examples of ()-names
which deserve special mention. The first is the “check name”: for each
set x, there is a (Q-name Z. This corresponds to a random variable
which is constant — it does not depend on the outcome. The other
is the ()-name G for the generic filter; this corresponds to the random
variable representing the outcome of the random experiment.

The forcing language associated to () is the class of all first order
formulas in the language of set theory augmented by adding a constant
symbol for each @-name. If ¢ is in ) and ¢ is a sentence in the forcing
language, then informally the forcing relation ¢ I ¢ asserts that if
the event corresponding to q occurs, then almost surely ¢ will be true.
In the absence of the definitions of “Q-name” and “|,” the following
properties can be regarded as axioms which govern the behavior of
these primitive concepts. They can be proved from the definitions of
(Q-names and the forcing relation once they are in hand.

Property 1. For any x andy and any p€ Q, p |- & € § if and only if
T EY.

Property 2. 1 |- Gc Q and for every p,qe Q, p - § € G if and only
ifp <gq.

It is useful to define the following terminology: if there is a z such
that ¢ IF y = Z, then we say that g decides y (to be z). Similarly, if
Pl ¢ or p - —¢, then we say that p decides ¢.
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Property 3. For any x, any Q-name y, and pe Q, if p -y € &, then
there is a q < p which decides vy.

Property 4. If x is a Q-name and p € @, then the collection of all
Q-names y such that 1 |~ y € = forms a set and the collection of all
Q-names y such that 1 |-y = x forms a set.

Remark 25.1. Unlike the other properties, this one is dependent on the
definition of ()-name which we will later give.

Property 5. If pe Q) and ¢ is a formula in the forcing language, then
p I —¢ if and only if there is no q < p such that q |+ ¢.

Observe that this property implies that if p |- ¢ and ¢ < p, then ¢ I ¢.

Property 6. Ifp e Q, then p I Jvp(v) if and only if there is a Q-name
& such that p - ¢(z).

Property 7. For any q € Q, the collection of sentences in the forcing
language which are forced by q contains the ZFC axioms, the axioms of
first order logic, and is closed under modus ponens. Moreover, if the
axioms of ZFC are consistent, then so are the sentences forced by q.

Observe that since the 1 forces the Axiom of Extensionality, if x and
y are sets and p € ), then p I+ & = g if and only if x = y. If 1 |- ¢,
then we will sometimes say that “Q) forces ¢” or, if @) is clear from the
context, that “¢ is forced.” Similarly, we will write “z is a ()-name
for...” to mean “z is a ()-name and () forces that z is...”.

A key aspect of the forcing construction is that, for a given forcing
Q, the collection of sentences forced by @) is often a proper extension of
ZFC. For instance, if @) is the partial order of all finite partial functions
from wy to 2 ordered by g < p if ¢ extends p, then we will see that ()
forces the negation of CH. By Property 7, this implies ZFC is consistent
with —CH.
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26. SOME FURTHER PROPERTIES OF THE FORCING RELATION

In order to demonstrate how the properties of the forcing relation
can be used, we will prove the some propositions which will be useful.
The first illustrates the central feature of the forcing syntax: that G is
forced to be V-generic.

Proposition 26.1. 1 |- 'G is a filter'. Furthermore, for every dense
DcQ 1FGnD#g.

Proof. The proof that 1 |- "G is a filter" will be a homework exercise. If
the second part of the proposition were false for some dense set D < @),
by Property 5 there would exist a p € () such that p |- GnD=g.
Since D is dense, there is a ¢ < p in D. By Property 2, ¢ I+ g € G and
by Property 1, q I- ¢ € D. By Properties 6 and 7, ¢ I 3r(r € Gn D)
or equivalently ¢ I+ GnD # . Since q < p, this contradicts Property
5. O

Proposition 26.2. Suppose that x is a set and ¢(v) is a formula in
the forcing language. If for all y € x, p I+ ¢(y), then p I+ Yy € & ¢(y).

Proof. We will prove the contrapositive. Toward this end, suppose
that p does not force Yy € & ¢(y). It follows from Property 5 there is
a ¢ < p such that ¢ - =Yy €  ¢(y). By Property 7, this is equivalent
to ¢ - Jy € & —¢(y). By Property 6, there is a -name g such that

q 1= (g € &) A (=0(9))-

By Property 7, ¢ I y € & and therefore by Property 3, thereis a r < ¢
and a z in x such that r |- y = 2. But now, by Property 7, r |- —¢(2)
and hence by Property 5, p does not force ¢(2). O

Proposition 26.3. Suppose that ¢(v) is a formula in the language of
set theory with only bounded quantification. If T is a tuple of sets and
() is true, then 1 I ().

Proof. The proof is by induction on the length of ¢. If ¢ is atomic,
then this follows from Property 1. If ¢ is a conjunct, disjunct, or a
negation, then the proposition follows from Property 7 and the induc-
tion hypothesis. Finally, suppose ¢(v) is of the form Yw € v; ¥ (v, w).
If Yw € x;9(Z,w) is true, then for each w € xz;, ¥(Z,w) is true. By
our induction hypothesis, 1 |+ ¢(Z,w) for each w € z;. By Proposition
26.2, it follows that 1 I+ Yw € &; ¥ (T, w). O

Proposition 26.4. If & is a Q-name, p € Q, and p |- "¢ is an ordinal’,
then there is an ordinal 5 such that p |- & € (3.
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Proof. Let p and & be given. Suppose for contradiction that for every
g < p and every 5 € ON, ¢ I & € 5. Observe that if 3 is an ordinal,
then by Proposition 26.3 and Property 7, p - 3 € ON. By Property 7
applied to Theorem 3.3,

pl-(Bea)v(aep)v(a=Pp).
By Properties 5 and 7, it must be that p |- 5 € &. But this means that
{B](BeON) A (pI-fFea)

is a proper class, which contradicts Property 4. O

Proposition 26.5. Suppose that T is a set consisting of finite length
sequences, closed under taking initial segments. If there is a forcing Q)
and some q € @) forces “there is an infinite sequence o, all of whose
finite initial parts are in T,” then such a sequence o exists.

Proof. If no such sequence o exists, then there is a function p : T'— ON
such that if s is a proper initial segment of ¢, then p(t) € p(s). Such
a p certifies the nonexistence of such a ¢ since such a ¢ would define
a strictly decreasing infinite sequence of ordinals. Observe that the
assertion that p is a strictly decreasing map from 7" into the ordinals is
a statement about p and 7" involving only bounded quantification. By
Proposition 26.3, this statement is forced by every forcing Q). U

There is a special class of forcings for which there is a more con-
ceptual picture of the forcing relation. We begin by stating a general
fact about forcings. Recall that a Boolean algebra is complete if every
subset has a least upper bound.

Theorem 26.6. For every forcing QQ, Q) is isomorphic to a dense sub-
order of the positive elements of a complete Boolean algebra.

A typical example of a complete Boolean algebra is the algebra of
measurable subsets of [0, 1] modulo the ideal of measure zero sets. The
algebra of Borel subsets of [0, 1] modulo the ideal of first category sets
is similarly a complete Boolean algebra.

Suppose now that () is the positive elements of some complete Boolean
algebra B. If ¢ is a formula in the forcing language, then define the
truth value [[¢]] of ¢ to be the least upper bound of all b € B such that
b I- ¢. Observe that if a < [[¢]], then a cannot force —¢. Hence [[¢]]
forces ¢. The rules which govern the logical connectives now take a
particularly nice form:

[l =lol*  lMervl =Ml Allvl vl =lell v I¥I
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[vee()l = ANLo@)1  [Fee)] = \/1o()]

Notice that while = ranges over all ()-names in the last equations — a
proper class — the collection of all possible values of [[¢(z)]] is a set
and therefore the last items are meaningful.

In spite of the usefulness of complete Boolean algebras in under-
standing forcing and also in some of the development of the abstract
theory of forcing, forcings of interest rarely present themselves as com-
plete Boolean algebras. While Theorem 26.6 allows us to represent any
forcing inside a complete Boolean algebra, defining forcing strictly in
terms of complete Boolean algebras would prove cumbersome in prac-
tice. We will return to complete Boolean algebras to prove a key result
about iterated forcing.
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27. FORCING SEMANTICS: NAMES AND INTERPRETATION

We will now turn to the task of giving a formal definition of what
is meant by a QQ-name and ¢ |- ¢. This will in turn be used to give a
semantic perspective of forcing. Fix a forcing Q.

If x is a set, & is defined recursively by

{(,1) [y ea}
Notice that this implicitly depends on Q. Also, define G := {(d,9) |
q€Q}.

A set z is a Q-name if the following conditions are satisfied:

e every element of z is of the form (y, p) where 3 is a )-name and
pis in () and
e for all (y,p) € z and all (2,q) € y, either ¢ < p or 2 = u for
some 1.
Notice that this apparently implicit definition is actually a definition
by recursion on rank. It should be clear that for any set z, ¥ is a
(Q-name and G is a ()-name.

As mentioned in the previous section, the notion of a ()-name is
intended to describe a procedure for building a new set from a given
filter G < Q). This procedure is formally described as follows. If G is
any filter and 7 is any set, define 2(G) recursively by

2(G) == {y(G) | Ip € G ((y,p) € 1)}
Again, this is a definition by recursion on rank. In the analogy with
randomness, #(G) corresponds to evaluating a random variable at a
given outcome.
The following gives the motivation for the definitions of  and G.

Proposition 27.1. If H is any filter and x is any set, then &(H) = z.
Proposition 27.2. If H is any filter, then G(H) = H.

We now turn to the formal definition of the forcing relation. The
main complexity of the definition of the forcing relation is tied up in
the formal definition of p I z € .

If Q is a forcing and = and y are ()-names, then we define the meaning
of pl-z =y and p | 2 € y as follows (the definition is by simultaneous

recursion on rank):
/

(1) p - & = ¢ if and only if for all Z and p’ < p,
(p/“—é’ei‘)(—)(p/ H—zey)
(2) p I+ 2 € g if and only if for every p’ < p there is a p” < p’ and a
(2,q) in g such that p” < g and p" I & = z.
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Notice that the definition of p |- £ = y is precisely to ensure that the
Axiom of Extensionality is forced by any condition. The definition of
the forcing relation for nonatomic formulas is straightforward and is
essentially determined by Properties 1-7:

(1) p I —¢ if there does not exist a ¢ < p such that ¢ |- ¢.

(2) pIF ¢ A if and only if p |- ¢ and p |- 1.

(3) p I+ ¢ v if there does not exist a ¢ < p such that ¢ |- —¢ A —1).
(4) p I Yog(v) if and only if for all &, p I+ ¢(z).

(5) pIF Jug(v) if and only if there is an & such that p |- ¢(z).

The following theorem is one of the fundamental results about forc-
ing. It connects the syntactic properties of the forcing relation with
truth in generic extensions of models of set theory. If M is a count-
able transitive model of ZFC, @ is a forcing in M, and G < @ is an
M-generic filter, define

M|[G] :={z(G) | £ € M and 1 is a )-name}.

