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1. Introduction

Why set theory? A bit over a century ago, there was a push to put
mathematics on a rigorous, axiomatic foundation. Since the concepts of
set and membership were so primitive and since more complex objects
such as the real line and Euclidean space can be synthesized using set-
theoretic constructions, sets made for a natural domain to carry out
the axiomatization.

This is not to say that mathematics is naturally or canonically en-
coded inside of set theory, just that it can be encoded. Nor does set
theory typically inform us with intuition as to how to resolve most
mathematical problems. Category theory is often said to provide a
competing foundation for mathematics. This is incorrect. Rather it
provides a complementary foundation for mathematics. Category the-
ory provides a high level language and methodology that facilitates
mathematical thought and intuition. Set theory provides the low level
mechanics of mathematics which allows careful and precise analysis
when intuition fails to inform or to yield a rigorous justification.

If one were to draw an analogy with computer science, category the-
ory would be object oriented programming whereas set theory would
be machine language and hardware. Both are essential aspects of com-
puter science; each complements the other. The same is true of the
foundational roles of set theory and category theory. In the physical sci-
ences, category theory would correspond to organic chemistry whereas
set theory would correspond to quantum mechanics and (sub)atomic
processes. Notice that, aside from the locations of elements on the peri-
odic table, quantum effects to are not typically required to understand
chemical reactions.

Set theory is in practice the study of the combinatorics and discrete
mathematics of infinite sets. In many cases, the basic axioms of set the-
ory — ZFC — are not sufficient to completely analyze questions of this
nature. As a result, there is a need to develop meta-mathematical tools
as well — tools to decide when set-theoretic statements are consistent
with the standard axioms. Here are some examples of mathematical
questions which are fundamentally set-theoretic in nature.

Problem 1. Is every automorphism of the Boolean ring PpNq{fin in-
duced by a function from N to N?

Problem 2. If A is an abelian group such that Ext1
pA,Zq “ 0, must A

be a free abelian group? (Ext1
pA,Zq “ 0 is equivalent to the assertion
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that whenever h : B Ñ A is a surjective homomorphism with kernel Z,
there is a g : AÑ B such that h ˝ g is the identity.)

Problem 3. Suppose that G is a graph on a separable metric space X
such that the adjacency relation is open as a subset of X2. Must G
either be countably chromatic or else contain an uncountable clique?

Problem 4. Is there a partition of a square into finitely many Borel
pieces such that these pieces can be rearranged through rigid motions of
the plane to partition a disc?

Problem 5. Suppose Γ Ď 2N is a Borel set. If two players alternately
play digits of a sequence a P 2N, does either the first player have a
strategy to force the outcome to be in Γ or the second player have a
strategy to force the outcome to be in the complement of Γ? What if Γ
is the continuous image of a Borel set?

Problem 6. Is there a countably additive probability measure µ defined
on all subsets of a set X such that µptxuq “ 0 for every x P X? What
about the case X “ r0, 1s?

Problem 7. Does every infinite dimensional Banach space have an
infinite dimensional quotient with a basis?

The first three problems are neither provable nor refutable based on
the axioms of ZFC. The fourth problem and the first part of the fifth
have positive answers. The sixth problem and the second part of the
fifth problem can not be proved within ZFC but can be proved using
strong forms of the Axiom of Infinity. The last problem is open but
seems to be essentially set-theoretic in nature.

The goals of this course are:

‚ Introduce the axioms of set theory and briefly outline how set-
theory can be used to synthesize mathematical constructions.

‚ Introduce basic tools in set theory: the ordinals and cardi-
nals, transfinite induction and recursion, stationary sets and
the pressing down lemma.

‚ Present two axiomatic extensions of ZFC — ♦ and Martin’s
Axiom — an discuss their mathematical consequences.

‚ Develop Cohen’s method of forcing and use it to establish the
independence of CH from ZFC. Forcing will also be used to
establish the consistency of ♦ and MA.

‚ Present Solovay’s model of ZF in which all sets of reals are
Lebesgue measurable.
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Time permitting, we will cover material on Martin’s Maximum, a
strengthening of Martin’s Axiom. While we will not be able to com-
pletely solve the problems mentioned above, students will be equipped
to understand the solutions most of these problems by the end of the
course.
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2. The Axioms of Zermelo-Frankel (ZF) Set Theory

We’ll now begin the process of formalizing the axioms of set theory.
To illustrate why some care is needed, consider the following: does

tx | x R xu

describe a set S? If it did, then S P S if and only if S R S, which is
absurd. This is known as Russell’s Paradox.

Just as the axioms of group theory describes the properties of a single
binary operation ˚ and the axioms of partial orders describes a single
binary relation ď, the language of set theory describes the properties
of a binary relation P.

The first axiom asserts that two sets are equal if they have the same
elements.

Axiom 1 (Extensionality). @x@ypp@zppz P xq Ø pz P yqqq Ñ px “ yqq

As natural as this may seem, it has the effect of asserting that every-
thing under discussion is a set. This is unnatural if we think ahead
to our goal of using sets to model all of mathematics: is π a set? is
the ordered pair p2, 3q? What are their elements? If they don’t have
elements, why aren’t they the emptyset? We’ll return to this later.

The next axiom asserts that the emptyset exists.

Axiom 2 (Emptyset). Dx@ypy R xq

The Axiom of Extensionality implies that the x postulated by this
axiom is unique; we will denote it by H.

The next axiom asserts that if x and y are sets, then there is a set,
which has exactly x and y as its elements.

Axiom 3 (Pairing). @x@yDz@uppu P zq Ø ppu “ xq _ pu “ yqqq

As with H, the z postulated by this axiom for a given x and y is
unique; it is denoted tx, yu. Notice that Extensionality also implies
that tx, yu “ ty, xu.

It’s perhaps worth pausing to point out that the convention of having
the language of set theory consist only of binary relation P for mem-
bership is one of economy and not of convenience (or is it the other
way around?). There are many set theoretic operations and constants
which are definable from P using the axioms of set theory. In practice
we work and write in an enriched language which includes symbols such
as H and the binary function tx, yu. This ambiguity in the language is
analogous the issue of whether the language of group theory includes
formal symbols for the identity and inversion. More involved exam-
ples in set theory include the Cartesian product ˆ, which is a binary
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operation, and logical constants for things like π, e, Z and R. This
language can always be converted into the more minimalist language
of set theory (though often with great pain!) and when proving re-
sults by induction on formulas, it is often useful to appeal to this fact.
Typically, however, we will work with the enriched language.

The next axiom asserts that the union of a set x is again a set.

Axiom 4 (Union). @xDy@zppz P yq Ø Duppu P xq ^ pz P uqqq

The y postulated by the axiom for a given x is denoted
Ť

x (again,
uniqueness is ensured by Extensionality). If x and y are sets, we will
use x Y y to denote

Ť

tx, yu. That is
Ť

denotes a unary operation on
sets and Y denotes a binary operation.

Observe that the pairing and union axiom can be combined to show
that if x0, . . . , xn´1 is a finite list of sets, then tx0, . . . , xn´1u is also a
set. Also, if x and y are sets, then we define the ordered pair px, yq :“
ttxu, tx, yuu. It can be shown that px, yq “ px1, y1q if and only if x “ x1

and y “ y1.
Next we turn to the Powerset Axiom. It will be useful to define

x Ď y is an abbreviation for @zppz P xq Ñ pz P yqq.

Axiom 5 (Powerset). @xDy@zppz Ď xq Ø pz P yqq

The set y postulated by this axiom is called the powerset of x and is
uniquely determined by x. It is denoted Ppxq.

The next “axiom” is actually an axiom scheme — an infinite family
of axioms parametrized by logical formulas. Throughout this course, if
φ is a logical formula then we will write φpv0, . . . , vn´1q indicate that
the free variables in φ are among v0, . . . , vn´1. We will also write, e.g.,
v̄ as shorthand for v0, . . . , vn´1, in contexts like φpv̄q or Dv̄φpv̄q.

Axiom 6 (Separation Scheme). If φpy, w̄q is a formula in the language
of set theory, then the following is an axiom

@x@w̄Dz@yppy P zq Ø ppy P xq ^ φpy, w̄qqq.

For a given x and w̄, the witnessing z is typically denoted

ty P x | φpy, w̄qu.

If A and B are sets, then the Cartesian product of A and B is defined
by

AˆB :“ tpa, bq | pa P Aq ^ pb P Bqu.

That this set exists based on the axioms will be left as a homework
exercise.
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The separation scheme can be viewed as saying that subsets of sets
exist if they can be described. The next axiom scheme addresses “col-
lecting” the image of a set under a description of a function.

Axiom 7 (Collection Scheme). If φpx, y, w̄q is a formula in the lan-
guage of set theory then the following is an axiom

@X@w̄p@x P X D!yφpx, y, w̄q Ñ DY @x P X Dy P Y φpx, y, w̄qq

When combined with separation, it asserts that

ty | Dx P X φpx, y, w̄qu

describes a set whenever φpx, y, w̄q is a formula, X is a set and w̄ is a
tuple of sets. Moreover, we can apply Separation to conclude that

f “ tpx, yq P X ˆ Y | φpx, y, w̄qu

forms a set and hence a function. That is, a function on X can be
specified by a formula which defines it.

The next axiom asserts a key feature of P: that it is well founded. A
binary relation is well founded if every nonempty subset has a minimal
element.

Axiom 8 (Foundation). @xppx “ Hq _ Dy P x pxX y “ Hqq

The significance of this axiom is in part that it will afford us an under-
standing of how models of set theory are structured. We’ll wait to state
the final ZF axiom — the Axiom of Infinity — until as have introduced
some further definitions.

ZF´ is used to denote ZF without the axiom of foundation. We will
sometimes abbreviate the Powerset Axiom by P, the Infinity Axiom
by Inf, and Coll to denote the Collection Scheme. We will write, e.g.,
ZF´P to denote the axioms of ZF with the Powerset Axiom removed.
Some of our early development of set theory will be carried out in these
weaker systems to that we can show, for instance statements such as:

‚ If ZF´ is consistent, so is ZF.
‚ ZF proves that ZF´ Inf is consistent.



MATH 6870: SET THEORY 7

3. Classes, Ordinals, and Transfinite Induction

At this point it is worthwhile to discuss the difference between sets
and classes. Formally speaking, a class simply a formula φpv, āq where
v is a free variable and ā is a finite sequence of sets. We think of φpv, āq
as describing the class tx | φpx, āqu of all sets x such that φpx, āq is true.
This collection may or may not be a set, as we have seen with Russell’s
Paradox.

If x is a set, then the formula v P x describes x itself. In particular,
every set is a class. On the other hand, the formula v “ v describes
the class of all sets. Since the Axiom of Foundation implies that no set
is an element of itself, this class does not correspond to a set.

Theorem 3.1 (ZF´ Inf). For all x, x R x.

Proof. Let x be given and apply the Axiom of Foundation to y “ txu
to obtain a z P y such that z X y “ H. Since the only element of y is
x, this translates to xX txu “ H or x R x. �

Often capital letters in boldface are used to denote classes. For in-
stance V denotes the class of all sets. This notation is meant to suggest
that classes should be thought of as collections while alerting the reader
to the possibility that they need not be sets. We will sometimes use
“class” as an adjective — e.g. “class relation”, “class function” — to
alert the reader that something under discussion may not be a set.
For example, a class function is a class F such that the elements of F
are ordered pairs and for each set x there is at most one y such that
px, yq P F. The domain of a class function F is the class of all x such
that for some y px, yq P F. If x is in the domain of F, we write Fpxq to
denote the unique y such that px, yq P F.

Unlike sets, the axioms of ZF do not directly address the properties
of classes. The Separation and Collection schemes can be viewed as
indirectly making assertions about the relationship between classes and
sets. Specifically, the Separation scheme can be interpreted as asserting
that the intersection of a set and a class is a set. The Collection scheme
is equivalent to saying that a class function defined on a set domain is
a function.

Definition 1. A set x is transitive if whenever y P x and z P y, z P x.

Phrased in another way, x is transitive if each of its elements is also
a subset of x.

Definition 2. An ordinal is a transitive set α which is well ordered by
P — every nonempty subset of α has an P-minimum element. We will
write ON to denote the class of all ordinals.
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Informally, an ordinal is the set of ordinals which are smaller than
it. The following theorems bear this intuition out.

Theorem 3.2 (ZF´´P´Inf). An element of an ordinal is an ordinal.