In this context, M|[G] is the generic extension of M by G and M is
referred to as the ground model. Notice that

M ={#G)|ze M} < M[G] and G =G(G)e M[G].

The following theorem relates the semantics of forcing (i.e. truth in
the generic extension) with the syntax (i.e. the forcing relation).

Theorem 27.3. Suppose that M is a countable transitive model of
ZFC and that Q is a forcing which is in M. If q is in Q, ¢(0) is a
formula in the language of set theory, and xq, ..., x,_1 are in M, then
the following are equivalent:

(a) qIF ¢(zo,. .., Tn1).
(b) M|G] E ¢(2o(G),...,2,-1(G)) whenever G < @ is an M-
generic filter and q is in G.

Remark 27.4. This theorem can be modified to cover countable tran-
sitive models of sufficiently large finite fragments of ZFC. In fact this
is crucial if one wishes to give a rigorous treatment of the semantics.
By Godel’s second incompleteness theorem, ZFC alone does not prove
that there are any set models of ZFC (countable or otherwise).

While we will generally not work with the semantics of forcing, let
us note here that it is conventional to use = to denote a ()-name for
an element x of a generic extension M[G]. While such names are
not unique, the choice generally does not matter and this informal
convention affords a great deal of notational economy.
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We will now discuss some notational conventions concerning names.
It is frequently the case in a forcing construction that one encounters a
(Q-name for a function f whose domain is forced by some condition to
be a ground model set; that is, for some set D, p - dom(f) = D. A par-
ticularly common occurrence is when D = w or, more generally, some
ordinal. Under these circumstances, it is common to abuse notation
and regard f as a function defined on D, whose values are themselves
names: f(z) is a Q-name ¢ such that it is forced that f(&) = §. Notice
that if, for some sets A and B, p I+ f A — B, it need not be the case
that f( ) is of the form b for some b in B — i.e. p need not decide the
value of f(a) for a given a € A.

In most cases, names are not constructed explicitly. Rather a pro-
cedure is described for how to build the object to which the name is
referring. Properties 6 and 7 are then implicitly invoked. For example,
if 7 is a Q-name, | J# is the @-name for the unique set which is forced
to be equal to the union of x. Notice that there is an abuse of notation
at work here: formally, x is a set which has a union y. It need not be
the case that y is even a ()-name and certainly one should not expect
1 - |J& = g. This is one of the reasons for using “dot notation”: it
emphasizes the role of the object as a name.

A more typical example of is wy, the least uncountable ordinal. Since
ZFC proves “there is a unique set w; such that w; is an ordinal, w; is
uncountable, and every element of w; is countable,” it follows that if )
is any forcing, 1 |- Jz¢(z), where ¢(x) asserts x is the least uncountable
ordinal. In particular there is a @-name # such that 1 |- ¢(&). Unless
readability dictates otherwise, such names are denoted by adding a
“dot” above the usual notation (e.g. wy).

Another example is R. Recall that R is the completion of Q with
respect to its metric — formally the collection of all equivalence classes
of Cauchy sequences of rationals. We use this same formal definition
of R to define R: if ) is a forcing, R is the collection of all ()-names for
equivalence classes of Cauchy sequences of rational numbers. Notice
that R is not the same as R and, more to the point, we need not even
have that 1 - R = R for a given forcing @. This construction also
readily generalizes to define X if X is a complete metric space. The
(Q-name X is then the collection of all ()-names = such that 1 forces
that z is an equivalence class of Cauchy sequences of elements of X.
That is, X is a (Q-name for the completion of X.

Fmally, there are some definable sets which are always interpreted
as ground model sets and do not depend on the generic filter. Two
typical examples are finite and countable ordinals such as 0, 1, w, and
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w? as well as sets such as Q. In such cases, checks are suppressed in
writing the names for ease of readability — we will write Q and not Q
or Q in formulae which occur in the forcing language.
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28. CHAIN CONDITIONS AND THE PRESERVATION OF CARDINALS
AND COFINALITIES

An important question when studying a given forcing is whether the
forcing () preserves cardinals: if x is a cardinal, does 1 |- "% is a cardinal'?
If the answer is “yes,” we say that () preserves “k is a cardinal” or some-
times just “Q) preserves k.” A related question is whether cofinalities
are preserved: if cf(\) = &, does 1 I cf(A) = &? Observe that an
ordinal k is a regular cardinal if and only if cof(k) = k. Thus if a forc-
ing preserves cofinalities, then it preserves that regular cardinals are
regular cardinals. Since supremums of sets of cardinals are cardinals,
forcings which preserve cofinalities preserve all cardinals.

Forcings which satisfy the countable chain condition always preserve
cardinals. In fact it will be useful to state a more general result. If &
is a cardinal forcing () satisfies the k-c.c. if every antichain in ) has
cardinality less than k. The next lemma is the key to understanding
the influence of the k-c.c..

Lemma 28.1. Suppose that Q) is k-c.c., X is a set and
plieX.
There is a Y < X such that |Y| <k andpl-i €Y.
Proof. Define
Vi={ye X |3<p(qi=79)}

To see that |Y| < &, choose a ¢, for each y € Y such that ¢, IF = = 3.
Notice that if y # y’ are in Y, then ¢, and g, must be incompatible:
if r < qy,qy, then r I § = 2 = ¢, which is impossible. Since @ is
k-c.c., |{q, | y € Y}| < k and hence |Y| < k. To see that p - © € Y,
let ¢ < p be arbitrary and find a r < ¢ such that r decides = to be y.
Then y € Y and r |- & € Y. Since ¢ was arbitrary, p - £ € Y. ([l

Theorem 28.2. Suppose k s a reqular cardinal and Q) is a forcing

which satisfies the k-c.c.. If cf(A) = &, then 1 | cf(A\) = k. In
particular Q) preserves cardinals which are greater than or equal to k.

Proof. Suppose that f and 4 are (?-names such that
1IF@ek)n(f:0—A).

It suffices to find a v € A such that 1 |- range(f) < 7. By Lemma 28.1

and the regularity of k, there is a §y € k such that 1 |- 0 € dy. For each
« € g, let A, © A be such that |A,| < k and

1 (a e dom(f)) — (f(a) € Aa)
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Set A := [J{A, | @ € d} and observe that |A| < k and hence A is
bounded in A by some . By Proposition 26.2,

1| Va e dom(f) (f(a)€ ).
U

Theorem 28.3 (Cohen). For any o, ZFC is consistent with [2¥| = R,,.

Proof. Set 6 = R, and let ) consist of all finite partial functions from
0 x w to 2. As we have seen already, () is c.c.c. and hence preserves
cardinals. In particular, for each ordinal §, 1 |- Rz = R¢. Define g to be

the name for the union of G and define 7¢ so that 1 |- 7¢(n) = §(€,n).
Since {q € Q | ({(,n) € dom(q)} is dense for each ({,n) € 0 x w, g is
forced to be a total function from 6 x w to 2. Since

{ge @ |3n(g(&,n) =0#1=q(nn))}

is dense for each a # €0, 1 |- |{7¢ | € € 6}| = |d] = R4. Thus the
theory of what is forced by @ contains ZFC and [2¥| = X, O

It should be noted that while the property of being c.c.c. is far from
characterizing the preservation of cardinals, there are forcings which
collapse cardinals. For instance, if X is any set and () is the poset
of all finite partial functions from w to X, then () forces that X is
countable — the union of the generic filter is forced to be a surjection
from w onto X.
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29. CLOSURE PROPERTIES OF FORCINGS

Another fundamental question concerning a forcing () is whether
forcing with () adds new subsets to a ground model set or, more gen-
erally, new functions between two ground model sets. Of particular
interest is whether forcing with () adds new subsets of w or — equiva-
lently — new real numbers.

A poset @ is k-closed if whenever (g | £ € @) is a decreasing sequence
in @ of length less than &, then there is a ¢ € ) such that ¢ < ¢, for
all £ € a. An wy-closed poset is often said to be o-closed or countably
closed.

Theorem 29.1. Suppose that k is a regular cardinal and Q) is a k-
closed forcing. If X is a set and s is a QQ-name for a sequence of
elements of X of length less than k, then the set of conditions which
decide s is dense. In particular, () preserves cardinals and when cofi-
nalities are at least k.

Proof. Let p € () be arbitrary. By extending p if necessary, we may
assume that p decides the length of § to be « for some a € k. Construct
a decreasing sequence {(g¢ | £ € ) by recursion so that gy < p and for
all ¢ € a there is a (unique) z¢ such that ge |- () = d¢. Since Q is
k-closed, there is a q such that ¢ < ¢¢ for all { € a. Now ¢ I- V§ €

a ($(§) = #¢) and therefore if t := {(z¢ | E€ ), G IF § = 1. =
Corollary 29.2. If Q is o-closed, Q forces R = R and ¢ = &y.

Consider the poset @) of all countable partial functions from w; to
2, ordered by extension. Let g be the ()-name for the union of the
generic filter. By a standard density argument, 1 |+ g : @w; — 2.
For each { € wy, fix a ()-name r¢ for the element of 2¢ such that
re(n) = g(w- & +n). For any s € 2, define D, to be the set of all ¢ in
@ such that for some ¢, [w-&,w- & +w) is contained in the domain of ¢
and s(n) = g(w-&+n) for all n € w. Clearly Dj is dense and if g € Dy,

q -3 e (5=r¢)

It follows that 1 |- |R| < w;. Since @ is clearly o-closed, () forces
R = R and w; = & and hence that CH holds. In fact it is possible to
prove more.

Theorem 29.3. Let () be the poset of all countable partial functions
from wy to 2. Q forces .

Proof. First notice that since |w; X wq| = |wy|, the poset of all countable
partial functions from wy X w; to 2 is isomorphic to (). We will use this
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poset instead for convenience. Let ¢ be the name for the union of the
generic filter. By standard density arguments, ¢ is forced to be a total
function from wy x wy to 2. Define a sequence of Q-names (A, | o € wy)
by 8 € A, if and only if 8 € a and g(a, B) = 1. Tt suffices to show that
for every pe Q, if p I+ X < &y, then there is a 6 € wy and a q < p such
that ¢ |- X n 6 = Aj.
Set dy := w, pg = p and construct conditions p, and countable

ordinals d,, such that:

® Dpi1 < P, decides XA 4, to be Y,;

e the domain of p,,; is contained in 9,1 X 0,41.

Notice that this is possible since, because @ is o-closed, 1 |- P (0n) =

P (0n). Set 6 :=sup{d, | n € w} and YV := [J{Y,, | n € w} and observe
that if ¢ < p, for all n, then ¢ I- X nd = Y. Define

pula, B)  if (o, B) € dom(p,)
q(a, 8) :=1<1 if fea=dand feY
0 iffea=dand f¢Y

Notice that ‘ . ‘
gIFXNnd=Y = A;
as desired. O

Remark 29.4. Baumgartner generalized this argument to show that if
Q is a o-closed forcing which added a new subset of wy, then @) forces

O

Consider the forcing ) which is obtained by taking the separative
quotient of ([w]¥,<). Observe that if (x, | n € w) is a sequence of
infinite subsets of w such that x,,; <* z,, then there is an infinite
x € [w]“ such that x <* z,, for all n: for instance set

x = {min(ﬂ z;\n) | n € w}
<<n

In particular, even though ([w]¥, ) is not o-closed, @ is o-closed.

An ultrafilter % on w is selective if it is nonprinciple and for every
f i w — w there is a U € % such that f|U is either constant or one-
to-one. It can be shown that % is a selective ultrafilter if and only if
7 is nonprinciple and whenever f : [w|? — k for k,d € w, then there
is a U in % such that f[U]? is constant. Thus selective ultrafilters
are also known as Ramsey ultrafilters.

Theorem 29.5. The partial order ([w]”, ) forces that G is a selective
ultrafilter on w.
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Proof. As noted above, the separative quotient () of this partial order
is o-closed and in particular does not add new functions from w to w.
Thus it suffices to show that for every f : w — w and every p € () there
is a ¢ < p such that

¢ I3y e G (fly is constant or one-to-one)
Let x be in the equivalence class of p. If there is a k such that zn f~1(k)

is infinite, set y := x n f71(k). Otherwise f|z is finite-to-one and
y = {min(z n f7'(k)) | k € range(f|x)} is infinite. Let ¢ be the
equivalence class of y and observe that ¢ I 3 € G. 0

Remark 29.6. Let Ry be the forcing consisting of all compact subsets
of 29 of positive measure, ordered by <. Kunen has shown that if 6 is
a cardinal greater than 2% then Ry forces that there are no selective
ultrafilters.
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30. PRODUCT FORCING

We will now discuss product forcing and iterated forcing with the
ultimate aims of proving the consistency of MAy, with ZFC and of
constructing Solovay’s model in which all sets of reals are Lebesgue
measurable and ZF holds. It will sometimes be informative to take
a less formal, more semantic approach to forcing going forward. We
will frequently talk about starting with a ground model V' of ZFC,
taking a V-generic filter G for some forcing ) in V', and forming the
generic extension V[G]. This can always be formalized syntactically
(but sometimes with great notational headache) or semantically by
applying the reflection theorem and the Lowenheim-Skolem theorem to
find countable transitive models of arbitrary finite fragments of ZFC
(but introducing a certain amount of irrelevant baggage). Regardless
of the type of formalism, the rigor tends to obscure and distract from
the underlying set theory.

First we will discuss product forcing. If P and @) are forcings, what
is the effect of forcing with P x 7 It turns out that the following
three operations are essentially the same: forcing with P and then @),
forcing with @@ and then P, and forcing with P x (). Let us note the
following fact.

Proposition 30.1. Suppose that P and ) are forcings and K € P x Q)
is a filter. Then K = G x H for some filters G < P and H < Q.

Proof. Let K < P x () be given and define
G:={pe P|3q((p,q) € K)}

H:={qeQ|3p ((p,q) € K)}.

Observe that trivially K < G x H. To see the other containment,
suppose p € G and g € H. Let ¢’ € @ be such that (p,q) € K and let
p’ € P be such that (p/,q) € K. Since K is a filter, there is a (p, q) € K
such that p < p,p’ and ¢ < ¢,¢’. Since (p,q) < (p,q) and since K is a
filter, (p,q) € K. Since (p,q) € G x H was arbitrary, G x H € K. [

Theorem 30.2. Suppose that V is a transitive model of ZFC and
P.Q €V are forcings. If G € P and H < @ are filters, the following
are equivalent:

(1) G is V-generic and H is V[G]-generic.

(2) Gx H<S P xQ is V-generic.

Proof. To see the forward implication, suppose that D < P x (@ is
dense. Define

E:={(¢.p) | (p.q) € D}.
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Claim 30.3. P forces that E is dense.

Proof. Let py € P be arbitrary and ¢y be such that po I-p do € Q. Let
p1 be such that p; < pg decides ¢y to be ¢;. Since D is dense, there is
a (p,q) € D such that p < p; and ¢ < ¢;. Now p < py and

plp (4 < do) A (G€ E).

Since py and ¢y were arbitrary, P forces E is a dense subset of Q. O

By the claim, since G is V-generic, V[G] satisfies that £ < @Q is
dense. Since H is V[G]-generic, V[G] satisfies that H N E contains some
q. But this means precisely that there is p € G such that (p,q) € D.
Thus (p,q) € G x H.

To see the reverse implication, suppose that Dy S P is dense and in
V and D; € @ is dense and in V[G]. Let D; be a P-name in V whose

interpretation by G is D; and let pg € G be such that pg forces Dy is
dense. Define

D:={(p,q) e PxQ|((peDo) A (plpie Di)) v (pLpo)}
Claim 30.4. D is dense in P x Q).

Proof. Let (p1,q1) € P x @ be given. If there is a p < p; which is
incompatible with pg, then (p,q1) < (p1,q1) is in D. Otherwise, p;
forces D; is dense in Q. Thus there is a Q-name ¢ such that

prip (4 < @) A (Ge Dy)
Since py IFp ¢ € @, there is a p < p; which decides ¢ to be ¢ for some
g€ Q. Now (p,q) € D and (p,q) < (p1,q1). Hence D is dense. O

Since G x H is V-generic, there is a (p,q) € G x H n D. But now
p € Dy and g € Dy. Thus G is V-generic and H is V[G]-generic. O
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31. ITERATED FORCING

Suppose now that P is a forcing in a transitive model V of set theory
and @ is a forcing in V[G]. We would like to view the process of forcing
first with P and then @ as being equivalent to forcing with a single
poset P=(). This is useful for a number of reasons. First, it allows us to
understand two step generic extensions purely from the ground model.
Second, it provides the foundation on which transfinite iterations of
forcings are built. While achieving two step generic extensions via a
single iterated poset is partly a convenience, it becomes an existential
issue for transfinite iterations. For instance if G, is generic over
M|G,] for the poset @,,, what is the candidate for the generic extension
of M by (G,, | n € w)? Typically |, M[G,]| will not be a model of
ZFC and it will not contain {G, | n € w}. In order to address this
issue, we need to better understand two step iterations. .

If Pis a forcing and @) is P-name for a forcing, define P = Q) to be
all pairs (p,q) such that p € P, ¢ is a P-name, and p |- ¢ € Q. By
Property 4, P« Q is a set. Define < on P+ Q by (p1,d1) < (po, o) if
p1 < po and py IF g1 < ¢o. It is easily checked that < is both reflexive
and transitive. Typically < is not separative or even antisymmetric.
We will implicitly work with the separative quotient, which we will also
denote P = (). The forcing P = () is called the iteration of P and Q).

Notice that if P and @ are forcings, P * @ is not the same as P x Q.
The set {(p,q) | (p,q) € P x @} is is dense in P = (), however, and
(p,q) — (p,q) is an isomorphism onto its range. Theorem 30.2 has the
following analog for iterations, whose proof is left as an exercise.

Theorem 31.1. Suppose that M s a transitive model of ZFC and
P = Q is an iteration of forcings in M. If K < P = Q s a filter, then
the following are equivalent:

(1) G:={pe P|3q ((p,q) € K)} is a M-generic filter and H :=
{qe@Q|Ipe G ((p,q) € K)} is a M[G]-generic filter.
(2) K is M-generic.

The next theorem is what might be referred to as the fundamental
theorem of iterated forcing.

Theorem 31.2. Suppose that M is a transitive model of ZFC, P 1is
a forcing in M and G < P 1is a M-generic filter. If N is a transitive
model of ZFC such that M < N < M|G], then there is an iteration
Py« Q in M and filters Gy < Py and H < Q in M[G] such that Gy is
M -generic, H is M|[Gy|-generic, N = M[Gy] and M|G] = N[H].
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Remark 31.3. By N € M|[G] is a transitive model of ZFC we mean
that N is a transitive class from the point of view of M[G] and that
(N, €) satisfies ZFC.

Before we prove this theorem, it will be useful to make a few general
observations. The first is that every dense subset of a forcing () contains
a maximal antichain. On the other hand, if A < @ is a maximal
antichain, then the set of conditions which extend some element of A
is dense. In particular, if M is a transitive model of ZFC and @ is a
forcing in M, a filter G < @ is M-generic if and only if it intersects
every maximal antichain in M.

Next suppose M is a transitive model of set theory, @) is a forcing
in M and (g < @ is dense and in M. If G < @Q if a M-generic filter,
then G N Qg is a M-generic filter and if G < @) is a M-generic filter,
then the upwards closure of GG in () is a M-generic filter. In particular,
generic extensions of M by () coincide with the generic extensions of
M by Qo.

If Qo € @ are forcings and every maximal antichain in @y is a
maximal antichain in (), then we say that (g is a regular suborder of
. This is equivalent to the assertion that

1l "G~ Q is V-generic'
If B is a complete Boolean algebra and A is a complete subalgebra of
B, then A" is a regular suborder of B*. Finally, we recall that if @ is
any separative forcing, () embeds as a dense suborder of the positive
elements of a complete Boolean algebra B. Recall that if ¢ is a formula
in the forcing language associated to B, [[¢]] is the maximum element

of B such that [[¢]] I+ ¢. We are now ready to give the proof of Theorem
31.2.

Proof. By the observations made above, we may assume that P is the
positive elements of a complete Boolean algebra B. Let M € N <
M][G] be given as in the statement of the theorem and let ¢(v) be a
formula in the forcing language which defines the class N within M|[G].
First suppose that X € N is a set of ordinals and let X be the P-name
whose evaluation is X. Notice that while [[X < ON A ¢(X)]] need not
be one, there is a P-name Y such that [X = Y] = [[X € ON A ¢(X)]
and [Y < ON A o(Y)]] = 1. Thus we may assume without loss of
generality that [X € ON A ¢(X)]] = 1. Let A; be the complete
subalgebra of B generated by {[[¢ € X]| | a € ON}. Observe that

o = {Ag | [X < ON A ¢(X)] = 1}

is contained in Z(B) and hence is a set.
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Claim 31.4. There is an Ay € o/ such that every other element of &/
is a subset of Ay

Proof. Let (X | § € k} be alist of P-names such that for each ¢ € &,
[X < ON A ¢(X)]] = 1 and

{Ag | [X < ON A 6(X)] = 1} = {Ay_ | € e w).

By Proposition 26.4, there is a sufficiently large ordinal A such that for
every £ € k, [[Xg - )\]] = 1. Define a P-name Y for a subset of A -k by

[7€ +aeY] = [[ae X].
In particular Ay . S Ay for all £ € k. By definition Ay € 7. 0

Let Y be as in the claim and let Y be the interpretation of Y by G.
Let « be such that [[Y < &]] = 1. Since both Y and Y are in N,

{TaeY]|aeY}u{[a¢ Y] |aer\Y}

is a set in N. Let Gy be the filter generated by this set, noting that
Gy = G n A. Now observe that if a is any set in /N, there is a set of
ordinals X in N such that a is in any transitive model of ZFC which
has X as an element. Thus we have shown that N = M[Gy].