Proof. Suppose α is an ordinal and β P α. Since α is transitive, β Ď α
and in particular, β is well ordered by P. If γ P β and δ P γ, then
since pα, Pq is transitive, δ P β. Thus β is also transitive and hence an
ordinal. �

Theorem 3.3 (ZF´ ´ P ´ Inf). If α and β are ordinals, then one of
the following must be true: α P β, α “ β, or β P α.

Proof. Suppose for contradiction that the theorem is false and pα, βq be
a counterexample. Using the fact that both α and β are well ordered
by P, we may assume that additionally if α1 P α then pα1, βq satisfies
the conclusion of the theorem and if β1 P β then pα, β1q satisfies the
conclusion of the theorem. We’ll refer to such a pair pα, βq as a minimal
counterexample.

Suppose that γ P α. By our assumption, we know that either γ P β,
γ “ β, or β P γ. Since β R α, we know that γ ‰ β. Also, if β P γ, then
since α is transitive, we would have that β P α, which we have also
assumed is not possible. Thus α Ď β. Note however that if pα, βq is an
minimal counterexample, then so is pβ, αq. Thus we also have β Ď α
and hence, by Extensionality, α “ β. �

If α and β are ordinals, we will write α ă β to mean α P β and
α ď β to mean α P β or α “ β. The previous theorem asserts that ď is
a class linear order on ON. If α is an ordinal, define α` 1 “ αY tαu.
Notice that α ă α` 1 and that if β is an ordinal greater than α, then
it must be that α ` 1 ď β. An ordinal of the form α ` 1 is called a
successor ordinal. All other nonzero ordinals are called limit ordinals.

We will now pause to state the final axiom of ZF.

Axiom 9 (Infinity). There is a least limit ordinal.

This ordinal is denoted ω. Note that if there is a limit ordinal, there
is a least ordinal — our choice of phrasing is to ensure uniqueness and
to parallel the Emptyset Axiom. We also note the following corollary
to Theorem 3.3. It is known as the Burali-Forti Paradox.

Corollary 3.4 (ZF´ ´ P´ Inf). The class of all ordinals is not a set.

Proof. If the class of all ordinals was a set α, then Theorem 3.3 implies
that it would be an ordinal. But then α P α by Theorem 3.1. �

The next “theorem” formalizes transfinite induction. In fact, each is
a family of theorems, one for each class.
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Theorem 3.5 (ZF´ ´ P´ Inf). If C Ď ON is nonempty, then C has
a least element.

Proof. Let α P C. If α X C is empty, then Theorem 3.3 implies that
α ď β whenever β P C. If α XC is nonempty, then it is a nonempty
subset of α. Since α is well ordered by P, α X C has a least element
γ. If β P C, then Theorem 3.3 implies that either γ ď β or else β P γ.
If β P γ, then since α is a transitive set, β P α XC, which contradicts
that γ was minimal. It follows that γ is the least element of C. �

Another useful notion related to ordinals is that of a sequence. A
sequence is a function whose domain is an ordinal. The domain of a
sequence is called its length. If α is an ordinal and X is a set, Xα will
denote all sequences of elements of X of length α and Xăα will denote
all sequences of elements of X of length less than α.
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4. Well Founded Relations and Transfinite Recursion

We will now set up a very general framework for making recursive
definitions. This is a cornerstone to set theory and will be used through-
out the course, often in subtle ways.

Suppose that R is a binary class relation. We say that R is set-like
if for every y, Ry :“ tx | px, yq P Ru is a set. Notice that P is a
set-like relation. A relation R is well founded if for every nonempty
set x, there is a y P x such that for all z P x, pz, yq is not in R —
i.e. every nonempty class has an R-minimal element. Note that the
Axiom of Foundation simply asserts that P is well-founded. The next
theorem scheme formalizes transfinite recursion along well-founded set-
like relations.

Theorem 4.1 (ZF´). Suppose A is a class and R is a set-like well-
founded relation on A. For every class function F : A ˆ V Ñ V
there is a unique class function G : A Ñ V such that for all a P A,
Gpaq “ Fpa,GæRaq.

Notice that since we do not require that R is extensional in this
theorem, Ra does not uniquely determine a and thus allowing a as
an input to F adds some additional generality. Before we prove this
theorem, we will need to prove two lemmas concerning set-like relations.

Lemma 4.2 (ZF´). If R is a set-like relation and x is a set, then there
is a set X such that x P X and whenever y is in X, Ry Ď X.

Proof. Let φpn, x, yq be the assertion n P ω and there exists a k ď n
and a function s with domain k such that sp0q “ y, spk ´ 1q “ x and
for all i P k ´ 1, pspiq, spi` 1qq P R. We claim that for all n P ω there
is a unique set Xn such that y P Xn if and only if φpn, x, yq. This is
proved by induction on n. If n “ 0, then X0 “ txu. Also, Xn`1 “

Xn Y
Ť

tRy | y P Xnu, which is a set by our inductive assumption, the
Union Axiom, and the assumption that R is set-like; Xn`1 is unique
by Extensionality. By Collection, tXn | n P ωu is a set and by Union,
X :“

Ť

tXn | n P ωu is a set. �

Also observe that, by taking an intersection, there is always a Ď-
minimum set X satisfying the conclusion of this lemma (in fact this is
the set constructed in the proof). This will be called the transitive R-
closure of x. If R is the membership relation, we will simply refer to it
as the transitive closure of x and denote it tcpxq. It is the Ď-minimum
transitive set which has x as an element.

Lemma 4.3. Suppose R is a well-founded set-like class relation. Every
nonempty class has an R-minimal element.
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Proof. Suppose that X is a nonempty class and let x P X. Define Y to
be the transitive R-closure of x. By Separation, XX Y is a set. Since
x P XXY , XXY has an R-minimal element y. Since Ry Ď Y , it must
be that y is an R-minimal element of X. �

Proof of Theorem 4.1. Fix F : AˆV Ñ V and R as in the statement
of the theorem. An approximation is a function g such that:

‚ the domain of g is contained in A;
‚ if x is in the domain of g, then Rx is contained in the domain

of g and gpxq “ Fpx, gæRxq.

We will first show that if g and h are approximations and x is in the
domain of both, then gpxq “ hpxq. Suppose for contradiction that this
is not the case and let x be an R-minimal counterexample. Notice
though that this implies that gæRx “ hæRx and hence

gpxq “ Fpx, gæRx
q “ Fpx, hæRx

q “ hpxq,

which is a contradiction.
Define G to be all pa, bq which are in some approximation. By the

previous observation, G is a class function defined on a subclass of A.
It suffices to show that the domain of G is all of A. Again suppose for
contradiction that this is not the case and let a P A be R-minimal with
respect to not being in the domain of an approximation. Let A be the
transitive R-closure of a. By minimality of a, Aztau is contained in the
domain of G. Moreover, GæpAztauq is an approximation — that this
is a function follows from Collection. Define g to be the extension of
GæpAztauq to A defined by gpaq “ Fpa,GæRaq, noting that GæRa is a
restriction of GæpAztauq. Since g is an approximation which is defined
at a, we have a contradiction. It must therefore be that the domain of
G is all of A. �

The special class of the Transfinite Recursion Theorem in which A
is ON and R is P is important and can be stated as follows.

Theorem 4.4. For every class function F : V Ñ V there is a unique
class function G : ON Ñ V such that for all α P ON, Gpαq “
FpGæαq.

Observe that, in the statement of this theorem, it is only relevant
what the values of F are on sequences. The function F can be thought
of as specifying a recursive rule which described a class length sequence
G: it tells you how to compute Gpαq given Gæα. Often the actual
recursion effectively terminates at some ordinal state and continues
only nominally through the rest of the ordinals.
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5. Ordinal arithmetic

We will now turn to ordinal arithmetic. Note that if A is a set of
ordinals, then

Ť

A is the least upper bound of A. We will denote this
by supA. For a fixed α, define the class function β ÞÑ α`β recursively
by:

α ` β :“

$

’

&

’

%

α if β “ 0

pα ` γq ` 1 if β “ γ ` 1

suptα ` γ | γ P βu if β is a limit ordinal

It is easily checked that ` agrees with (or rather formalizes) ordinary
addition on the finite ordinals. Note, however, that ` is not commu-
tative. For example,

1` ω “ supt1` n | n P ωu “ ω ă ω ` 1.

Observe that if α ď β, then there is a unique γ such that α ` γ “ β:
γ is the greatest ordinal such that α ` γ ď β.

Similarly, one can recursively define multiplication and exponentia-
tion:

α ¨ β :“

$

’

&

’

%

0 if β “ 0

pα ¨ γq ` α if β “ γ ` 1

suptα ¨ γ | γ P βu if β is a limit ordinal

αβ :“

$

’

&

’

%

1 if β “ 0

pαγq ¨ α if β “ γ ` 1

suptαγ | γ P βu if β is a limit ordinal

Proposition 5.1. For all ordinals α, β, γ, we have that if β ă γ, then
the following inequalities hold:

α ` β ă α ` γ α ¨ β ă α ¨ γ ą αβ ă αγ

Proposition 5.2. The operations ` and ¨ are associative on ON.

Proof. As the arguments are similar, a proof will only be given that
` is associative. We will prove by induction on γ that if α and β are
ordinals then pα ` βq ` γ “ α ` pβ ` γq. If γ “ 0 there is nothing to
show. If γ “ δ ` 1, then

pα ` βq ` pδ ` 1q “ ppα ` βq ` δq ` 1 “ pα ` pβ ` δqq ` 1

“ α ` ppβ ` δq ` 1q “ α ` pβ ` pδ ` 1qq

“ α ` pβ ` γq.
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If γ is a limit ordinal, then

pα ` βq ` γ “ suptpα ` βq ` δ | δ P γu “ suptα ` pβ ` δq | δ P γu

“ suptα ` η | η P β ` γu “ α ` pβ ` γq.

The third inequality is justified by the fact that tβ ` δ | δ P γu is a
cofinal subset of β`γ combined with the fact that ξ ÞÑ α`ξ is strictly
increasing. �

The following proposition is left as a homework exercise.

Proposition 5.3. For all α, β, γ P ON the following identities hold:

α ¨ pβ ` γq “ α ¨ β ` α ¨ γ, αβ`γ “ αβ ¨ αγ, pαβqγ “ αβ¨γ.

The next theorem shows that ordinals can be written uniquely in
any ordinal base β with β ą 1. If xξi | i ă ny is a finite sequence of
ordinals, we define

ř

iăn ξi :“ ξ0 ` . . .` ξn´1 with the convention that
the sum is 0 if n “ 0.

Theorem 5.4 (Cantor Normal Form). Suppose β ą 1 is an ordinal.
For any ordinal α there exist a unique pair of finite sequences of ordinals
xγi | i ă ny and xδi | i ă ny such that xγi | i ă ny is strictly decreasing,
0 ă δi ă β for all i ă n, and

α “
ÿ

iăn

βγi ¨ δi.

The special case β “ ω is usually what is meant by “Cantor normal
form.” The case β “ 2 is also of interest — in this case δi “ 1 and
we simply have α “

ř

iăn 2γi for a unique strictly decreasing sequence
xγi | i ă ny. Before proving this theorem, we will establish the following
lemma.

Lemma 5.5. For any ordinal β ą 1, any nonnull finite strictly de-
creasing sequence xγi | i ă ny of ordinals, and any sequence xδi | i ă ny
of ordinals less than β we have:

ÿ

iăn

βγi ¨ δi ă βγ0`1

Proof. The proof is by induction on n. If n “ 1, then βγ0 ¨δ0 ă βγ0 ¨β “
βγ0`1. If n ą 1, then by induction

n´1
ÿ

i“1

βγi ¨ δi ă βγ1`1
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and therefore we have
ÿ

iăn

βγi ¨ δi ă βγ0 ¨ δ0 ` β
γ1`1

ď βγ0 ¨ δ0 ` β
γ0 “ βγ0 ¨ pδ0 ` 1q ď βγ0`1

as desired. �

Proof of Theorem 5.4. We will prove existence by induction on α for
a given β ą 1. If α “ 0, then we take n “ 0 and the null sequences
witness the conclusion. Suppose now that α ą 0. Let γ0 be the greatest
ordinal such that βγ0 ď α; such an ordinal exists since β ą 1. Let δ0

be the greatest ordinal such that βγ0 ¨ δ0 ď α. Since

βγ0 ¨ 1 ď α ă βγ0`1
“ βγ0 ¨ β,

it must be that 1 ď δ0 ă β. Let ρ be the unique ordinal such that
α “ βγ0 ¨ δ0`ρ. Since ρ ă α, we can apply our induction hypothesis to
find sequences xγi | i ă ny and xδi | i ă ny such that γ1 ą ¨ ¨ ¨ ą γn´1,
0 ă δi ă β, and

ρ “
n´1
ÿ

i“1

βγi ¨ δi.