To see that M[G] is a generic extension of M[Gy], define I < B
to be the set of complements of elements of Gy in B. [ is an ideal
and we can define B/I to be the quotient Boolean algebra. Let @ be
the positive elements of B/I. We leave it as an exercise that G/I is

M|[Gy]-generic for Q. O

While we will see that the analysis of finite products and iterations
of forcings can be very fruitful, many applications of forcing require
one to work with a transfinite iteration of forcings. We will only work
with the simplest type of transfinite iterated forcing which well suited
for working within the class of c.c.c. forcings but nothing more.



MATH 6870: SET THEORY 81

32. FINITE SUPPORT ITERATED FORCING

A finite support iteration of forcings is a sequence (P, | o € 0) of
forcings such that:

e cach element of P, is a sequence of length «;
e if aefeb then P, = {pla|pe Ps};
e if & + 1 € 0, then there is a P,-name @), such that is in

Pasi = {p™@) | (pe Pa) A (Dl-r, 4 € Qa)}
e if pe P,, then {¢ € o | p(€) # 1} is finite.

The set in the last condition is known as the support of p. The orderings
are required to satisfy the following conditions:
e if 3 is a limit ordinal and p, ¢ € P3, then ¢ < p if and only if for
all o € B, qla < pla.
o if 3 =a+1and p,qe Ps, then ¢ < pif and only if ¢la < pla
and gqla I-p, g(a) < p(a).
It follows that if o« € 8 € 0 and p, ¢ € Pg, then ¢ < p implies ¢la < pla.

Notice that F, always consists of a single element — namely the
sequence of length 0. Also, there is a canonical isomorphism between
P,.1 and P, * Q, — namely p — (pla,p(a)). Furthermore, if 3 is a
limit ordinal, then p € Pjs if and only if pfa € P, for all a € 8 and
the support of p is finite. Thus (P, | a € ) is uniquely determined
by the sequence <Qa | @ +1 € 0) and indeed transfinite iterations of
forcings are typically specified by recursively selecting the sequence of
Q.’s. Typically 0 is a limit ordinal, in which case there is a unique
forcing Py such that (P, | « € 8 + 1) is a finite support iteration. Py is
referred to as the finite support iteration of the iterands (Q, | a € ).
It is often the case that 6 is called the length of the iteration.

A fundamental problem in set theory is to determine what effect
properties of the iterands in an iteration have on the iteration itself. In
the case of finite support iterations, this is fairly straightforward. This
is largely because finite support iterations are only useful in iterating
c.c.c. forcings and this is a fairly restrictive class. Countable support
iterations allow for the iteration of a much broader class of forcings
but their analysis can be very challenging and the preservation of basic
properties such as when no new real numbers are added is still not
fully understood (and likely intractable). The most fundamental fact
about finite support iterations is contained in the following theorem of
Solovay and Tennenbaum.

Theorem 32.1. Suppose that (P, | a € 0) is a finite support iteration
such that for each o, P, forces that Q). is c.c.c.. Then Py is c.c.c..
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Remark 32.2. One of the most important features of the class of c.c.c.
forcings is that they preserve cardinals (and N; in particular) and are
preserved by finite support iterations. It is not difficult to show that
if (P, | n € w) is a finite support iteration and for infinitely many n,
P, forces that Qn is not c.c.c., then P, collapses N;. Forcings which
preserve stationary subsets of [ X]¥ for every uncountable X are known
as proper forcings. The class of proper forcings includes both the class
of all c.c.c. forcings and all o-closed forcings. This class of forcings
preserves N; and is closed under taking countable support iterations.

Proof. We will first show that if P = Q is an iteration, P is c.c.c. and
Q is forced to be c.c.c., then P = Q is c.c.c.. To see this, suppose that
{(pe, Ge) | € € wy) is a sequence of conditions in P Q. Since P is c.c.c.,
there is an rg € P such that

—_

rolFp Zi={{ew |pe€e G} is uncountable’.

Since Q is forced to be c.c.c., there are P-names § and 7 such that rg
forces £ # 7 are in = and g¢ 1s compatible with g;. Let r < ro decide £
and 7) to be £ and 7. Since r forces p¢ and p, are in G, it must be that
7 < p¢, py and in particular pe and p, are compatible. Since r forces ¢
and ¢, are compatible, there is a P-name s such that r forces s € Q is
a lower bound for ¢ and ¢;. Now (r,5) € P = Q is a lower bound for
(pe, 4e) and (py, Gy)- It follows that P = Q is c.c.c..

We will now prove Theorem 32.1 by induction on 6. If = o + 1
for some «, then Py is isomorphic to P, * ),. Since P, is c.c.c. by our
induction hypothesis, the conclusion of the theorem follows from the
special case of the theorem for length 2 iterations. Now suppose that
6 is a limit ordinal and that (p¢ | £ € wy) is a sequence of elements of
Py. Define D¢ := {a € 0| ¢¢(a) # 1}. By the A-System Lemma, there
is an uncountable = € w; such that {D¢ | £ € Z} forms a A-system
with root R. Since 6 is a limit ordinal, there is an « € 6 be such that
R < «. By our inductive assumption, there are { # n such that p¢[a
and p,[a have a common lower bound ¢ € P,. Define

w(B) ff<a
pe(B) if Be D\
py(B) if Be D)\
1 otherwise

q(B) =

Since D¢ n Dy, = R < «, ¢ is well defined. Clearly ¢ € Py, ¢ < pe, and
q < p,. This completes the proof that I is c.c.c.. U
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33. SOME BOOKKEEPING LEMMAS

We would now like to show that, for any regular uncountable cardinal
0, there is always a c.c.c. forcing P which forces MAy. The forcing P
will be constructed as a finite support iteration of c.c.c. forcings of
length & := 2% and will force 2¢ = 2% Before we do this, we will need
to establish a number of lemmas which allow us to keep track of the
tasks we need to accomplish.

First observe that if P < @) are forcings, then any P-name is a Q-
name. If P is a regular suborder of (), and ¢ is any formula in the
forcing language associated to P, then p I-p ¢ if and only if p I-¢ ¢ for
any p € P. If every condition occurring in a ()-name z is in P, then z is
also a P-name. If there is a natural embedding of P into @), it is often
common to treat P as a suborder of (). In particular, P-names are
regarded as (J-names via this embedding. This issue commonly arises
in the context of iterations: P is naturally embedded into P = Q) as a

regular suborder via the map p — (p,1). We will abuse notation and

treat P-names as P = ()-names without further mention. This will also
be true for finite support iterations.

Lemma 33.1. Suppose that p and s are infinite cardinals such that
k~F = Kk and such that p is reqular. If P is a p-c.c. poset containing a
dense set of cardinality at most k, then P forces k=F = k.

Proof. Observe that every element of k<# is a subset of k x u of cardi-
nality less than u. Since p < k (otherwise k < Kk < k=), it suffices
to show that P forces there are k many subsets of x of cardinality less
than p. Let D < P have cardinality at most x.

Suppose now that X is a P-name such that

pIF (X Cr)A(X]<p)
for some p € P. For each a € k, set
Do:={qeD|(q<p) A (gl aeX)}

and let A, € D, be an antichain which is maximal with respect to
being contained in D,. Define

Yi={(d,9) | (aer) A (ge Ad)}.
Claim 33.2. p - Y = X.
Proof. This is left as an exercise. 0

Observe that, since P is p-c.c., each A, has cardinality less than u.
Thus Y is a union of sets of fewer than pu sets, each of cardinality less
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than p. Since p is regular, |Y| < p. Also, Y is a subset of £ x D and
|k x D] = k. We've therefore show than every subset of k of size less
than p in the generic extension has a P-name which has cardinality less
than p and is a subset of a set of size k. This completes the proof. [J

A P-name X such that elements of X have the form (&, p) for p e P
and such that for each z, {p € P | (&,p) € X} is an antichain are
sometimes called nice names. As the previous lemma shows, nice names
are useful in estimating cardinalities in generic extensions. We showed
that if X is a P-name for a subset of a ground model set, then there is
a nice P-name Y such that 1 - Y = X.

We will also need the following general fact about cardinal arith-
metic.

Theorem 33.3 (Konig). Suppose that 0 is an infinite cardinal. The
cofinality of 2° is greater than 0.

Proof. Let (A¢ | € € 6) be a partition of 0 into 6 sets of cardinality
6. Suppose that F < 2% for each £ € 6 and that | % < 2. Since
P(Ae) = 29, there is a g¢ : A¢ — 2 such that g¢ # flA¢ for any
f e A¢. Define g: 0 — 2 by g = [ J{ge | £ € 0}, noting that ¢ is not in
F¢ for any € € 0. Thus 27 is not the union of 6 sets, each of cardinality
less than 27, U

Lemma 33.4. Let 0 be an infinite cardinal and suppose that (P, |
a € vy is an iteration of c.c.c. posets, each of which is forced to have
cardinality at most 0. Then P, has a dense subset of cardinality at
most max(|v|, ).

Proof. The proof is by induction on ~. If v = 0, there is nothing to
show since |Py| =1 < 6. If v = S+ 1, let D < P3 be a dense set of
cardinality at most max(|3[, #) and fix a sequence of names {(¢¢ | £ € 6)
such that Ps forces Qﬁ ={ge | €€ 0}. Ifpe P and ¢ is a Pg-name for
an element of Qﬁ, then there is a £ € # and a p’ < p in D such that
P’ IF ¢¢ = ¢. In particular,

{peP.|(piBeD)AIEeb (p(B)=dqe)}

is dense and of cardinality at most |D| -0 < max(|v|,0). If v is a limit
ordinal, let D, < P, be a dense set of cardinality at most max(|«/,6)
for each o € . Define D < P, to be all p € P, such that for some
a € 7, pla € Dy and if « < B < v, p(f) = 1. It follows that
DI < |y[ - max(|y],0) = max(|~],6). m
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34. HOw TO FORCE MA,

We will now begin the recursive construction of the iteration. This
is done by recursively constructing a sequence <Qa | @ € k), defining
as we go P, to be the finite support iteration of <Qa | @ € 7). This
constructlon will be carried out so as to satisfy that for each a € k, P,
forces Q, is a c.c.c. forcing of cardinality at most 6. By Lemma 32.1,
this will imply that P, is c.c.c. for all @ < k. Moreover, by Lemma
33.4, P, will have a dense subset of cardinality less than x. If a < k&, let
Ga denote the P,-name for the generic filter and Ha be the P, -name
for the V[G,]-generic filter in Q,.

Now suppose that we've constructed (Qq | a € ) for some 7 € k.

By Lemma 33.1, there are P,-names (Q,¢ | £ € k) such that if Q) is a
P,-name for a partial order on a subset of ¢,

{€er|lirp, Q=Qu
is cofinal in k. Let a and £ be such that v = 2%- (2 +1). If 1 |Fp,
_Qa,g is c.c.c.’, define Q7 Qag if v =2%.(2¢ 4+ 1). Otherwise define

(), to be the P,-name for the trivial partial order. This completes
the recursive definition. The next lemma is the final ingredient to
completing the argument.

Lemma 34.1. Suppose that for each § € 0, X¢ is a set of cardinality
at most 0 and Y¢ is a nice P.-name such that 1 |- V€ € 0 Ye < X¢.
There is an « € Kk such that for all £ € 0, X¢ is a P,-name.

Proof. First observe that since 2’ = x, Theorem 33.3 implies the cofi-
nality of k is greater than . For each & € 6, set

S = {p e P | v € Xe((#,p) € Ye)}.

Since | X¢| < 0 and Py is c.c.c., |S¢| < 0. Consequently S := [ J{Se | £ €
0} has cardinality at most 6. Smce 0 < cof(k), there is an «a € K such
that S is contained in P, (in the sense indicated above). It follows that

Xg is a P,-name for all £ € 6. O

Suppose now that (Q,<) and (D¢ | £ € ) are Py-names such that
p € Py forces (Q <) is a c.c.c. poset of cardinality at most 6 and for
all £ €6, D5 c Q is dense. Without loss of generality we name assume
that Q < and each Dg are nice Py-names. Let a € k be such that
p € P, and all of these names are P,-names. Let £ € & be such that
P l-p, ng ~ Q Since p I-p, Q is c.c.c., plp, Q is c.c.c.”. It follows
that p forces H, < Q, is a filter which is {Dg | € € O}-generic.
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35. THE LEvYy COLLAPSE

Suppose that X is a set of ordinals and A is an infinite regular car-
dinal. Define Coll(), X)) to be the collection of all partial functions p
defined on X x A such that the domain of p has cardinality less than
A and if (o, &) € dom(p), p(a, &) € max(a,w). Coll(A, X) is ordered
by extension. For each infinite @ € X, define a Coll(\, X)-name é,
for a function on A by é5(€) = «a if and only if there is a p € G such
that p(8, &) = a. Observe that it is forced that é, witnesses |@| < |A|.
Also Coll(A, X) is A-closed and therefore does not add new sequenced
of length less than A.

The main cases of interest are when X = x for some strongly inac-
cessible cardinal and either A = w or A = w;. In this case Coll(A, k)
is known as the Levy collapse of k to \™. This terminology is stan-
dard but is perhaps misleading since, under the assumption that x is
inaccessible, k remains a cardinal in the generic extension.

Lemma 35.1. If k is a regular cardinal, Coll(w, k) is k-c.c..

Remark 35.2. More generally, if & is regular and x=* = &, then Coll(\, x)
is k-c.c..

Proof. Suppose that (p¢ | £ € k) is a sequence of conditions in Coll(w, k).
By the A-system lemma there is a = € k of cardinality x such that
{dom(p¢) | € € Z} forms a A-system with root R. Let a € x be such
that if (5,n) € dom(pe), then 8 € a. Since there are fewer than s
finite partial functions from « x w to «, there are £ # n in = such that
pel R = p, I R. But now p¢ U p, is a lower bound for p; and p,. Thus
Coll(w, k) is K-c.c.. O

Next we will make some simple but useful observations about the
Levy collapse.

Lemma 35.3. If X =Y U Z is a partition of a set of ordinals into
two disjoint pieces, Coll(\, X) = Coll(\,Y) x Coll(), Z).

Proof. The function p — (pIA x Y, plA x Z) is an isomorphism. O

A forcing @ is atomless if every element of () has two incompatible
extensions. Let C denote all finite sequences from w of positive length,
ordered by extension.

Proposition 35.4. If Q) is a countable atomless partial order, () con-
tains a dense subset isomorphic to C.

Proof. We first must show that if () is atomless, then for every p € @,
the set of extensions of p contains an infinite antichain. To see this,
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construct p, and ¢, by recursion so that p,.1,q, < p, are incompatible
with po = p. It follows that {g, | n € w} is an infinite antichain of
extensions of p. Now let Q = {¢, | n € w} and construct {p; | s € C}
by recursion on the length of s. Select p, for s € C of length 1 so as
to enumerate a maximal antichain in ). Given py of length n + 1, let
{Ps~¢iy | 1 € w} be an infinite maximal antichain of extensions of p,
such that for each 7, p,~;, either extends g, or is incompatible with g,,.
Notice that if ¢ is compatible with p;, then ¢ is compatible with ps-;
for some i € w. In particular, for each n, {ps | s € C A |s| = n} is a
maximal antichain in ). We’ve ensured that s — p, is an isomorphism
which preserves incompatibility. To see that the range is dense, let
¢n € @ be given. Since {ps | s € C A|s| = n+ 1} is a maximal antichain,
there is an s such that p, is compatible with ¢,. By construction, it
must be that p, < ¢,. Hence {p, | s € C} is dense. O

Lemma 35.5. Suppose that P is a forcing and Qo and Q1 are P-names
Jor forcings such that it is forced by 1 that Qo and Q1 have isomorphic
dense subsets. Then P Qg and P = ()1 have isomorphic dense subsets.

Proof. Let ¢ be a P-name for isomorphism between dense subsets of
Qo and Qq. If p forces ¢ € dom(¢), let ¢(¢) denote a P-name for the
value of ¢ under ¢. Let D < P« Qy denote the set of all (p, ) such
that p Ik ¢ € dom(¢). Define ¢ : D — P« Q1 by ¥((p,q)) = (p. ¢(q))-
It can be checked that D is dense, the range of D under v is dense,
and 1) is an isomorphism. O

The next proposition gives a key property of the Levy collapse,
known as the absorption property.

Proposition 35.6. Suppose that k is a cardinal and ) is a forcing
with |Q| < k. Coll(w, k) and Q x Coll(w, k) contain isomorphic dense
subsets.

Proof. By Lemma 35.3
Coll(w, k) = Coll(w, {0}) x Coll(w, k\{0}) = Coll(w, {0}) x Coll(w, k).

The partial order Coll(w, {0}) is just the collection of all finite partial
functions from w to w. In particular, it is countable and atomless.
Observe that

Q x Coll(w, k) = (Q x Coll(w, {0}) x Coll(w, k)
is isomorphic to a dense suborder of Coll(w, &) * (Q x Coll(w, {0}). Fur-

thermore, Coll(w, k) forces @) x Coll(w, {0}) is countable and atomless.
The proposition now follows from Lemmas 35.4 and 35.5. (
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36. UNIVERSALLY BAIRE SETS

Suppose that B is a Borel subset of R and () is a forcing. How to
we interpret B in a generic extension by Q7 One option is B but if Q
adds new reals, this set will typically not be Borel. In this section, we
will give a very general procedure for resolving this issue.

Suppose @ is a forcing, A and B are nonempty sets, and A is count-
able. Observe that if 4 is a nice Q-name for an element of B4, then
there is a countable collection & of dense subsets of () such that if
G < Q is a P-generic filter, then #(G) is in BA.

A subset X of B4 is Q-universally Baire if there is a ()-name X
such that whenever ¢ is a nice Q-name for an element of B, there is
a countable collection Z of dense subsets of () such that if G <€ Q) is a
9P-generic filter then the following are equivalent:

e y(G) e X;
e there is a p € G such thatpll—y'e)'(;_
e there is no p € GG such that p Iy ¢ X;

We will say that X witnesses that X is @-universally Baire and that
2 certifies X for y.

Proposition 36.1. [fX and Y are (Q)-names which witness that X <
B# is universally Baire, then 1 o X =Y.

Proof. If the proposition is false, then there is a p € @) such that p I+
X # Y and let # be forced by p to be in (X\Y) U (Y\X). By extending
p if necessary, we may assume that p decides z € X and by exchanging
the roles of X and Y if necessary, we may assume p |- % € X \Y Let
2 be a countable collection of dense subsets of () which which certifies
both X and Y for 2. Now let G < Q be a Z-generic filter with p € G.
Since p - % € X, 2(G) € X but since p I+ z ¢ Y, 2(G) ¢ X, a
contradiction. O

Armed with this proposition, we will fix, for each Q-universally Baire
set X € B4, a Q-name X which witnesses that X is universally Baire.

Theorem 36.2. Suppose that ) is a forcing, A and B are nonempty
sets and A is countable. The Q-universally Baire subsets of B4 form a
o-algebra which contains the Borel subsets of B, where B is equipped
with the discrete topology. Moreover:

(1) if U < B is open and U witnesses U is universally Baire,
11 "U is open'.

(2) if X = B* is universally Baire and Y = BN\X, then 1 |FY =
BAX.
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(3) if Y = U{X, | n € w} and X,, witnesses X,, is Q-universally
Baire, then 11+Y = [ J{X, | n € w}.

Proof. If U < B is open, define U to be all pairs (z,p) such that:

e i is a nice Q-name for an element of B4 = P (A x B)
e for some finite F' < A, p decides x| F to be some s : F' — B
and for every y € B4 which extends s, y € U.

It should be clear that U is forced to be open. Now suppose that y is
a nice Q-name for an element of B*. For each finite F < A, let Dp
denote the set of all ¢ in ¢ such that for some p € @ and s : F' — B,
we have that ¢ < p and ((a, s(a)),p) € y for every a € F. Observe that
if G < @ is a filter which meets Dp, then y(G) is a function whose
domain contains F and if s := ¢(G) | F', then there is a ¢ € G such that
q3=ylF.

If X, witnesses that X, is universally Baire for all n e w and'.@n
certifies X, for some nice @Q-name g, then the @)-name Y for [ J{X,, |
n € w} witness that Y := (J{X, | n € w} is universally Baire and
U{Z, | n € w} certifies Y for 7. Similarly, if X witnesses that X is
universally Baire and & certifies X for y, then the name for BA\X
witnesses that B4\ X is universally Baire and & certifies this name for
y. The remainder of the theorem follows from Proposition 36.1. U

We are now in a position to make the following definitions. Suppose
that 7 is a ()-name for an element of R. We say that p forces r is a
Cohen real if for all meager Borel sets B € R, p I 7 ¢ B. Similarly, p
forces r is a random real if whenever B is a measure 0 Borel subset of
R, 1 |- 7 ¢ B. Let R denote the collection of all compact set subsets
of R of positive measure. The next proposition is left as an exercise.

Proposition 36.3. The following are true for a forcing QQ and a Q-
name for a real number r:
e p forces 1 is a Cohen real if and only if p forces {rn|new} <
w<¥ is a V-generic filter.
°*p forces 1 is a Random real if and only if p forces {Be R | r €
B} is a V-generic filter.
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37. HOMOGENEITY AND A PROOF OF SOLOVAY’S THEOREM
Are nearly ready to prove the following theorem of Solovay.

Theorem 37.1 (Solovay). Suppose thal k is an inaccessible cardi-
nal and ¢(u,v) is a formula in the language of set theory. If a is a
Coll(w, k)-name for an element of ON* and X is the Coll(w, k)-name
for the set {x € R | ¢(x,a)}, then 1 forces that X is Lebesque measur-
able, has the Baire property, and has the perfect set property.