Since ρ ă βγ0 , it follows that γ0 ą γ1. Thus α “
ř

iăn β
γi ¨ δi.

Uniqueness is established by induction on α using the observation
that if α “

ř

iăn β
γi ¨ δi, then

γ0 “ maxtγ | βγ ď αu

δ0 “ maxtδ | βγ0 ¨ δ ď αu

and ρ “
řn´1
i“1 β

γi ¨δi is the unique ordinal such that α “ βγ0 ¨δ0`ρ. �

Theorem 5.6. Suppose that β ą 1. For every positive ordinal α, there
exist unique ordinals γ and δ and 0 ă ρ ă β such that α “ βγ ¨pβ ¨δ`ρq.
In particular, for every α ą 0, there are unique ordinals β and γ such
that α “ 2β ¨ p2 ¨ γ ` 1q.

Proof. Let α “
ř

iďn β
γi ¨ δ be the Cantor normal form for α in base β.

Set γ “ γn for each i ă n let ξi be such that γi “ γ`1`ξi. If we define
δ “

ř

iăn β
ξi and ρ “ δn, then by Proposition 5.3, α “ βγ ¨ pβ ¨ δ ` ρq.

Uniqueness follows from the observation that if α “ βγ ¨ pβ ¨ δ`ρq then
the Cantor normal form of δ and ρ in base β can be manipulated using
Proposition 5.3 into a Cantor normal form for α in base β. Since α has
a unique Cantor normal form in base β, it must be that γ, δ and ρ are
unique. �
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6. The Mostowski Collapse and the Cumulative
Heirarchy

The construction in the next theorem is known as the Mostowski
collapse or transitive collapse.

Theorem 6.1 (ZF´). Suppose that A is a class and R is a well founded
set-like relation on A. There is a unique transitive class M and a
unique class surjection π : A Ñ M such that for all x, y P A, px, yq P R
if and only if πpxq P πpyq. Moreover, if R is extensional, π is injective.

Proof. Define F : AˆV Ñ V by

Fpa, gq :“ ty : Dx P Ra
ppx, yq P gqu.

This definition is justified by Collection and Union. Let π : A Ñ V be
such that πpaq “ Fpa, πæRaq holds for all a P A; let M be the range of
π. If

πpbq “ Fpb, πæRb
q “ tπpaq | pa, bq P Ru.

To see that M is transitive, observe that if x P M, then x “ πpaq for
some a P A. If y P πpaq, then y “ πpbq for some b P A with pb, aq P R.
In particular, y P M. �

Corollary 6.2. If pW,Ÿq is a well ordered set, then pW,Ÿq is isomor-
phic to pα, Pq. Moreover α and the isomorphism are unique.

Proof. Take the Mostowski collapse of pW,Ÿq to obtain a unique tran-
sitive set α and isomorphism π : pW,Ÿq – pα, Pq. Since Ÿ is a linear
order, pα, Pq must be as well and hence α is an ordinal. �

If pW,Ÿq is a well ordering, then the unique α such that pW,Ÿq –
pα, Pq is called the ordertype of pW,Ÿq and denoted otppW,Ÿq. If W is
a set of ordinals and Ÿ is P, then we write otppW q for otppW, Pq.

Corollary 6.3. Given any two well orders, one is uniquely isomorphic
to an initial segment of the other.

Proof. By the previous corollary, we may assume that the two well
orders are ordinals α and β. Since either α P β, α “ β, or β P α, we
have that α is an initial part of β or vice versa. �

Corollary 6.4. If R is any well-founded set-like relation, then

ρpyq “ suptρpxq ` 1 | px, yq P Ru

defines an R-increasing class function into the ordinals.
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The class function ρ is called the rank function for R. Let WF
denote class of all well-founded sets — the class of all sets x such that
every nonempty subset of the transitive closure of x has an P-minimal
element. If ρ is the rank function for pWF, Pq and x P WF, then ρpxq
is called the rank of x. Observe that if α is an ordinal, then the rank
of α is α.

The next theorem is a routine verification modulo a syntactic con-
struction which will be needed later.

Theorem 6.5 (ZF´). pWF, Pq satisfies the axioms of ZF.

In particular, if ZF´ is consistent, so is ZF. The verification of both
the Separation and Collection schemes in WF involves a wrinkle: given
a formula φpv0, . . . , vn´1q in the language of set theory, we must show
that there is a formula φWFpv0, . . . , vn´1q in the language of set theory
so that whenever x0, . . . , xn´1 P WF, WF |ù φpx0, . . . , xn´1q if and
only if φWFpx0, . . . , xn´1q is true in the ambient model of set theory.
This is an instance of a general construction called relativization. If A
is a class and φ is a formula, we define φA recursively:

‚ If φ is an atomic formula, φA “ φ.
‚ pφ^ψqA “ pφAq^pψAq, p­ φqA “­ pφAq, pφ_ψqA “ pφAq_pψAq.
‚ pDvφqA “ Dvrpv P Aq ^ pφAqs and p@vφqA “ @vrpv P Aq Ñ
pφAqs.

Thus the instance of Separation for φ in WF becomes the instance of
Separation for φWF in the ambient model of ZF´.

The rank function on WF can be described in a different way. For
α P ON, define Vα recursively by

Vα “

$

’

&

’

%

H if α “ 0

PpVβq if α “ β ` 1
Ť

tVβ | β P αu if α is a limit ordinal.

This class length sequence of sets is known as the cumulative hierar-
chy and was first defined by John von Neumann. The next theorem
summarizes its key properties.

Theorem 6.6 (ZF´). The following are true:

(a) For every ordinal α and every set x, x is in Vα if and only if the
rank of x is less than α. In particular the class of all sets of rank
less than α is a set.

(b) For every ordinal α, Vα is a transitive set and Vα XON “ α.
(c) For each ordinal α, pVα, Pq satisfies the axioms of Extensionality,

Foundation, Union, and Separation.
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(d) If α ą 0, pVα, Pq satisfies Emptyset and if α ą ω, then pVα, Pq
satisfies Infinity.

(e) For every limit ordinal α, pVα, Pq satisfies the axioms of Pairing
and Powerset.

In particular, pVω, Pq satisfies ZF´ Inf and pVω¨2, Pq satisfies ZF´Coll.

Proof. That Vα consists exactly of the sets of rank less than α is proved
by induction on α. Suppose that this is false and let α be the least
ordinal witnessing this. Observe that α must be a successor; let α “
β ` 1. To see that Vα only consists of sets of rank less than α, suppose
that x P Vα. In this case ρpxq “ supyPx ρpyq ` 1. Since x Ď Vβ, each
y P x is in Vβ. Thus ρpyq ă β and ρpyq`1 ă α. To see that Vα contains
every set x of rank less than α, observe that the elements of x must each
have rank less than β. Thus x Ď Vβ and therefore x P PpVβq “ Vα.

Since the class of sets of rank less than α is transitive, Vα is transitive
for each α. Since the rank function is the identity on the ordinals, VαX
ON “ α. Observe that if X is any transitive set, then pX, Pq satisfies
the axioms of Extensionality and Foundation. In particular, pVα, Pq
satisfies Extensionality and Foundation for each α P ON. Moreover,
Separation holds in Vα by relativizing formulas to Vα and using the fact
that Vα is closed under taking subsets.

If x is a set, then

ρp
ď

xq “ sup
yPx

sup
zPy

ρpzq ` 1 ď sup
yPx
psup
zPy

ρpzq ` 1q ` 1 “ ρpxq

and thus if x is in Vα, so is
Ť

x. Finally, if x has rank less than α and
y Ď x, then y has rank less than α. Hence if x P Vα and y Ď x, then
y P Vα.

Since Emptyset and Infinity just postulate the existence of 0 and ω,
respectively, (d) follows. Finally if x and y are in Vα, then Ppxq is
in Vα`1 and tx, yu is in Vα`2. In particular, if α is a limit ordinal, Vα
satisfies Powerset and Pairing. �

Up to this point, we have been spelling out our assumptions for two
reasons. The first is to get used to working with the axioms and to
understand how to model fragments of them. Another is to show that
we can upgrade a model of ZF without the Axiom of Foundation to
one which satisfies the Axiom of Foundation. Thus there is no risk in
introducing inconsistency to ZF´ by adding the Axiom of Foundation
— if ZF is inconsistent, then ZF´ is already inconsistent. This is an
example of a relative consistency result. We will later prove similar
results for the Axiom of Choice and the Continuum Hypothesis.
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7. Cardinality

Recall that if X and Y are sets, then the cardinality of X is at most
that of Y if there is an injection from X into Y . This is denoted by
|X| ď |Y |. If there is a bijection between X and Y , this is denoted
|X| “ |Y |. In the presence of well orderings, the existence of surjective
maps have implications for cardinality inequalities.

Proposition 7.1. If A is a set and β is an ordinal and there is a
surjection f : β Ñ A, then |A| ď |β|.

Proof. a ÞÑ min f´1paq defines an injection from A to β and hence
|A| ď |β|. �

We note the following two well known theorems on cardinality.

Theorem 7.2 (Cantor-Schröder-Bernstein). If |X| ď |Y | and |Y | ď
|X|, then |X| “ |Y |.

Proof. Suppose that f : X Ñ Y and g : Y Ñ X are injections. Define

X0 :“ XzgrY s Y0 :“ Y zf rXs

Xn`1 :“ grYns Yn`1 :“ f rXns

Set Xω :“ Xz
Ť

nPωXn and Yω :“ Y z
Ť

nPω Yn. Observe that the com-
position g´1 ˝ f defines a bijection between Xn and Xn`1 for all n.
Since X0 is disjoint from the range of g´1 ˝ f and since g´1 ˝ f trans-
lates X0, . . . , Xn´1 to X1, . . . , Xn for each n, it follows by induction on
n that tXn | n P ω ` 1u is pairwise disjoint. Similarly tYn | n P ω ` 1u
is pairwise disjoint. Furthermore fæX2n is a bijection between X2n and
Y1`2n if n ď ω. Similarly g´1æX1`2n is a bijection between X1`2n and
Y2n. Define h : X Ñ Y by

hpxq :“

#

g´1pxq if x P
Ť

nPωX2n`1

fpxq otherwise

It follows that h is a bijection. �

Theorem 7.3 (Cantor). For any set x, there is no surjection from x
to Ppxq.

Proof. If f : xÑ Ppxq, then ty P x | y R fpyqu is not in rangepfq. �

Theorem 7.4 (Hartog ordinal). For each set x, there is a least ordinal
γ such that there is no injection from γ into x.

Proof. Given x, define

W :“ tpy,Ÿq P Ppxq ˆPpx2
q | py,Ÿq is a well orderu.
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Since W is a set, otp æW is a function whose range is contained in the
ordinals. Let γ be the least strict upper bound for the range of W . If
there were an injection f : γ Ñ x, then its range y would be a subset
of x which could be equipped with a well order isomorphic to γ: define
fpαq Ÿ fpβq if and only if α P β. Since this is contrary to our choice of
γ, there is no injection from γ into x. �

If x is a set, the least ordinal γ such that |γ| ę |x| is the Hartog
ordinal of x. The existence of Hartog ordinals allows us to give a short
proof of the following remarkable fact.

Corollary 7.5 (ZF´). If for every pair of sets x and y, |x| ď |y| or
|y| ď |x|, then every set can be well ordered.

Proof. Let x be given and let γ be an ordinal such that |γ| ę |x|. If
|x| ď |γ|, then there is an injection f from x into γ. If we define Ÿ on
x by aŸ b if and only if fpaq P fpbq, then Ÿ is a well ordering on x. �

The conclusion of this corollary is known as the Well Ordering Prin-
ciple. Notice that a set X can be well ordered precisely when |X| ď |α|
for some ordinal α.

Corollary 7.6 (ZF´). If for every infinite X, |X| “ |X2|, then the
Well Ordering Principle holds.

Proof. Let X be a given infinite set and let γ be an ordinal such that
|γ| ę |X| and set Y “ X Y γ. If |Y | “ |Y 2|, let f : Y Ñ Y 2 be a
bijection and define

gpxq “ mintξ P γ | Dy fpξq “ px, yqu.

Notice that gpxq is always defined since otherwise η ÞÑ f´1px, ηq would
define an injection from γ into X. Since g is clearly one-to-one, we’ve
showing that |X| ď |γ| and hence that X can be well ordered. �
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8. Cardinals

An ordinal κ is a cardinal if |α| ă |κ| whenever α P κ. The Well
Ordering Principle is equivalent to the assertion that every set has the
same cardinality as a cardinal. If |x| “ |κ| for some cardinal κ it is
customary to adopt the convention that |x| :“ κ. Thus in the presence
of the Well Ordering Principle, the cardinality comparisons |X| ď |Y |
and |X| “ |Y | become ordinary inequalities and equalities between
cardinals.

Notice that the finite cardinals are exactly the elements of ω. On the
other hand, ordinals such as ω ` 1, ω ¨ ω, ωω`1, etc. are not cardinals
— they all have the same cardinality as ω. If |x| ď ω, we will say that
x is countable.

The infinite cardinals have a canonical enumeration which can be
described as follows. If α is an ordinal, define α` to be the Hartog
ordinal for α. A cardinal of the form α` is called a successor cardi-
nal. All other infinite cardinals are called limit cardinals. Define the
hierarchy of infinite cardinals recursively by

ωα :“

$

’

&

’

%

ω if α “ 0

pωβq
` if α “ β ` 1

suptωβ | β P αu if α is a limit ordinal

Observe that every infinite cardinal is of the form ωα for some ordinal
α (otherwise there would be a least counterexample and this is easily
shown to be impossible). Cardinals both play of role of well orderings
and as representative cardinalities of sets. If we wish to emphasize that
ωα is a cardinal, we will instead write ℵα. If, on the other hand, we want
to signal that ordinal arithmetic is involved or that the underlying P-
ordering is important, we will write ωα. Generally one writes ω instead
of ω0 but writes ℵ0 and not ℵ.

Theorem 8.1. The following are true for every infinite cardinal κ:

(a) κ is closed under addition, multiplication, and exponentiation.
(b) |κăω| “ κ.

Proof. We will first show that, for a given κ that (a) implies (b). To
see this, define F : ON Ñ ONăω and G : ONăω

Ñ ON by

Fpαq :“

#

ε if α “ 0

xβyaFpγq if α “ 2βp2 ¨ γ ` 1q.

Gpsq :“

#

0 if s “ ε

2ξ ¨ p2 ¨Gptq ` 1q if s “ xξyat
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Here ε denotes the null sequence and sat is the concatenation of s and
t. Notice that these definitions are recursive: if α “ 2βp2 ¨ γ ` 1q, then
γ ă α and therefore Fpαq is specified as a function of Fæα. G is defined
by recursion on the (well founded set-like) relation consisting of pairs
pt, sq of finite sequence of ordinals such that t is a final segment of s.

Theorem 5.6 implies that G ˝F “ F ˝G is the identity function and
hence that both F and G are class bijections. If κ is closed under the
arithmetic operations, then Fæκ is a bijection between κ and κăω.

We will now prove (a) by induction on κ. Define

I “ tξ P ON | 2ξ “ ξu.

We leave the following claim as an exercise:

Proposition 8.2. A positive ordinal ξ is closed under the operations
of addition, multiplication, and exponentiation if and only if it satisfies
2ξ “ ξ.

Observe that ω is in I and if A Ď I is a set, then suppAq P I. In order
to show that every infinite cardinal is in I, it suffices to show that if
µ ă ν are consecutive elements of I, then |µ| “ |ν|. To this end, let
µ ă ν be given and define h : µÑ ν by

hpαq :“

#

α if α P I
ř

iăn 2hpβiq if α R I and Fpαq “ xβi | i ă ny

Notice that this is a recursive definition since if Fpαq “ xβi | i ă ny,
and α ď βi for some i ă n, then i “ 0, n “ 1 and α “ β0 is in I. By
Proposition 7.1, it suffices to show that if γ P ν, γ is in the range of
h. We will prove this by induction. If γ P I, there is nothing to show.
If γ P νzI, then γ “

ř

iăn 2γi for some strictly decreasing sequence
xγi | i ă ny with γ0 ă γ. Applying our inductive assumption, let βi ă µ
be the least ordinal such that hpβiq “ γi and set α :“ Gpxβi | i ă nyq.
Since µ is closed under the arithmetic operations, α ă ν and we have
hpαq “ γ as desired. �
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9. The Axiom of Choice

Up to this point, all of our analysis has been carried out just using
the ZF axioms. We will now introduce the final axiom of ZFC, the
Axiom of Choice.

Axiom 10 (Choice). If X is a set and every element of X is nonempty,
then there is a function f : X Ñ

Ť

X such that fpxq P x for all x P X.

Frequently the Axiom of Choice is used through one of its many
equivalent forms. Recall that Zorn’s Lemma asserts that whenever
pP,ďq is a partially ordered set in which every totally ordered subset
has an upper bound, P has a maximal element.

Theorem 9.1. Assuming the axioms of ZF, the following are equiva-
lent:

(a) The Axiom of Choice.
(b) Zorn’s Lemma.
(c) The Well Ordering Principle.

Proof. We will show (a)ñ(b)ñ(c)ñ(a). To see (a) implies (b), let
pP,ďq be a partially ordered set satisfying the hypothesis of Zorn’s
Lemma. Define

C :“ tC P PpP q | pC,ďq is a total orderu.

If C P C, define

BpCq :“ tp P P | p is a strict upper bound for Cu

and set B :“ tBpCq | C P Cu. If BpCq is empty for some C P C,
then C has an upper bound p but no strict upper bound. This means
that p is a maximal element of P . Suppose for contradiction that no
element of B is empty. By the Axiom of Choice, there is a function
f : B Ñ

Ť

B such that fpBq P B for all B P B. If s : α Ñ P
is a strictly increasing sequence, define Fpsq “ fprangepsqq. By the
Transfinite Recursion Theorem, there is a G : ON Ñ V such that
Gpαq “ fprangepGæαqq for all α. But then G is a strictly increasing
— and in particular injective — class function from ON into P , which
is absurd.

To see (b) implies (c), define Q to be the class of all injections from
an ordinal into X. Observe that if γ is the Hartog ordinal for X, then
Q Ď Ppγ ˆ Xq and hence Q is a set. Order Q by p ď q if p is a
restriction of q. If C Ď Q is a chain, then

Ť

C is also in Q and is
an upper bound for C. By Zorn’s Lemma, Q has a maximal element
p : αÑ X. If p is not a surjection, then qY tpα, xqu : α` 1 Ñ X is an
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injection where x P X is not in the range of p. Since such a q would be
strictly above p, it must be that p is a surjection.

To see that (c) implies (a), let X be given and let Ÿ be a well ordering
of

Ť

X. Define f : X Ñ
Ť

X so that fpxq is the Ÿ-least element of
x. �

We’ve also established the following theorem.

Theorem 9.2. The following are each equivalent to the Axiom of
Choice:

(a) If X and Y are sets, then either |X| ď |Y | or |Y | ď |X|.
(b) If X is an infinite set, then |Xăω| “ |X|.
(c) If X is an infinite set, then |X ˆX| “ |X|.

Proof. Combine Corollaries 7.5 and 7.6 and Theorems 8.1 and 9.1. �

From this point forward, all proofs will be carried out in ZFC unless
explicitly stated otherwise.

If α is a ordinal limit, then the cofinality of α, denoted cofpαq, is the
minimum cardinality of a subset A Ď α such that suppAq “ α. If κ is
an infinite cardinal and cofpκq “ κ, we say that κ is a regular cardinal ;
if an infinite cardinal is not regular it is singular. The cardinals ℵn
for n P ω are all regular cardinals whereas ℵω “ suptℵn | n P ωu has
cofinality ω and hence is singular.

Theorem 9.3. Every infinite successor cardinal is regular.

Proof. Let κ be an infinite cardinal and suppose for contradiction that
there is an A Ď κ` such that suppAq “ κ` and |A| ď κ. Fix a surjection
f : κ Ñ A ˆ κ. For each α P A, define Eα to be the collection of all
surjections from κ to α. Since tEα | α P Au exists by Collection and
since each Eα is nonempty by hypothesis, there exists a function e with
domain A such that epαq P Eα for all α P A. Writing eα for epαq define
g : κ Ñ κ` by gpαq “ eβpγq where fpαq “ pβ, γq. Clearly g is a
surjection: if ξ P κ` then there is a β P A with ξ P β and a γ P κ such
that eβpγq “ ξ. If fpαq “ pβ, γq, then gpαq “ eβpγq “ ξ. �
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10. Inaccessible cardinals and the reflection theorem

A cardinal κ is a strong limit cardinal if whenever α ă κ, |Ppαq| ă κ.
A cardinal is weakly inaccessible if it is an uncountable regular limit
cardinal and strongly inaccessible if it is a uncountable regular strong
limit cardinal. Notice that ω is both regular and a strong limit cardinal.

Theorem 10.1. Assume ZFC. If κ is a strongly inaccessible cardinal,
then pVκ, Pq satisfies ZFC.

Proof. Assume that κ is strongly inaccessible. By Theorem 6.6, pVκ, Pq
satisfies ZF´Coll. To see that pVκ, Pq satisfies the Axiom of Choice, it
suffices to show that it satisfies the Wellordering Principle. Let X P Vκ
and let α ă κ be such that X P Vα. Since X can be well ordered and
since any well ordering of X is in Vα`ω, Vκ contains a wellordering of
X.

It remains to show that pVκ, Pq satisfies the Collection Scheme. Sup-
pose that X P Vκ, φpu, v, w̄q is a formula, and ā P V ăωκ are such that

pVκ, Pq |ù @x P X D!y φpx, y, āq.

By Separation applied to X ˆ Vκ and φVκ — the relativization of φ to
Vκ — there is a function f : X Ñ Vκ such that if x P X, pVκ, Pq |ù
φpx, fpxq, āq. Let A :“ tρpfpxqq | x P Xu Ď κ.

Claim 10.2. If Z P Vκ, then |Z| ă κ.

Proof. Since every element of Vκ is a subset of some Vα for α ă κ, it
suffices to show that |Vα| ă κ for each α ă κ. The proof is by induction
on α. Clearly |V0| “ 0 ă κ. If α “ β` 1, then since |Vβ| ă κ and κ is a
strong limit cardinal, |Vα| “ |PpVβq| ă κ. If α is a limit ordinal, then
t|Vβ| | β P αu is a subset of κ of cardinality |α| ă κ. Since κ is regular,

|Vα| “ supt|Vβ| | β P αu

is less than κ. �

Since ρ ˝ f : X Ñ A is a surjection, A is bounded in κ. Let β ă κ
be a strict upper bound for A. We now have that for each x P X, the
rank of y “ fpxq is less than β. Thus

pVκ, Pq |ù @x P X Dy P Vβ φpx, y, āq

�

Theorem 10.3. If pVκ, Pq satisfies ZFC, then κ is a strong limit car-
dinal.
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Proof. Now suppose that pVκ, Pq satisfies Collection for some uncount-
able limit ordinal κ. As we have noted already, this means that pVκ, Pq
satisfies ZF. Let α P κ be arbitrary and observe that Ppαq P Vκ. Since
the Axiom of Choice holds, there is a well ordering Ÿ of Ppαq which
is therefore also in Vκ. Since pVκ, Pq satisfies Collection, there is an
ordinal β P Vκ which is isomorphic to pPpαq,Ÿq. Since |Ppαq| “ |β|
and since κ is a cardinal, |Ppαq| ă κ. Since α ă κ was arbitrary, κ is
a strong limit cardinal. �

It will be useful throughout the course to connect truth in an ambient
model of set theory to truth in transitive sets. Given a formula φpv̄q
and transitive classes M Ď N, we say that φpv̄q is absolute for M and
N if whenever ā is a tuple from M, pM, Pq |ù φpāq is true if and only
if pN, Pq |ù φpāq. If N is V, we will just say that φ is absolute for M.

Certain formulas are always absolute for transitive models. A Σ0-
formula is a formula φpv̄q in the language of set theory such that all
quantification in φ is bounded. Namely all atomic formulas are Σ0-
formulas, the Σ0-formulas are closed under conjunctions, disjunctions,
and negation, and if φpu, v̄q is a Σ0-formula, so are Du P w φpu, v̄q and
@u P w φpu, v̄q. The following proposition is very useful; its proof is a
routine induction on formulas and is left as an exercise.

Proposition 10.4. If M is a transitive set, then any Σ0-formula is
absolute for M .