Recall that if X <€ R:

e X is Lebesgue measurable if there is a Borel set B such that
XAB is measure 0.

e X has the Baire property if there is a Borel set B such that
XAB is meager.

e X has the perfect set property if either X is countable or else
X contains a nonempty closed set with non isolated points.

It is possible to show that if X < R is definable from an w-sequence of
ordinals, then X is in L(R), the minimum model of ZF which contains
all real numbers. In particular, Solovay showed that if ZFC is consistent
with the existence of an inaccessible cardinal, then so is ZF together
with the assertion that all subsets of R are Lebesgue measurable, have
the Baire property, and have the perfect set property. It is known that
the inaccessible cardinal is required in Solovay’s theorem, at least for
two of the conclusions.

Theorem 37.2 (Miller). If every I1} set of reals has the perfect set
property, then wy is an inaccessible cardinal in L.

Theorem 37.3 (Shelah). If every X1 set is Lebesque measurable, then
w1 18 an inaccessible cardinal in L.

Shelah has shown, however, that if ZFC is consistent then so is ZF
together with “All subsets of R have the Baire property.”

In order to prove Solovay’s result, we need one more forcing tech-
nique. Suppose that © : P =~ (@ is an isomorphism. This function
induces a class function © which maps P-names to Q-names:

O(#) == {(0(y), ©(p)) | (4,p) € i}.
Observe that ©(z) = & (though technically the former # is a P-name

and the latter is a @-name). The next proposition has a routine proof
which is left as an exercise.

Proposition 37.4. If © : P = @ s an isomorphism of posets and 6
is the induced map on P-names, then p |-p ¢(x; | i < n) if and only if
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~

O(p) g ¢(O(z;) | i < n) whenever ¢p(v; | © < n) is a formula in the
language of set theory and {&; | i < n) is a sequence of P-names.

If @ is a poset and p € Q, set @, := {g€ Q| ¢ < p}. A poset Q is
weakly homogeneous if for every p,q € @, there are p’ < p and ¢’ < ¢
such that @),y = Q). Proposition 37.4 now yields:

Proposition 37.5. Suppose that () is a weakly homogeneous poset,
o(v; | i <m) is a formula in the language of set theory and {(x; | i < n)
is a sequence of sets. Either 1| ¢(Z; | i <n) or 1I- —¢(Z; | i <n).

Proof. If the conclusion of the proposition is false, there are p,q € @
such that p |- ¢(&; | ¢ <n) and ¢ - —¢(&; | ¢ < n). By extending p and
q if necessary, we may assume that (), = (), are isomorphic by some
©. Since O(&;) = #;, we have a contradiction to Proposition 37.4. [

Note that Coll(w, k) is weakly homogeneous: if p,q € Coll(w, k), we
can find p’ < p and ¢’ < ¢ such that dom(p’) = dom(q’). If r < P/,
define O(r) := (r\p') v ¢’

We are now ready to give a proof of Solovay’s theorem. We will first
argue that it suffices to prove Solovay’s theorem when a = a for some
a € ON¥. To see this, let a be a Coll(w, x)-name for an element of
ON¥. Since a is forced to be countable and Coll(w, k) is k-c.c., there
is a 0 € Kk such that a is a Coll(w, §)-name. But now

Coll(w, k) = Coll(w, §) x Coll(w, k\d) = Coll(w, §) * Coll(w, &)

and therefore we can derive the conclusion of Solovay’s theorem for
a by applying the ground model version of Solovay’s theorem in the
generic extension by Coll(w, ).

Lemma 37.6. Suppose k is inaccessible, G < Coll(w, k) is V -generic,
and r € Rn V[G]. There is a filter H < Coll(w, k) such that H is
V{r]-generic and V|G| = V|[r][H].

Proof. Let 0 € k be such that r is in V[G n Coll(w,d)] and set G’ :=
G n Coll(w, §) and G” := G n Coll(w, k\J). By Theorem 31.2, there are
posets P e V., Q € V[r] and filters Gy € P and Hy < @ such that G is
V-generic, V|[Gy]| = V[r], Hy is V[r]-generic, and V[G’'] = V[Go][Ho]-
Observe that by applying Lemma 35.5 in V[r],

Q+Coll(w, K\0) = Coll(w, k\6)*Q = Coll(w, £\6)*Coll(w, §) = Coll(w, ).

Therefore there is an H < Coll(w, k) such that V[r]|[G] = V[r]|[Ho][G"].
U
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Suppose now that we wish to show that {z € R | ¢(x,a)} is forced by
1 € Coll(w, k) to be Lebesgue measurable. Let E denote the Coll(w, x)-
name for the union of all Borel measure 0 sets in V. Since & is inaccessi-
ble, the set of ground model measure 0 sets is countable and hence it is
forced by 1 that E' is measure 0. Notice that if 7 is any Coll(w, k)-name
for an element of R\E , then 1 |- "7 is a random real over V.

Now consider the truth value B := [[1 I-con(w,x) qb(?z, a)]] with respect
to forcing with the complete Boolean algebra of the Borel subsets of R
modulo the measure 0 sets. It suffices to show that 1 forces that for
all r € R\E, r € B if and only if ¢(r,a).

Let G < Coll(w, k) be a V-generic filter and let r € R n V[G] with
r ¢ E. By Lemma 37.6, there is a V[r]-generic filter H < Coll(w, k)
such that V[r][H] = V[G]. Since r is a random real over V, r € BVIC
if and only if 1 IFcon(w,) @(7,a@). By homogeneity of Coll(w, ), this is
equivalent to 1 does not force —¢ (7, a). Since H is a V[r]-generic filter
and V[G] = V[r][H], r € BVI? if and only if V[r][H] & ¢(r,a).

This argument adapts mutatis mutandis to show that

VIG] E {r e R | ¢(r,a)} has the Baire property’

One simply replaces the complete Boolean algebra of Borel sets modulo
measure 0 sets with Borel sets modulo meager sets and replaces the
notion of a random real with that of a Cohen real.

The proof of the perfect set property is somewhat different. For
notational simplicity, we’ll prove the perfect set property for subsets of
2¥. As before, we may assume that a € ON” is in V. If

~

1 IFcon(w,x) {T’ e ¥ | qb(r, EL)} C 2w

then we are done since 1 IFcoliw,x) |2vw| = Ny. If not, let 7 be a
Coll(w, x)-name and p € Coll(w, k) be such that p - 7 ¢ 2% A ¢(r, ).
Let § € k be such that 7 is a Coll(w, d)-name and p € r. In V[G], let
(D, | n € w) be an enumeration of the dense subsets of Coll(w,d) in
V. Construct (p; | t € 2<) and (s, | t € 2*) such that:

e if t 2" p, € D, and p; forces §; < r,

e if 4 € v are in 2<%, then p, < p, < p,

e if u | v are in 2<% then s, and s, are incompatible.
Notice that it must be that |s;| = n if ¢ is in 2". For each x € 2¥, let
G, < Coll(w, d) be the filter generated by {p,, | n € w}. Each G, is
V-generic and hence 1(G,) = | J{sz1n | n € w} satisfies that ¢(r(G,), a)
is true. Notice that x — 7(G,) is continuous and injective and its range
is contained in {r € 2¥ | ¢(r,a)}.
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38. SUPERCOMPACT CARDINALS

We will now turn to a result of Shelah and Woodin which explains
the special foundational role Solovay’s model L(R) plays.

Theorem 38.1 (Shelah-Woodin). Suppose that there is a supercom-
pact cardinal. The theory of L(R) can not be changed by forcing. In
particular, every set of reals in L(R) is Lebesgue measurable, has the
Baire Property, and has the Perfect Set Property.

First we will definite the notion of a supercompact cardinal and prove
some basic facts about them. Suppose that M and N are transitive
classes. An elementary embedding j : M — N is a class function such
that for any formula ¢(v) in the language of set theory and any tuple
of sets z, M = ¢(z) if and only if N = ¢(j(z)). If X is any set,
then j”X := {j(z) | z € X} < j(X). In particular, j(o) = « holds
for all ordinals a.. Also observe that the restriction of an elementary
embedding to the ordinals is an order preserving function. We note the
following fact.

Proposition 38.2. Suppose M < V s a transitive class and j : V —
M is an elementary embedding which is not the identity. If x is a set
of minimum rank k such that j(z) # x, then j(k) > k. In particular
JION is not the identity.

The least ordinal moved by an elementary embedding j is called the
critical point of j and is denoted crit(j). The next lemma gives a useful
characterization of when j”X = j(X).

Lemma 38.3. Suppose that j : M — N is an elementary embedding
with critical point k. If X € M, then M = |X| < k if and only if
J"X = j(X).

Proof. Set 0 := |X| and let f: 0 — X be a bijection. By elementarity,
j(f) is a bijection from j(0) to j(X). If § < k, then j(f) has domain
and if (&) = =z, j(f)(§) = j(x) and hence the range of j(f) is {j(z) | = €
X}. If 0 = k, then k is not in the range of j. It follows that j(f)(k) €
J(X) is not of the form j(z) for any = € X. To see this, suppose x € X
and let £ € 0 be such that f(§) = x. Then j(f)(j(¢)) = j(x) and since
j(f) is one-to-one and & is not in the range of j, j(z) = j(f)(§(€)) #
J() (). O

If k is the critical point of an elementary embedding from V to
M < V, then we say that s is measurable. If x is the critical point
of an elementary embedding j : V. — M < V such that additionally
j(k) > X and M* < M, then we say that x is A\-supercompact. If x
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is supercompact if it is A-supercompact for every ordinal A. The next
proposition gives the first hint at the scale of these cardinals.

Proposition 38.4. Suppose that k is the critical point of an elementary
embedding j : V. — M < V. k is a strongly inaccessible cardinal and
moreover {0 € Kk | § is strongly inaccessible} is stationary in K.

Proof. Since 0 and w are the least ordinal and the least limit ordinal
in both V and M, it follows that 0 # x and w # k. Now suppose
that f: o — k for some « € k. By Lemma 38.3, j”f = j(f) and since
f<axk, j”f = f. In particular, range(j(f)) < x and therefore

M = 38 € j()(range(j () < B).

By elementarity of j, there is a 8’ € k such that range(f) < . Since
f was arbitrary, this implies that x is a regular cardinal. Next we will
show that k is a strong limit cardinal. Suppose that o € k and observe
that if A € «, Lemma 38.3 implies j(A) = A. By Lemma 38.3, it
suffices to show that j(Z(«a)) = Z(«). This follows from « < crit(j)
and the fact that for any set S, j(Z(S)) = Z(j(9)). O

Notice that, a priori, the assertion that x is A-supercompact is not a
formula in the language of set theory. There is, however, an equivalent
definition which is purely set theoretic. An ultrafilter 7 on [A]<" is
normal if whenever Uy € % and r : Uy — X satisfies r(M) € M for
all M € Uy, there is a set in % on which r is constant. An ultrafilter
U on [A\]=F is fine if for every £ € N\, {M € [\]™F | { € M} is in %.
Note that normal ultrafilters on [A]<* are closed under intersections of
cardinality less than k.