Now we turn to the statement of the Reflection Theorem. A stratified
transitive class is a class length sequence xMα | α P ONy such that:

‚ for all α P ON, Mα is a transitive set;
‚ if α P β P ON, then Mα ĎMβ;
‚ if α P ON is a limit ordinal, Mα “

Ť

βPαMβ.

We will let M denote
Ť

tMα | α P ONu.
The Reflection Theorem is actually a scheme of theorems one for

each stratified transitive class M and one for each formula φpv̄q.

Theorem 10.5. Let xMα | α P ONy be a stratified class and φ be a
formula. The class

tα P ON | φ is absolute for Mα and Mu

contains a closed and unbounded class E Ď ON.

Proof. If φ is an atomic formula, then φ is absolute for Mα for all
α P ON. Observe that the set of formulas for which the Reflection
Theorem holds is closed under taking conjunctions, disjunctions, and
negations. Suppose now that the conclusion of the reflection theorem
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holds for every proper subformula of φ. We may assume without loss
of generality that φ is of the form Duψpu, v̄q. Let E be a closed and
unbounded class contained in

tα P ON | ψpu, v̄q is absolute for Mαu.

Define F : E Ñ E by Fpαq is the least element β of E such that α ď β
and for all ā P Mn

α , if pM, Pq |ù Duψpu, āq then pMβ, Pq |ù Duφpu, āq.
Notice that F is defined on all of E by our assumption that E is closed
and unbounded and by Collection. Observe that if Fpαq “ α, then φ
is absolute for Mα and M. Also observe that if α “ suppEX αq, then

Fpαq “ suptFpβq | β P EX αu.

In particular, tα P E | Fpαq “ αu is closed under taking supremums.
It suffices to show that for each α in E there is a β ě α in E such that
Fpβq “ β. Define α0 :“ α, αn`1 :“ Fpαnq and β :“ suptαn | n P ωu.
xαn | n P ωy exists by the recursion theorem and hence β exists. It
follows that

Fpβq “ suptFpαnq | n P ωu “ β.

�

Corollary 10.6. ZF is not finitely axiomatizable.

Proof. Suppose that this is true and observe that then there is a single
sentence φ such that φ proves all of the axioms of ZF. Then φ proves
that there is a least α such that pVα, Pq |ù φ. But now

pVα, Pq |ù Dβ P ON ppVβ, Pq |ù φq.

This is impossible since this implies pVβ, Pq |ù φ, contradicting the
minimality of φ. �
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11. Truth, definability, and the Löwenheim-Skolem
theorem

Suppose that we are working in an ambient model of ZF and, within
this model L is the signature of a language. If S is the set of all logical
symbols (including a countable set of variables), then the collection of
L-formulas constitutes a set by Separation — it is contained within
pL Y Sqăω. Moreover, the operation which returns the sequence of
variables which are free in a given formula is in fact a function. For
any L-formula φpv̄q, there is an L Y tPu-formula ψpu, v̄q such that for
an M and ā with the same length as v̄, ψpM, āq is true if and only if
M is an L-structure, ā is a sequence from M and M |ù φpāq. Contrast
this with the following theorem of Tarski (formulated here for ZF).

Theorem 11.1 (Undefinability of Truth). ZF does not prove the fol-
lowing statement: there is a tPu-formula φpvq such that for all formulas
ψ, φpψq Ø ψ. Furthermore,

tpφpv0, . . . , vn´1q, pa0, . . . , an´1qq | φpv̄q is a formula and φpāq is trueu

is not a class — it can not be formalized.

In particular, while for each finite set F of formulas in the language
of set theory, the Reflection Theorem implies that

EF :“ tδ P ON | F is absolute for Vδu

is a closed unbounded class, it is meaningless to talk about the intersec-
tion of these classes over the countable set of formulas. Note, however,
that if κ is an ordinal, then

tEF X κ | F is a finite set of formulasu

is a set. This gives the following proposition.

Proposition 11.2. Suppose that κ is a strongly inaccessible cardinal.
There is a closed and unbounded subset E Ď κ such that if δ P E, then
every formula in the language of set theory is absolute between Vδ and
Vκ. In particular, pVδ, Pq is a model of ZFC if δ P E.

Proof. If F is a finite set of formulas in the language of set theory, let
EF denote the set of all δ P κ such that all formulas in F are absolute
between Vδ and Vκ. By the Reflection Theorem, applied in Vκ, EF Ď κ
is closed and unbounded. Let E be the intersection of the EF ’s. Clearly
E is closed. That E is unbounded will be verified momentarily as part
of a more general phenomenon. �

If X is a set and M Ď X, we say that M is an elementary submodel
of X if every formula in the language of set theory is absolute between
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M and X. We will write M ă X to denote that M is an elemen-
tary submodel of X. Our next goal will be to prove the (Downward)
Löwenheim-Skolem Theorem which ensures the existence of many ele-
mentary submodels when X is uncountable.

Theorem 11.3. For any X and infinite cardinal κ ď |X|, if X0 P rXs
κ,

there is an elementary submodel M of X of cardinality κ which contains
X0 as a subset.

This theorem will be a consequence of two propositions. In order to
state these propositions, we need to develop some terminology. If X is
a set and f : Xăω Ñ X, define

Cf :“ tM P PpXq | f rMăω
s ĎMu.

A set of this form is said to be club in PpXq.
A set S is stationary if S intersects every club in Pp

Ť

Sq. If E
is stationary, we will say that S is stationary in E if S is stationary
and

Ť

S “
Ť

E. If S is stationary and C Ď S, then we say that C
is club in S if C “ S X Cf for some f : Xăω Ñ X. If X is a set and
κ is a cardinal, define rXsκ to be the collection of all subsets of X of
cardinality κ.

Proposition 11.4. For any X, tM P PpXq | M ă Xu contains a
club.

Proof. First recall the Tarski-Vaught criterion for elementarity.

Lemma 11.5. M ă X if whenever φpv̄, wq is a formula in the language
of set theory, ā is a tuple from M , and pX, Pq |ù φpā, bq for some b in
X, then b can be found in M .

Observe that if X is finite, then X ă X and there is a function
f : Xăω Ñ X such that X is the only f -closed set. Let xxn | n P ωy be
a list of elements of X without repetitions and let Ÿ be a well ordering
of X. Let φn pn P ωq list the formulas in the language of set theory
in such a way that there are at most n free variables in φn. Define
f : Xăω Ñ X by

fpāq :“

$

’

&

’

%

x0 if ā “ ε

xn`1 if ā “ xxny

Ÿ-mintb P X | pX, Pq |ù φipāæi, bqu if `hpāq “ 2i`2p2j ` 1q

Observe that if M is f -closed, then M ă X by the Tarski-Vaught
criterion. �
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Proposition 11.6. If X is any infinite set, κ ď |X| is any infinite
cardinal, then and X0 P rXs

κ, then

tM P rXsκ | X0 ĎMu

is stationary.

Proof. Let X, κ, and X0 be given. Define Xn`1 :“ Xn Y f rXăω
n s and

set Y :“
Ť

tXn | n P ωu. Notice that Y ăω “
Ť

tXăω
n | n P ωu. Since it

follows that

f rY ăωs “
ď

tf rXăω
n s | n P ωu Ď

ď

tXn`1 | n P ωu “ Y.

�

Lemma 11.7. Suppose that X is a nonempty set and xfk | k P ωy is
such that fk : Xăω Ñ X is a function for each k P ω. There is single
g : Xăω Ñ X such that if M Ď X is g-closed, then M is fk-closed for
all k. In particular, a countable intersection of clubs contains a club.

Proof. If X is finite, then it is possible to find a g such that the only
g-closed subset of X is X. Thus we may assume that X is infinite. Let
xak | k P ωy be sequence of distinct elements of X and define

gpx̄q :“

$

’

&

’

%

a0 if x̄ “ ε

ak`1 if x̄ “ xaky

fkpȳq if x̄ “ xaky
aȳaxa0y

Clearly any g-closed set is fk-closed for each k. �

Lemma 11.8. Suppose that X Ď Y are nonempty. For every f :
Y ăω Ñ Y , there is a g : Xăω Ñ X such that if M Ď Y is f -closed,
then M XX is g-closed.

Proof. For each xxi | i ă ny P Xăω, the g-closure of txi | i ă nu is
a countable set. Choose functions fk : Xăω Ñ X such that tfkpx̄q |
k P ωu is the intersection of X with the g-closure of txi | i ă nu. By
Lemma 11.7, there is a function f : Xăω Ñ X such that any f -closed
set is fk-closed for all k P ω. If M Ď Y is g-closed, then M X X is
fk-closed for all k and hence f -closed. �

This lemma has the following useful consequence.

Lemma 11.9. If X Ď Y are uncountable sets and E is club in rY sω,
then tM XX |M P Eu contains a club in rXsω. In particular if θ is a
regular uncountable cardinal, then for any countable X Ď Hθ,

tM X ω1 | pM P rHθs
ω
q ^ pM ă Hθqu

contains a closed unbounded subset of ω1.
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12. Intersecting clubs and the Pressing Down Lemma

An important family of examples of stationary sets is provided by
the uncountable regular cardinals. In fact this is the original historical
context for the defintion.

Proposition 12.1. If κ is a regular uncountable cardinal, κ is station-
ary. Moreover, if λ ă κ is a regular cardinal, tα P κ | cofpαq “ λu is
stationary.

Notice that if κ is a regular uncountable cardinal and E Ď κ is club
in κ, then E Ď κ is unbounded in κ and closed in the order topology.
The converse is not true, since if f : κăκ Ñ κ, then the least element
of κ closed under f is either not a limit ordinal or else has countable
cofinality. On the other hand, every closed and unbounded subset of κ
contains a club.

Proof. Noting that
Ť

κ “ κ, suppose that f : κăω Ñ κ is a function.
Define g : κÑ κ by

gpαq :“ maxpα ` 1, suptfpsq | s P αăωuq.

Notice that gpαq P κ since κ is a regular cardinal. Define xαξ | ξ P κy
by recursion:

αξ :“

$

’

&

’

%

0 if ξ “ 0

fpαηq if ξ “ η ` 1

suptαη | η P ξu if ξ is a limit ordinal

Observe that this sequence is strictly increasing and if ξ is a limit
ordinal, then f rαăωξ s “ αξ and cofpαξq “ cofpξq. In particular, if λ ă κ
is a regular cardinal, cofpαλq “ λ. �

It should be pointed out that the converse of Proposition 12.1 is also
true: if α is a positive ordinal which is not a regular cardinal, then α is
not stationary. To see this, observe that if α is not a regular cardinal,
there is a β P α and a g : β Ñ α with cofinal range. Define f : αăω Ñ α

fpsq “

#

α if s “ ε of s0 R α

fps0q if s0 P α

and observe that if γ Ď α is closed under f , then α Ď γ, grαs Ď γ and
hence γ “ α.

Proposition 12.2. If κ is an uncountable regular cardinal and E is a
family of fewer than κ club subsets of κ, then

Ť

E is club. In particular
every club in κ is stationary and a partition of a stationary subset of
κ into fewer than κ pieces has at least one stationary piece.
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We will derive this proposition from a more powerful lemma known
as the Pressing Down Lemma.

Lemma 12.3. Suppose that S is a stationary set and r is a function
defined on S such that rpMq P M for all M P S. There is an x P

Ť

S
such that tM P S | rpMq “ xu is stationary.

Proof. Suppose for contradiction that that the lemma is false for some
S and r and set X :“

Ť

S. For each x in X, let fx : Xăω Ñ X be
such that if M Ď X is f -closed, then rpMq ‰ x. Define f : Xăω Ñ X
so that fpxxyaȳq “ fxpȳq. By assumption, there is an M in S such
that M is f -closed. Observe, however, that if x P M , then M is fx-
closed and hence rpMq ‰ x. But this contradicts our assumption that
rpMq PM . �

The pressing down lemma is equivalent to the following assertion.

Lemma 12.4. Suppose that X is a nonempty set and fx : Xăω Ñ X
is a function for each x P X. The following set is a club:

tM P PpXqztHu | @x PM pM P Cfxqu

The club in the conclusion of the previous theorem is called the di-
agonal intersection of the clubs tCfx | x P Xu and is denoted ∆xPXCfx .
In particular, the previous lemma shows that any two clubs intersect
and hence any club is stationary.

The following corollary captures the content of the Pressing Down
Lemma for stationary sets of ordinals.

Corollary 12.5. Suppose that κ is a regular cardinal and S Ď κ is
stationary in κ. If r : S Ñ κ satisfies rpαq ă α for all α P S, then r is
constant on a stationary set.

Proof. Suppose that S Ď κ and r : S Ñ κ satisfies that rpαq P α for
all α P S. For each α P S, let Eα Ď S be club in κ and disjoint from
r´1pαq. By Lemma 12.4,

E :“ tα P S | @γ P αpα P Eγqu

is club in κ and disjoint from S. Thus S is not stationary. �

To see how to prove Proposition 12.2, suppose that E “ tEξ | ξ P λu
is a list of club subsets of κ for some λ ă κ. Let S be the set of ordinals
in κ which are greater than λ. If

Ş

E is not closed and unbounded,
then S :“ κzpλY

Ş

Eq is stationary. Define r : S Ñ λ by

rpαq “ mintξ P λ | α R Eξu.
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Clearly r is regressive since λ ă minS. Let ξ P λ be such that T :“
tα P S | rpαq “ ξu is stationary. But T is disjoint from Eξ, which is a
contradiction.

We’ve seen that any two closed unbounded sets must intersect. What
about stationary sets? This is addressed by the following result of
Ulam.

Proposition 12.6 (Ulam). Suppose that κ is an infinite cardinal. If
S Ď κ`, then S can be partitioned into κ` many stationary sets.

Remark 12.7. In fact any stationary subset of a regular uncountable
cardinal λ can be partitioned into λ stationary sets, but we will not
prove this.

Proof. Using the Axiom of Choice, fix a sequence xeβ | β P κ
`y such

that for each β P κ`, eβ : β Ñ κ is an injection. For α P κ and β P κ`,
define

Sα,β :“ tγ P S | eγpβq “ αu.

Observe that for each α ă κ, tSα,β | β P κ`u is pairwise disjoint.
On the other hand, for each β P κ`, S “

Ť

tSα,β | α P κu. By
Proposition 12.2, for each β P κ` there is an αβ P κ such that Sαβ ,β
is stationary. Since κ` is regular, there must be a single α P κ such
that B :“ tβ P κ` | α “ αβu has cardinality κ`. We now have that
tSα,β | β P Bu is a pairwise disjoint family of stationary sets. �
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13. The constructible universe L

We will now turn to the task of proving the following result of Kurt
Gödel.

Theorem 13.1. There is a class L with the following properties:

(a) L is transitive;
(b) ZF proves pL, Pq |ù ZFC;
(c) if M is any transitive class such that M |ù ZF and ON Ď M,

then L Ď M.
(d) if M is a transitive class such that M |ù ZF, then M |ù x P L if

and only if x P L.
(e) pL, Pq satisfies that for every infinite set X, |PpXq| “ |X|`.

The basic idea behind this theorem is to revisit the construction of
the cumulative hierarchy so as to only add sets to L when it is required
by the Separation Scheme. First we will need to develop a variant of
the powerset operation, which we will denote D . Let xφi | i P ωy be a
recursive listing of the formulas in the language of set theory so that
φi has at most i free variables. If A is a set, define DpAq to be the
collection of all sets of the form

tb P A | pA, Pq |ù φipā, bqu

where i P ω and ā P Ai.

Proposition 13.2. For any set A, the following are true:

(a) every finite subset of A is in DpAq Ď PpAq and DpAq is a
Boolean algebra;

(b) if A is transitive, then A Ď DpAq;
(c) if A can be well ordered, then so can DpAq and moreover |A| ď

|DpAq| ď |A| ` ℵ0;
(d) there is a Σ0-formula φpu, v, wq such that φpA,B, ωq is equivalent

to B P DpAq;
(e) if M is a transitive class, pM, Pq |ù ZF, and A P M, then

DpAq Ď M;

Proof. Items (a) and (b) are immediate from the definition of DpAq.
To see the second, suppose that a P A. Since A is transitive, a Ď A.
Thus a “ tb P A | pA, Pq |ù b P au is in DpAq.

To see (c), suppose that A can be well ordered. If A is empty then
DpAq “ tHu and there is nothing so show. Suppose now that f : αÑ
A be a surjection for some infinite ordinal α. Define g : αăω Ñ DpAq
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by

gpξ0, . . . , ξkq “

#

tb P A | pA, Pq |ù φipfpξ1q, . . . , fpξkqqu if ξ0 “ i ď k

gp0q otherwise

Clearly g is a surjection. Since we’ve seen that |αăω| “ |α|, this com-
pletes the proof.

To see (e), suppose M is a transitive class and pM, Pq |ù ZF. Let
A P M and suppose that B P DpAq. Fix an i and ā P Ai such that

B “ tb P A | pA, Pq |ù φipā, bqu

Observe that pt, Pq |ù φupv̄, wq is expressible by a Σ0-formula. By
Separation applied in M and Extensionality, B must be in M. �

For each α P ON, define Lα recursively as follows:

Lα :“

$

’

&

’

%

H if α “ 0

DpLβq if α “ β ` 1
Ť

tLβ | β P αu if α is a limit ordinal

Similarly, if X is a set, define LαpXq recursively so that:

LαpXq :“

$

’

&

’

%

tcptXuq if α “ 0

DpLβpXqq if α “ β ` 1
Ť

tLβpXq | β P αu if α is a limit ordinal

Set L :“
Ť

tLα | α P ONu and LpXq :“
Ť

tLαpXq | α P ONu.

Theorem 13.3. The following are true:

(a) for each α P ON and set X, Lα and LαpXq are transitive sets
and L and LpXq are transitive classes;

(b) if α P β P ON, then Lα P Lβ;
(c) pL, Pq and pLpXq, Pq both satisfy ZF;
(d) if M is a transitive class and pM, Pq |ù ZF, then L Ď M.
(e) if M is a transitive class with X P M and pM, Pq |ù ZF, then

LpXq Ď M.

Proof. We will only give the proofs for L; the arguments for LpXq are
similar. That each Lα is transitive is proved by induction on α. If
α “ 0, this is trivial. If α “ β ` 1 and Lβ is assumed to be transitive,
then every element of Lα is a subset of Lβ Ď DpLβq “ Lα. If α is a
limit ordinal, then Lα is (inductively) a union of transitive sets and
hence is transitive. Since clearly Lα P DpLαq, it follows by induction
on β that Lα P Lβ whenever α P β.

To see that pL, Pq satisfies the axioms of ZFC, first observe that
Extensionality and Foundation are satisfied by virtue of L being a
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transitive class. Also, Emptyset and Infinity hold since 0 and ω are
in L, respectively. Pairing holds in L since if x, y P A, tx, yu P DpAq.
Similarly, L satisfies Union since if A is transitive and B P A, then
Ť

B P DpAq.
In order to verify the Separation Scheme, suppose that A, x̄ P L and

φpu, v̄q is a formula. By the Reflection Theorem, there is an ordinal
δ such that A, x̄ P Lδ and φ is absolute between Lδ and L. It follows
that

ta P A | pLδ, Pq |ù φpa, x̄qu “ ta P A | pL, Pq |ù φpa, āqu.

The former set is in Lδ`1 while the latter collection is the subset of A
postulated to exist by Separation for φ, A, x̄.

The Collection Scheme is handled in a similar way: if A, x̄ P L and
φpu, v, w̄q is a formula such that

pL, Pq |ù @u P A D!vφpa, v, x̄q

then find a δ such that @u P s D!vφpu, v, w̄q is absolute between Lδ and
L.

Finally, to see that L satisfies the Powerset Axiom, it is sufficient to
show that if A P L, then there is a δ such that PpAqXL Ď Lδ. Define
ρ : PpAq Ñ ON by ρpBq :“ mintα P ON | B P Lαu if B P L and
ρpBq :“ 0 if B is not in L. By Collection, the range of ρ is a set; let
δ P ON be any strict upper bound for the range of ρ. �
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14. The Axiom of Choice and the Generalized Continuum
Hypothesis in L

We’ve already seen the basic mechanism for why L satisfies the Ax-
iom of Choice: if A can be well ordered, then so can DpAq. With a
little more care, we can prove the following result.

Theorem 14.1. There is a formula φpu, vq in the language of set theory
such that all quantification in φ is restricted to L and such that the
following are theorems of ZF:

(a) @x@ypφpx, yq Ñ ppx P Lq ^ px P Lq ^ px ‰ yqqq
(b) @x P L @y P L pφpx, yq _ φpy, xq _ px “ yqq
(c) @X P L pX “ H_ Dx P X @y P X ppx “ yq _ φpx, yqqq

It is customary to write x ăL y to denote φpx, yq. The theorem
asserts that ZF proves ăL is a class well-ordering of L. In particular,
pL, Pq satisfies the Axiom of Choice. The ordering ăL is defined recur-
sively: given ăL æLα, we define ăL æLα`1. If x P Lα and y P Lα`1zLα,
then x ăL y. If x P Lα`1zLα, then there is a tuple pi, āq such that
i P ω, ā P Liα, and

x “ tz P Lα | pLα, Pq |ù φipx, āqu

Let px denote the lexicographically least such tuple with respect to ăL.
If x, y P Lα`1zLα, define x ăL y if and only if px ălex py. Thus if γ
is the ordertype of pLα,ăLq, then the ordertype of pLα`1,ăLq is (at
most) supn

ř

iăn γ
i “ γω.

Now we turn to the task of proving that L satisfies the Generalized
Continuum Hypothesis (GCH): for every infinite cardinal κ, |Ppκq| “
κ`. Let us begin by noting that for each infinite α, |Lα| “ |α|. Thus
it suffices to prove the following theorem.

Theorem 14.2. For every infinite cardinal κ, Ppκq X L Ď Lκ`.

The proof that GCH holds in L makes use of a general phenomenon
known as condensation which is both powerful and characteristic of
L. In order to prove this, it will be helpful to give an alternate, more
elementary description of DpAq.

Proposition 14.3. For every set A, there is a unique sequence xDefpA, nq |
n P ωy of sets such that:

(a) DefpA, nq Ď PpAnq;
(b) for each n and i, j ă n the following sets are in DefpA, nq: tā P

An | ai P aju and tā P An | ai P aju;
(c) DefpA, nq is closed under taking intersections and complements;
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(d) if R P DefpA, n ` 1q, then tā P An | Db P A pāaxbyqu is in
DefpA, nq;

(e) if xDef 1pA, nq | n P ωy is any other sequence satisfying the above
conditions, DefpA, nq Ď Def 1pA, nq for all n P ω.

Moreover for every A, DpAq equals

tB Ď A | DnDR P DefpA, n` 1q Dā P An pB “ tb P A | āaxby P Ruqu.

The proof is left as an exercise. Let Λ be the conjunction of:

‚ the axioms of Pairing, Foundation, Union;
‚ “There is a least infinite ordinal ω”;
‚ “For every A there is a unique sequence xDefpA, nq | n P ωy

satisfying the main conclusion of Proposition 14.3”;
‚ “for every A, DpAq exists,” taking the definition of DpAq from

the conclusion of Proposition 14.3;
‚ “for every ordinal α, Lα exists.”
‚ “for every x, there is an ordinal α such that x P Lα.”

Notice that assertions such as “Lα exists” are really shorthand for an
assertion like “There is a sequence xLξ | ξ P α ` 1y which satisfies
the recursive definition of the L-hierarchy.” The key feature of Λ is
captured by the following proposition, whose proof is self-evident.

Proposition 14.4. If pM,Eq is a set equipped with a well founded
relation, then pM,Eq |ù Λ if and only if there is a limit ordinal ν ą ω
such that pM,Eq – pLν , Pq.

Proof of Theorem 14.2. Let X Ď κ be in L and fix a limit ordinal
ν ě κ such that X is in Lν . Let M ă Lν such that κ ĎM , X PM and
|M | “ κ. Observe that pLν , Pq satisfies Λ and therefore pM, Pq satisfies
Λ. Let π : M – Lα be the transitive collapse of pM, Pq. Since |M | “ κ,
κ ď α ă κ`. It therefore suffices to show that πpXq “ X, since then
X P Lα Ď Lκ` . This followed from the following general fact.

Proposition 14.5. Suppose that M is a set and A P M is transitive
and a subset of M . If π : M Ñ N is the transitive collapse, then
πpBq “ B for every B Ď A in M .