Suppose now that % is an ultrafilter on a set I. The ultrapower of
V by % is defined as follows. If f, g e V!, define

f=wgifandonlyif{iel | f(i)=g(i)}e¥

fenwgiftandonlyif{iel| f(i)eg(i)}e%.

If f e VI define f/% to be set of all elements of the =4 equivalence
class of f which are of minimal rank. Define VI /% to be the class of all
f/% such that f e VL. If z is any set, define f, to be the function with
domain [ which is constantly . By Lés’s Theorem for ultraproducts,
the map = — f,/% defines an elementary embedding of V into VI /% .
If % is countably complete, then €4 is well founded. Let 7y
(VI ey) — (M,€) be the transitive collapse. It follows that jo (z) =
7 (f:) defined an elementary embedding j, : V. — M < V. This
embedding is the identity if and only if % is a principle ultrafilter.
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Proposition 38.5. If kK and X\ are ordinals, then k is A-supercompact
if and only if there is a fine normal ultrafilter on [A]=".

Proof. It j: V- M < V is an elementary embedding witnessing that
Kk is A-supercompact, then define % := {U < [A]=" | A € j(U)}. We
must show that % is fine and normal. To see that % is fine, let £ € A
be given.

To see that % is normal, suppose that U € % and r : U — ) satisfies
r(a) € afor all a e U.

If 7 is a fine normal ultrafilter on [A]=", then it can be checked that
the ultrapower embedding j4 witnesses that x is A-supercompact. [
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39. STATIONARY REFLECTION

Suppose that S < [A]“. Is there a “small” subset X of # such that
S N [X]¥ is stationary? If S n [X]¥ is stationary, it is common to say
that (the stationarity of) S reflects to X.

Theorem 39.1. Suppose that k is a supercompact cardinal and 6 is an
arbitrary cardinal. Every stationary subset of [0]“ reflects to a set X
of cardinality less than k which contains wy.

Proof. Suppose that S < [6]“ is stationary and set A := |[0]“|. Let
j: V> M c V witness that s is A-supercompact. By Lemma 38.3, if
a € [0]“, j(a) = j"a. Define X to be the image of 6 under j and

§':= 'S = {j(a) |ac 5} = {’a] ac 5},

Notice that since j|6 is a bijection between 6 and X, S’ is stationary
in [X]¥ and w; € X. Furthermore, since | X| = 6 < A\, X € M.
Consequently S’ < j(S) n [X]“ and hence j(S) n [X]“ is stationary.
Since A < j(k), by elementarity, there is Y < # such that [Y]¥ n S is
stationary, w; € Y and |Y| < k. O

It turns out that if a supercompact cardinal « is collapsed to wo, this
reflection principle persists. For an uncountable cardinal 6, RPy is the
assertion that stationary subsets of [0]* reflect to sets of size Ry which
contain ws.

Theorem 39.2. If k is a supercompact cardinal, then
1 I-coliw, k) RPg holds for all 0 > w,'.

The proof of this theorem is similar to the proof of Theorem 39.1
but it requires some additional lemmas.

Lemma 39.3. Suppose thatj: V — M < V is an elementary embed-
ding with critical point k and Q is a forcing in V which is k-c.c.. If
H < j(Q) is an M-generic filter and G := j~'(H), then G is V-generic
and j extends to an elementary embedding from V|G| to M[H].

Proof. First we will show that G < @) is a V-generic filter. It suffices
to show that if A € @ is a maximal antichain in V, then G n A # (.
Since @ is k-c.c., |A| < k and hence by Lemma 38.3, j(A) is the image
of A under j. By elementarity, M = "j(A) is a maximal antichain’ and
hence there is a ¢ € H n j(A). Let p € ) be such that j(p) = ¢, noting
that pe G n A.

Extend j so that j(#(G)) := j(#)(H). This does not depend on
the choice of z: if 2(G) = y(G), then there is a p € G such that
plFg © =y. By elementarlty i) ) i(@) = j(y). Since j(p) €
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H, j(z)(H) = j(y)(H). By the same reasoning, the extension is an
elementary embedding. U

Lemma 39.4. If S  [0]“ is stationary and Q is o-closed, 1 |-q S <
[0]“ is stationary.

Proof. Let A be a sufficiently large regular cardinal that S and @) are
in H,. Let p € Q be any condition and f be such that p I f : é<w — 0.
We need to find a ¢ < p and an a € S such that g g "a is f-closed’.
Without loss of generality, we may assume that f is a nice name and
hence in Hy. By Lemma 11.9, there a countable elementary submodel
M of Hy such that p, f and @) are in M and a := M n 6@ isin S. Let
(D, | n € w) list the dense subsets of ) which are in M and recursively
construct a decreasing sequence {p, | n € w) such that py := p and
Pni1 < pp isin D, n M. This is possible by elementarity of M. Notice
that for any € € 0<% A M, the set of conditions which decide f (€) is a
dense set. Since it is definable from parameters in M, this dense set is
in M. Thus for each £ € =¥ n M, there is an n such that p,, decides
f(€) to be some 7. Since 7 is definable from parameters in M, it is in
M as well. Let g be a lower bound for {p, | n € w} and observe that ¢

forces a € S is f closed. O

Proof of Theorem 39.2. We’ll give an informal semantic proof for ease
of reading. Let G < Coll(wy, k) be V-generic and suppose that 6 > w;
is a cardinal and S < [6]“ is stationary in V[G]. Set X := [[#]¥| and fix
an elementary embedding j : V — M < V which witnesses that x is -
supercompact. Define X := {j(¢) | € € 8} and observe that since M*
M, X is in M. Since Coll(wy,j(r)) = Coll(wy, k) x Coll(wy, j(k)\K), it
is possible to find a V-generic H < Coll(wy, j(k)) such that G < H. By
Lemma 39.3, j extends to an elementary embedding j : V]G] — M[H].
Since Coll(wy,j(k)\r) is o-closed and V[H] is a generic extension of
V[G] by Coll(wy,j(k)\k), Lemma 39.4 implies S is still stationary in
V[H]. Since M[H] < V[H]|, M[H] satisfies S is stationary. As in
Theorem 39.1, j”S < [X]“ is stationary and contained in j(.S) n [X]“.
Observe that | X| < A < j(k) and hence

M[H] = [A] = w1 < [j(k)| = w.

Thus M| H] satisfies that there is an X < j(6) of cardinality N; such
that wy € X and j(S) n [X]“ is stationary. By elementarity of the
extended embedding, there is a Y < 6 of cardinality N; such that
w; €Y and S n [Y]¥ is stationary. O
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40. ANALYSIS OF NSJ USING THE REFLECTION PRINCIPLE

The hypotheses RPy have many uses in set theory and it applications.
We will focus on its effect on the forcing NS — the collection of all
stationary subsets of w; ordered by containment. This forcing will play
an integral role in our proof of the L(R) Absoluteness Theorem.

It will be helpful to develop some terminology. For the time being,
set @ := 2% If M and N are countable sets, we will say that N is an
wi-end extension of M if M < N and M nw; = N nw;. If &7 C NSZ1
is a maximal antichain, we say M captures < if:

o M n Hyp+ < Hp+ is countable;
e o/ € M and there is an A € M n &/ such that M n w; € A.

M is good if M captures all maximal antichains in NS/ which are an
element of M.

Lemma 40.1. Assume RPqs. There is a club of countable M < Hy+
such that for every mazimal antichain o/ = NS in M there is an
wi-end extension N of M capturing < .

Proof. Suppose not and let S consist of all countable M < Hy+ such
that for some 7y, € M, there is no w;-end extension N of M capturing
/). By assumption S is stationary and by the Pressing Down Lemma,
there is a stationary Sy < S such that M — ), is constantly </ on
Sp for some /. By RPy there is an X < Hyp+ such that w; € X,
| X| =Ny, and Syn[X]¥ is stationary. Let (M | £ € wy) be a continuous
C-chain in [X]¥ such that M¢ nwy = £ for all € € wy. It follows that
E:={{ ew | M¢ e Sy} is stationary. Let A € o/ be such that =n A is
stationary. Let N < Hy+ be such that (M¢ | £ e w;) e N, Ae N and
0 := N nw; € An E. By elementarity of N, My € N whenever { € 0
and by continuity, Ms < N. Thus N is an w;-end extension of M and
N captures o7 via A, contradicting that M € 5. O

Lemma 40.2. Assume RPqys. If M is a countable elementary submodel
of Heey+ and &/ € M is a mazimal antichain in NSZl, then M has an
wi-end extension N < Hey+ which captures o .

Proof. Let M < Hy+ and &/ € M be a maximal antichain in NS .
By elementarity, there is a club E < [Hy+|* in M as stipulated in
Lemma 40.1. Observe that My := M n Hyp+ is in E and therefore
there is an wi-end extension Ny < Hy+ of My which captures 7. Let
A e o/ n Ny be such that Ny nw; € A. Define N to be the set of all
f(A) such that f e M is a function defined on /. We will show that
N < H g0+ is an wi-end extension of M.
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First notice that x € M then the function which takes the constant
value x on &/ is in M and hence M < N. Also, A € N since the
identity function on & is in M. To see that N < H )+, suppose that
{fi | i <n) are functions defined on & which are in M and for some ¢

Hgoy+ =3y ¢(fo(A), ..., fa-1(A),y).
Define # := {B € & | Hyoy+ = 3y ¢(fo(B),..., fn_1(B),y)} noting
that 4 is in M by elementarity and A € 4. Let g € M be a function
defined on .27 such that Hsoy+ = ¢(fo(B), ..., fu-1(B), g(B)) whenever
B e %. We have g(B) € N and Ho)+ = 3y ¢(fo(A), ..., fac1(A),y),
verifying the Tarski-Vaught criterion for elementarity of N.
Tosee N nwy = M nwy, let « € N nw; and fix a function f e M
with f(A) = a. Define g : & — wy by g(B) = f(B) if f(B) € w; and
g(B) = 0 otherwise. Then g(A) = f(A) and g € M n Hg+ = M. Since
g and A are in Ny, a = g(A) € Ny nwy = M N w;.
O

Lemma 40.3. Assume RPy. For every stationary set S, the set of
good M < Hgp+ with M nwy € S is stationary.

Proof. Let S < wy be stationary and define I' € [Hy+]“ to consist of
all good M with M nw; € S. Let M < Hy)+ be countable with
M nw; e Sand S in M. Since I' is definable from parameters in M,
[' e M. By iterating Lemma 40.2, we can find an w;-end extension N
of M which is good. Since N n Hyp+ € I'and I' € N, T is stationary. [J

Lemma 40.4. Assume RPqo. If (a7, | n € w) is a sequence of an-
tichains in NSJ, | then for every p € NS} , there is a ¢ < p such that
for every n, q is compatible with at most Ny elements of <7,.

Proof. Let p be given and define I' to be the set of all good M < Hy+
such that {&, | n € w} € M and M nw; € p. T is stationary and
hence RPy implies that there is a continuous S-increasing sequence
(N¢ | € € wy) such that Ne nwy; = § and ¢ :== {{ € wy | Ne € T'} is
stationary. Notice that ¢ < p. It suffices to show that if A € 7, is
compatible with ¢, then A € N¢ for some § € w;. For each { € ¢ n A,
let Be € Ne n a7, be such that £ € B.. By the Pressing Down Lemma,
there is B an a stationary C' < ¢ n A such that if { € C, B, = B. It
follows that C' € B n A and since 7, was assumed to be an antichain,
it must be that A = B. O

Lemma 40.5. Suppose that p IFnss, f e Vo and that o < NSZ1

15 a maximal antichain of conditions which decide f If at most Ny
elements of &/ are compatible with p, then there is an h € V*' such

that p ||_NS:§1 h=gf.
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Proof. Let {A¢ | £ € wy} list the elements of @/ which are compatible
with p and let fe be such that A IFass, f= fg Define h(§) = f,,(§)
where 1 < ¢ is minimal such that £ € Am if no such n exists, define
h(€) = 0. Suppose that ¢ < p decides f, noting that ¢ IFNs, f= o
for some 1 < wy. Since &7 is an antichain, ¢ is contained in A modulo
a stationary set. Since q I A e G, it suffices to show that

B:={fe Ay | h(&) # fo}
is nonstationary. If £ € B, then there is an 7’ < 7 such that £ € A,,
and h(§) = fy (&) # f,(§). If B were stationary, there would be a
single " and a stationary B’ < B such that for all { € B', { € Ay
and h(§) = fy(&). But this means B" < A, n A, while f, # f,
contradicting that {A¢ | { € w1} € &7 is an antichain.

Proposition 40.6. Assume RPy. The following are forced by NSZ1 :
. \\/'jl/G is well founded;

e the transitive collapse of\\fjl/é 18 closed under w-sequences and
i particular contains R.

Proof. Suppose that ( fn | n € w) is a sequence of NSIl—names for
elements of V<1 and let p € NSJ be arbitrary. Let o, = NS be
a maximal antichain of conditions which decide fn By Lemma 40.4,
there is a ¢ < p such that ¢ is compatible with at most N; elements of
o, for all n. By Lemma 40.5, there are functions h,, € V¥ such that
for all n, q IFys;, hn =¢ fn. Define g € V91 by g(€) = {ha(&) | n € w}.
It follows that ¢ forces that for all z € \\7;1, x €4 ¢ if and only if
T =g h., for some n if and only if z =4 fn for some n.

Since \\/—gl/G is forced to satisfies the same theory as V, \\7;1/@ mod-
els the Axiom of Foundation. Therefore ¢ forces V1 /G = g has an e,
minimal element’. Thus ¢ forces (f, | n e w> has an €;-minimal ele-
ment. Since p was arbitrary, 1 IFnsg, "V /G is well founded’. Notice
that this also establishes the second conclusion: if 7e is the collapsing
isomorphism, 1 Iygs e(g) = <7TG(fn) | n e w). O
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41. THE L(R) ABSOLUTENESS THEOREM

If @ is a forcing, we will say that Th(L(R)) is absolute for @Q if
whenever ¢ is a sentence in the language of set theory, L(R) = ¢ if
and only if 1 |- 'L(R) = ¢'. The L(R) Absoluteness Theorem asserts
that if there is a supercompact cardinal, then Th(L(R)) is absolute for
every forcing. We'll begin with some observations.

We will eventually show that if x is a supercompact cardinal, then
Th(L(R)) is absolute for Coll(w, k). Suppose for a moment that we’ve
established this. If @) is in V,;, then by Proposition 35.6, @ = Coll(w, k)
is forcing equivalent to Coll(w, k). Also Proposition 39.3 implies that
1 ¢ "k is supercompact'. Thus if ¢ is any sentence, then L(R) = ¢
if and only if 1 IFcon(wr) L(R) = ¢ if and only if 1 g "1 IFcon(w.x)
'L(R) = ¢"". Next suppose that @ is any forcing and let j : V. —
M < V be an elementary embedding witnessing that  is |22(Q)]-
supercompact. Let Qp = j’Q and observe that Qo € M and if r
is a nice Qp-name for a real, then 7 is in M. Tt follows that V |
P kg, 'L(R) = ¢ if and only if M = p g, 'L(R) = ¢"'. By
elementarity, M = "j(k) is supercompact’ and therefore that M k=
"Th(L(R)) is absolute for Qy". It follows that Th(L(R)) is absolute for
Qo = Q.

We will now turn to proving that Th(L(R)) is absolute for Coll(w, k)
if k is supercompact. Since Coll(w, k) is weakly homogeneous, it is
sufficient to show that for some forcing P:

e Th(L(R)) is absolute for P and )
e P forces there is an H < Coll(w, ) which is a V-generic filter
such that R € V[H].

The forcing P will be of the form Coll(wy, ) NS * Q) for some @ such

that Coll(wy, k) * NS} forces Q does not add reals.

Observe that Th(L(R)) is absolute for forcings which do not add new
reals and so the absoluteness of Th(L(RR)) for the iteration reduces to
showing that

1 -con(w: ) Th(L(R)) is absolute for N'Swlj.
Since Coll(wy, k) forces RPys, this is a consequence of Proposition 40.6.

Lemma 41.1. Suppose that j : V — M witnesses that k is 2"-
supercompact. If H < Coll(wy, j(k)) = NS::1 is V-generic, then G :=

i (H) < Coll(wy, k) * NSZ1 is V-generic and j extends to an elemen-

tary embedding of V|G| into M[H].
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Proof. Let Gy and Hy be the projections of G and H to Coll(wy, k)
and Coll(wy, j(k)), respectively. By Lemma 39.3, G is V-generic and
j extends to an embedding of V|[Gy] into M[Hy]|. Working in V|[Gy],
let T" be the set of all gopod M < Hy+ such that M nw; € B.

By RPy and arguing as in the proof of Lemma 40.1, there is a
continuous S-chain (M, | v € wy) such that M, nw; = v and C :=
{vew | M, eT} is stationary. Set M,, := | J{M, | v € wi}. If suffices
to show that if £ € w; and A € %\ M,,, then A n C is nonstationary.
Define a function r on {M,, | v € AnC} by letting r(M,,) be the element
of @ n M, which has v as an element. If A~ C were stationary, there
would be an A’ € &% n M, such that r~*(A’) is stationary. But then
A’ n A is stationary, a contradiction. O

Lemma 41.2. If G = Coll(wy, k) = NS is a V-generic filter and
r e V[G], then there is a Qo = Coll(wy, k) * NS in 'V such that:

oV ): ’QU’ < Kj

e V = 'Q is a regular suborder of Coll(wy, k)« NS ";

e e V[G M Qo]

Proof. 1t suffices to show that for every p € Coll(wy, k) = NS:;, there
is a V-generic filter G satisfying the conclusion of the lemma such
that p € G. Let 7 be a Coll(wy, k) * NS7 -name such that p I 7 €
R. Let j: V> M < V witness that x is 2"-supercompact and
set Qo := j” Coll(wy, k) * NS . Since [Qo| < 2%, Z(Qo) = M. Let
H < Coll(wy, j(k)) * NS be V-generic with j(p) € H and set

G := {p e Coll(wy, ) = NS |j(p) € H}

noting that p € G. By Lemma 41.1, G is V-generic and hence H n Qg
is M-generic. Since H was arbitrary, it follows that M satisfies Qg is
a regular suborder of Coll(wy, j(k)) * NS7 . By elementarity, j(r)(H) =
j(r(@)). Since j is the identity on hereditarily countable sets, j(7(G)) =
7(G). Thus j(r)(H) = j(r)(H n Qo). We've established that M|[H]
satisfies Qo is a regular suborder of Coll(wy, j(k)) * NS of cardinality
at most 2" < j(k) and that 7(H) = 7(H n Qo) is in M[H n Qo]. The
conclusion of the lemma now follows by elementarity of j. 0

The next proposition finishes the proof.
Proposition 41.3. Suppose that k is a supercompact cardinal. There
is a Coll(wy, k) = NS,,,-name Q for a forcing with the properties that:

e forcing with Q does not add new reals and
o forcing with Q adds a 'V -generic filter H = Coll(w, x) such that
R < V[H].



MATH 6870: SET THEORY 103

Proof. Let G < Coll(wy, k) = NS,,, be a V-generic filter and work in
V[G]. Define Q € V[G] to be the set of all ¢ = (H,,d,) such that
9, € k and H, < Coll(w, 9) is a V-generic filter. Define ¢ < p if 6, < 4,
and H, = H, n Coll(w, 6,).

Claim 41.4. For allv ek, {ge Q | v < 0,4} is dense in Q.
<

Proof. Let p € @ be arbitrary. If v < 0,, there is nothing to show.
Otherwise Coll(w,v) = Coll(w, d,) x Coll(w,\d,), which is countable.
Since & is inaccessible in V[H,| and & (Coll(w, v\d,)) "'V [H,] is count-
able, there is a filter K < Coll(w, v\d,) which is V[H,]-generic. If we
define

H, :={se Coll(w,v) | (s]d, x we H,) A (s](¥\0p) x we K)}
and ¢, := v, then H, is V-generic and g < p. O
Claim 41.5. For allr e RN V[G], {¢e Q | r € V[H,]|} is dense in Q.

Proof. Let p € @) be arbitrary. Let s € R be such that H, and
r are in V[s]. Applying Lemma 41.2, there is a regular suborder
Qo < Coll(wy, k) * NS, in V such that |Qo| < k and s € V[G n Qy].
By Proposition 38.4, there is a v € k such that V satisfies v is an
inaccessible cardinal greater than |Q|. Since Qg * Coll(w, v) is forcing
equivalent to

Coll(w, v) = Coll(w, §,) x Coll(w, ¥\,),

there is a V-generic filter H < Coll(w, v) containing H, that G n Q)
is in V[H]. By an application of Lemma 37.6 in V[H,| and using
that Coll(w,v\d,) = Coll(w, v), there is an H, < Coll(w, v) such that
H,< H,and G n Q€ V[H,]. O

It just remains to show that forcing with ) does not add new reals.
Let p € @ and 7 be a nice ()-name for a real. We will find a ¢ < p which
decides 7. Observe that ) and r are both in Hy,. By Proposition 38.4,

S:={vew |V "vis inaccessible'}

is stationary. Let M be a countable elementary submodel of Hy, such
that @, p, and r are in M and v := M nw; is in S. Construct a
decreasing sequence {p, | n € w) in M n @ such that py := p and
{pn | n € w} meets every dense subset of () which is in M. By Claim
41.4, sup{d,, | n € w} = v. Define ¢, := v and H, := | J{H,, | n € w}.
To see that H, is V-generic, suppose that A < Coll(w,v) is a maximal
antichain in V. Since v is inaccessible in V; A © Coll(w, ) for some
a € v. If nis such that a < 9,,, then A n H, is nonempty. Thus
q € Q is a lower bound for {p, | n € w}. Since 7 is in M and ¢ is a
lower bound for an M-generic filter, ¢ decides r. O