Proof. Suppose that the proposition is false and let A be an P-minimal
counterexample. By minimality, we have that πæA is the identity. Thus
if B Ď A, then πpBq “ tπpbq | b P Bu “ B. But this contradicts that
A was a counterexample. �

�
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15. The constructions of Z, Q, and R

Now we’ll turn to showing that familiar mathematical constructions
can be carried out in a model of set theory. The main difficulty is to give
a set theoretic definition of Z, Q, and R — more involved constructions
such as rings of polynomials, function spaces, manifolds, and tangent
bundles are themselves usually defined set-theoretically in terms of N,
Z, Q, and R via Cartesian products.

Let N denote ωzt0u. In order to define Z and Q, we need to work
with equivalence relations and their quotients. We’ve already seen how
to formalize the Cartesian product. The quotient of a set by an equiv-
alence relation is also a fundamental construction which we will need.
Recall that an equivalence relation E on a set X is a reflexive, sym-
metric, transitive binary relation. We define X{E to be the collection
of all E-equivalence classes. That this is a set is a consequence of the
Powerset Axiom and the Separation Scheme:

X{E :“ tA P PpXq | A is an E-equivalence classu

where A is an E-equivalence class abbreviates

pA ‰ Hq ^ p@a P A @x P X ppa, xq P E Ø x P Aqq

The integers are defined as formal differences, up to an appropriate
equivalence. Define „ on ω2 by pm,nq „ pm1, n1q if m ` n1 “ m1 ` n.
Here ` refers to ordinal arithmetic on ω. Intuitively a pair pm,nq
is thought of as representing a formal difference m ´ n. Addition,
inversion, and multiplication on ω2{ „ are defined by

rpm,nqs„ ` rpm
1, n1qs„ “ rpm`m

1, n` n1qs„

´rpm,nqs„ “ rpn,mqs„
rpm,nqs„ ¨ rpm

1, n1qs„ “ rpm ¨m
1
` n ¨ n1,m ¨ n1 `m1

¨ nqs„.

It is left to the reader to check that this is well defined. Next ob-
serve that each „-class contains a unique representative pm,nq in which
minpm,nq “ 0. We define Z to be the set of all such representative
pairs which the operations `, ¨, and ´ induced by those on ω2{ „. The
advantage of defining Z formally in terms of canonical representatives
of „-classes instead of „-classes themselves is that then Z Ď Vω as
opposed to Z Ď Vω`1. It is common to abuse notation and write n
for pn, 0q and ´n for p0, nq. Notice that this embedding of ω inside Z
respects the operations ` and ¨.

Similarly, one defines Q to be the set of representatives of equivalence
classes of pairs pm,nq P Z ˆ N. Specifically pm,nq is equivalent to
pm1, n1q if m ¨ n1 “ m1 ¨ n, noting that each equivalence class contains a
unique element pm,nq where there is no k ą 1 which divides into both
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m and n. The advantage of working with representatives becomes
even more apparent here: with this definition Q Ď Vω whereas if we
defined both Q and Z in terms of equivalence classes, Q would only be
contained in Vω`4.

Define R Ď PpQq to consist of all Dedekind cuts: all r Ď Q such
that that r ‰ H, r ‰ Q, r has no last element, and r is an initial
interval in Q. The order on R is simply containment. We view Q as a
subset of R via the map q ÞÑ ts P Q | s ă qu. It is left to the reader
to check that the operations of `, ¨, and ´ extend continuously to R
where Q and R are given the order topology.
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16. Some nonmeasurable sets of reals

Suppose now that pG, ¨q is a locally compact topological group (i.e.
the group operation and the inversion operation are both continuous).
Recall that the Borel subsets of G are the smallest σ-algebra which
contains the open sets.

Theorem 16.1. For any locally compact topological group G, there is
a function µ defined on a subset M of PpGq such that the following
are true:

‚ M is a σ-algebra including the Borel subsets of G and µ takes
values in r0,8s;

‚ if tAi | i P ωu is a countable collection of elements of M , then
µp

Ť8

i“0Aiq “
ř8

i“0 µpAiq;
‚ if U is an open set with compact closure, then 0 ă µpUq ă 8;
‚ if A P M and g P G, then µpgAq “ µpAq;
‚ if X Ď G, then X is in M if and only if there are Borel sets
B,E Ď G such that X4B Ď E and µpEq “ 0.

Moreover, if µ0 and µ1 satisfy the above conditions, then their domains
coincide and for some 0 ă C ă 8, µ1pAq “ Cµ0pAq for all A in their
common domain.

The measure µ in the previous theorem is called Haar measure. If
G is compact, then generally µ is chosen so that µpGq “ 1. In other
cases, there is typically a natural choice of an open set with compact
closure which is chosen to be measure 1.

Some important examples of Haar measure are given by Rd with
coordinatewise addition. The unique invariant measure on Rd assigning
measure 1 to p0, 1qd is Lebesgue measure. If we regard 2ω as a compact
group with coordinatewise addition modulo 2, then the normalized
Haar measure is the same as the product measure where t0, 1u is given
the uniform measure. We also note the following general fact, which is
a form of Kolmogorov’s 0-1 law.

Theorem 16.2. Suppose that G is a locally compact metric group
and H ď G is a dense subgroup. If B Ď G is Haar measurable and
µpB4hBq “ 0 for all h P H, then µpBq “ 0 or µpGzBq “ 0.

It is natural to ask whether M is all of PpGq. In the presence of
the Axiom of Choice, this is not the case. We’ll consider three different
examples.

The first is the classic construction of a nonmeasurable subset of R
known as a Vitali set. Define „ on r0, 1s by x „ y if y ´ x is in Q.
By the Axiom of Choice, there is a function f : r0, 1s{ „Ñ r0, 1s such
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that fpaq P a whenever a P r0, 1s{ „. Let X be the range of f and
observe that X Ď r0, 1s meets each „-class in exactly one point. We
claim that X must be nonmeasurable. Suppose that this is not the
case. Then t2´n `X | n P ωu is an infinite pairwise disjoint family: if
z P 2´m`XX2´n`X, then z “ 2´m`x “ 2´n` y for x, y P X which
are necessarily distinct which would contradict that X meets each „-
class in a unique point. Since Yt2´n`X | n P omegau Ď r0, 2s, it must
be that λpXq “ 0. On the other hand, r0, 1s Ď

Ť

tq`X | q P Qu which
violates countable additivity.

Next suppose that tEα | α P βu is a collection of measure 0 subsets of
r0, 1s whose union is not measure 0 such that if α P β, then Eα Ď Eβ.
Notice that such a collection exists (assuming only ZF) if there is a
well orderable collection of measure 0 sets whose union does not have
measure 0. We claim that either X :“

Ť

tEα | α P βu is nonmeasurable
or else R :“

Ť

tEα ˆ pXzEαq | α P βu is a nonmeasurable subset of
r0, 1s ˆ r0, 1s. Suppose that X is measurable. Observe that for each
x P X if x P Eα, χRpx, yq “ 1 if y P XzEγ and 0 otherwise. Thus
ş1

0

ş1

0
χRpx, yq dy dx “

ş1

0
λpXqχX dx “ λpXq2. On the other hand,

for each y P X if y P Eα, then χRpx, yq “ 0 unless x P Eα. Thus
ş1

0

ş1

0
χRpx, yq dx dy “

ş1

0
0 dy “ 0. Since we assumed λpXq ą 0, this

violates Fubini’s Theorem.
Finally, suppose that U is a nonprincipal ultrafilter on ω: U Ď

Ppωq is closed under taking supersets and finite intersections, con-
tains X or ωzX for every X Ď ω, and does not contain any singletons.
Notice that Ppωq is also a compact group when given the operation
of symmetric difference (it is in fact isomorphic to 2ω equipped with
coordinatewise addition mod 2). We claim that any ultrafilter is non-
measurable with respect to the Haar measure. This follows from two
observations. First, the map X ÞÑ ω4X preserves Haar measure and
maps U to its complement and vice versa. Thus if U were measurable,
it would have to be that

2µpU q “ µpU q ` µpPpωqzU q “ 1

and hence that µpU q “ 1{2. On the other hand consider the collection
F of finite subsets of ω. This is a dense subgroup of Ppωq. It follows
from the definition of an ultrafilter that if F P F , then F4U “ U .
Thus µpU q “ 0 or µpU q “ 1, both of which contradict our previous
observation. This argument shows, in particular, that if F Ď Ppωq is
a filter — it is closed under finite intersections and supersets — and it
contains the complement of every finite subset of ω, then F is measure
0 provided it is measurable.
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17. Souslin’s problem

Recall that a linear order is a set L equipped with a binary relation
ď which is transitive, reflexive, antisymmetric, and satisfies that for all
x and y in L, either x ď y or y ď x. A linear order is dense if it has
no first or last element and for every x ă y in L, there is a z in L such
that x ă z ă y. A subset D of a linear order is dense if it intersects
every nonempty open interval. A linear order is separable if it has a
countable dense subset. A linear order is complete if every bounded
subset has a supremum. Cantor proved the following result.

Theorem 17.1. Any countable dense linear order is isomorphic to
pQ,ďq and any separable complete linear order is isomorphic to pR,ďq.

Observe that if L is separable, then every collection of pairwise dis-
joint open intervals must be countable. Such a linear order is said to
satisfy the countable chain condition (c.c.c.). Souslin asked whether
separability can be relaxed to the c.c.c. in Cantor’s characterization.
This is become known as Souslin’s Problem; a positive answer is known
as Souslin’s Hypothesis and a counterexample is a Souslin continuum.

It turns out that while completeness plays a crucial role in Cantor’s
theorem, it is quite irrelevant to Souslin’s problem. Specifically, we say
that an uncountable linear order is a Souslin line if it is c.c.c. but the
closure of every countable subset is countable. We will first establish
some properties of c.c.c. linear orders.

Proposition 17.2. If L is a c.c.c. linear order, L does not contain
any uncountable chain of intervals which is well ordered by either Ď or
Ě. In particular, L does not contain an uncountable well order or the
reverse of an uncountable well order.

Proof. Suppose that xIξ | ξ ă ω1y is a sequence of intervals which is
either strictly increasing or strictly decreasing with respect to Ď. Let Jξ
be the symmetric difference of Iξ and Iξ`1. It follows that tJξ | ξ ă ω1u

is an uncountable family of pairwise disjoint intervals. �

Proposition 17.3. If L is a c.c.c. linear order and U is a collection
of open subsets of L, then there is a countable subcollection U0 Ď U
which has the same union.

Proof. Since every nonempty open set is a union of basic intervals,
we may assume that U consists of open intervals. Since L has the
c.c.c., there is a countable V Ď U such that every element of U
intersects some element of V . Otherwise, we could recursively con-
struct an uncountable pairwise disjoint family of elements of U . Now
let V P V . It suffices to show that there is a countable subset of
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tU P U | U X V ‰ Hu which has the same union. Suppose not. Re-
cursively construct xUα | α P ω1y consisting of elements of U which
intersect V such that Iξ :“

Ť

tUα | α ă ξu is a proper subset of
Ť

tUα | α ă ξ ` 1u. Since the union of two intersecting intervals is
an interval and since an increasing union of intervals is an interval, it
follows that xIξ | ξ ă ω1y is a strictly increasing sequence of intervals,
which contradicts Proposition 17.2. �

Proposition 17.4. If L is a c.c.c. linear order and D Ď X Ď L, then
the closure of D with respect to the order topology on X differs from
the closure with respect to the subspace topology by a countable set.

Proof. Homework. �

Theorem 17.5. The following are equivalent:

(a) There is a c.c.c. nonseparable linear order.
(b) There is a Souslin continuum.
(c) There is a Souslin line.

Proof. Trivially (c) implies (a). To see that (a implies (b), suppose that
L is a c.c.c. and nonseparable. Let U be the collection of all separable
open intervals in L. By Proposition 17.3, there is a countable subset
of U with the same union. It follows that

Ť

U is separable and that
L1 :“ Lz

Ť

U is nonempty and has the property that every every
nonempty interval in L1 is nonseparable. Let L0 Ď L1 consist of all x in
L1 which do not have an immediate predecessor in L1 and which are not
the greatest of least element of L1. If x ă y are in L0, then px, yq X L1

is nonempty. Furthermore, observe that the least element of L1 — if it
exists — does not have an immediate successor in L1 since otherwise
L1 would have a nonempty finite and hence separable open interval. It
follows that L0 has no least elements and, by an analogous argument,
no greatest elements. Let K be the collection of Dedekind cuts of L0

ordered by Ď. Since L0 is dense, c.c.c., and nonseparable and since K
contains a dense suborder isomorphic to L0, K is a Souslin continua.

To see that (b) implies (c), suppose that K is a Souslin continuum
and construct a sequence of points txα | α P ω1u in K by transfinite
recursion. Given txα | α P βu, let xβ be any element of K not in
the closure of txα | α P βu. This is always possible since K is not
separable. Let L “ txα | α P ω1u with the order inherited from K.
Clearly L is uncountable and it inherits the countable chain condition
from K. Since the closure of any countable subset of L in the subspace
topology is countable, Proposition 17.4 implies that the closure of any
countable subset of L in the interval topology is countable. �
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18. Trees and linear orders

Often it is useful to translate questions about linear orders into ques-
tions about trees. A tree is a partially ordered set pT,ďq such that for
all t P T , ts P T | s ă tu is well ordered by ď. The ordertype of
pts P T | s ă tu,ďq is called the height of t. The set of all elements of
T of height α is called the αth level of T and is denoted Tα. The height
of T is the least α such that Tα is empty.

An example of a tree is σQ, which consists of all subsets s of Q which
are well ordered by the usual order on Q. σQ is ordered by s ď t if s
is an initial part of t. This is isomorphic to the collection of all strictly
increasing sequences of rationals. The αth-level of σQ consists of those
s P σQ which have order type α. The tree σQ has no uncountable
chains — the union of such a chain would be an uncountable well
ordered subset of Q, which is absurd. We have seen previously in
the homework that σQ does not admit a strictly increasing map into
Q. Trees which admit a strictly increasing map into Q are precisely
those which are countable unions antichains — pairwise incomparable
subsets of the tree.

A typical example of a tree is a set of sequences, equipped with the
order of extension: s ď t if t extends s as a function. In fact this is a
completely general example of a tree. To see this, suppose that pT,ďq
is any tree. If t is in T and α is at most the height of T , there is a
unique t1 P Tα such that t1 ď t; this is the projection of t to level α and
is denoted t1|α. Define a function σ on T so that σptq is a sequence of
length htptq ` 1 where σptqpξq “ t|ξ if ξ ď htptq.

Proposition 18.1. If L is a linear order, then L is isomorphic to a
set of binary sequences equipped with the lexicographic order.

Proof. Fix a well ordering Ÿ of L and let θ be the ordertype of pL,Ÿq.
Let xξ denote the ξth element of L with respect to Ÿ and define fξ :
θ Ñ 2 by fξpηq “ 1 if xη ď xξ and fξpηq “ 0 otherwise. If fact for
any ξ, η, α ă θ, if fξpαq “ 0 ă fηpαq, then xξ ă xα ď xη and so in
particular xξ ălex xη. Since xξ ălex xη implies fξpηq “ 0 ă fηpηq “ 0,
this implies that xξ ÞÑ fξ is an order preserving map from pL,ďq to
ptfξ | ξ ă θu,ďlexq. �

Now suppose that pT,ďq is a tree. Let C pT q denote the collection of
all maximal chains in T . Observe that if x is in C pT q and t P x, then
maximality of x implies that ts P T | s ă tu Ď s. If xXTξ is nonempty,
it contains a unique element which we will denote xξ. Observe that the
set of all ξ such that x X Tξ is nonempty is an ordinal. Also, if x ‰ y
are in C pT q, then there is a ξ such that xξ ‰ yξ and both are defined.
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Define ∆px, yq to be the least such ξ. Now fix a linear order Ĳ of T .
Define x ălex y if xδ Ÿ yδ.

Lemma 18.2. If pa, bq is a nonempty open interval in C pT q, then it
contains a set of the form tx P C pT q | t P xu. Moreover for every
t P T , tx P C pT q | t P xu is a nonempty interval in C pT q.

Proof. Suppose that a ălex c ălex b are in C pT q. If ξ :“ maxp∆pa, cq,∆pc, bqq,
then t :“ cξ is defined. If x P C pT q has t P x, then xξ “ t and hence
a ălex x ălex b. To see that tx P C pT q | t P xu is a nonempty interval
in C pT q, first observe that Zorn’s lemma implies that any element of
T is contained in a maximal chain. Now suppose x ălex y both have t
as an element. If t R z for z P C pT q, then

∆px, yq ą htptq ě maxp∆px, zq,∆py, zqq

which implies that x ălex z if and only if y ălex z. �

Now suppose that L Ď 2θ for some ordinal θ and L is equipped with
the ălex ordering. Define T pLq to be the set of all sequences t such that
there exist x ‰ y in L with t an initial part of both. Elements of L
naturally correspond to elements of C pT pLqq: for every f in L, there
is a unique x in C pT q such that

Ť

x Ď f . Moreover if we define s Ĳ t
if s ď t or s and t are incomparable and s ălex t, then Ĳ induced the
order on L. Thus for any L, L embeds into C pT pLqq.

Observe that if s and t are in a tree T , then s and t are comparable
in the tree order precisely when they have a common upper bound.
An antichain in a tree T is a subset A which is pairwise incomparable.
A tree T is a Souslin tree if T is uncountable but has no uncountable
chains and no uncountable antichains. Observe that any level in a
Souslin tree is at most countable and hence the elements of a Souslin
tree of height α is countable whenever α ă ω1. A tree T is an Aronszajn
tree if every level and every chain of T is countable. ZFC proves that
Aronszajn trees exist where as we will see it is not sufficient to prove
that Souslin trees exist.

Theorem 18.3 (Aronszajn, Kurepa). Aronszajn lines exists.

Proof. This construction is guided by the homework set. �

Proposition 18.4. There is a Souslin tree if and only if there is a
Souslin line.

Proof. We have already seen that every c.c.c. nonseparable linear order
contains a Souslin line. Thus for the forward implication, it is sufficient
so show that if T is a Souslin tree, then pC pT q,ďlexq is c.c.c. and
nonseparable. Suppose that I is an uncountable collection of intervals
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in C pT q. For each I in I , Lemma 18.2 implies there is a uI P T such
that tx P C pT q | uI P xu Ď I. Since T is c.c.c., there are I ‰ J
in I such that uI ď uJ . Then tx P C pT q | uJ P xu Ď I X J and in
particular I is not pairwise disjoint. To see that C pT q is nonseparable
suppose that X Ď C pT q is countable. Let α ă ω1 be such that if x ‰ y
are in X, then ∆px, yq ă α. Since T is uncountable and the set of
elements of height less than α is countable, there is a t P Tα such
that tu P T | t ď uu is uncountable. Since each element of C pT q is
countable, there are uncountably many elements of C pT q having t as
an element. Let a ălex c ălex b be three such elements. It follows from
Lemma 18.2 that pa, bq is a nonempty interval disjoint from X.

To see the reverse implication, suppose that L is a Souslin line and
observe that we may take L to have cardinality ω1 and moreover to
have the form L “ tfξ | ξ ă ω1u Ď 2ω1 with the ordering being the
lexicographic ordering. If t P T pLq, then It :“ tf P L | t P fu is an
interval in L. If IsXIt are nonempty, then s and t are comparable. Thus
T pLq has no uncountable antichains. Also observe that if s ă t, then rts
is properly contained in rss. If xtξ | ξ ă ω1y were an uncountable chain
in T , then xrtξs | ξ ă ω1y would be an uncountable strictly decreasing
sequence of intervals in L, contradicting Proposition 17.2. Finally, to
see that T pLq is uncountable, suppose not and let α be an upper bound
on the heights of elements of T pLq. This means that for every g, g1 P L,
g “ g1 provided that tξ ă α | fξ ă gu “ tξ ă α | fξ ă g1u. This implies
tfξ | ξ ă αu is countable and dense, contrary to our assumption. �

Finally, we note the following theorem of Kurepa, which demon-
strates a striking property of Souslin lines.

Theorem 18.5 (Kurepa). If L is a nonseparable linear order, then
Lˆ L contains an uncountable family of pairwise disjoint rectangles.

Proof. If L isn’t c.c.c., then this is trivially true so suppose that L is
c.c.c.. By removing countably many points if necessary, we may assume
that every interval in L is uncountable. Recursively construct intervals
Iα, Jα, and Kα for α P ω1 such that if α ă β, no endpoint of Jα is in
Iβ and Jβ and Kβ are two disjoint intervals contained in Iβ. It suffices
to show that tJα ˆ Kα | α P ω1u is pairwise disjoint. Suppose that
α ă β. If Jα X Jβ ‰ H, then Jα X Iβ ‰ H. Since Iβ does not contain
an endpoint of Jα, it must be contained in Jα. But then Kβ Ď Jα,
which is disjoint from Kα. Thus

pJα ˆKαq X pJβ ˆKβq “ H.

�



MATH 6870: SET THEORY 47

19. Jensen’s ♦

Thomas Jech and Stanley Tennenbaum independently established
that ZFC is consistent with the existence of a Souslin tree by adapting
Cohen’s method of forcing (Jech in 1967, Tennenbaum in 1968). We
will soon see that even the assertion that there are c.c.c. topological
spaces whose product is not c.c.c. is something not provable in ZFC —
in particular ZFC does not prove or refute Souslin’s Hypothesis. After
Jech and Tennenbaum’s works, Jensen proved that L satisfies that
there is a Souslin tree — and therefore a Souslin continuum. Jensen’s
construction of a Souslin tree under the assumption V “ L proceeds
by a combinatorial consequence of V “ L which itself is extremely
important in set theory: ♦ is the assertion that there is a sequence
xAα | α P ω1y such that for every X Ď ω1

tα P ω1 | X X α “ Aαu

is stationary.

Proposition 19.1. The following are equivalent:

(a) ♦
(b) There is a sequence xAα | α P ω1y such that for each α P ω1,

Aα Ď Ppαq is countable and for every X Ď ω1, there is an
infinite α such that X X α P Aα.

Proof. This will be part of the next homework set. �

Theorem 19.2 (Jensen). L satisfies ♦.

Proof. Assume V “ L. Define h : ω1 Ñ ω1 so that hpαq is the least
ordinal β such that Lβ contains an injection from α into ω. Define
Aα :“ Ppαq X Lhpαq, noting that Aα is countable. By Proposition
19.1, it suffices to show that for every X Ď ω1 in L, there is an α such
that X X α P Aα. Let M ă Lω2 be countable such that X P M . By
condensation, pM, Pq is isomorphic to pLγ, Pq for some γ P ω1. Let π
denote the isomorphism and set α :“ M X ω1, noting that πpω1q “ α.
In particular, γ ă hpβq and hence Lγ XPpαq Ď Aα. Since πpXq Ď α,
it follows that πpXq “ X X α P Aα. �

Theorem 19.3 (Jensen). Assume ♦. There is a Souslin tree.

Proof. Let xAα | α P ω1y be a ♦-sequence. We will construct a tree
ordering ďT on the successor ordinals below ω1 by recursion. If m,n P
ω, define m ăT n if m ă n and there is a k such that m ă 2k and
n´m is divisible by 2k`1. Notice that the height of m with respect to
ăT is the number of occurrences of 10 in the binary expansion of m.
The minimal elements of pω,ďT q are those elements of ω of the form
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2n ´ 1. In particular pω,ďT q has infinitely many elements of height 0
and every m has infinitely many immediate successors.

Our recursive construction will satisfy the following conditions:

(1) for every limit ordinal α if β, ᾱ ă α, there is a γ ă α such that
β ăT γ and ᾱ ď γ;

(2) for any ξ P ω1 and m,n P ω, m ăT n if and only if ω ¨ ξ`m ăT
ω ¨ ξ ` n;

(3) for any ξ P ω1,

thtpαq | ω ¨ ξ ď α ă ω ¨ ξ ` ωu “ rω ¨ ξ, ω ¨ ξ ` ωq

(4) if α is a limit ordinal and Aα is a maximal antichain in pα,ďT q,
then Aα is a maximal antichain in pα ` ω,ďT q.

Observe that these conditions hold for ďT æω. Now suppose that we
have defined ďT æα for some limit ordinal α so that the above condi-
tions are satisfied. Let Bα denote the collection of all chains in pα,ďT q
which meet every level. By condition (1), the union of Bα is all of
α. Moreover if A is a maximal antichain in pα,ďT q, then the union of
those elements of Bα which contain some element of A is also all of α.
Let xbn | n P ωy be a sequence of distinct elements of Bα whose union
is α such that, if Aα is a maximal antichain in α, each bn contains an
element of Aα. There is now a unique definition of ďT æpα ` ωq such
that α` p2n´ 1q is an upper bound for bn and such that condition (2)
is satisfied. Notice that the height of α`p2n´ 1q is α — the predeces-
sors of this element are the set bn, which has ordertype α with respect
to ďT . Thus the height of α ` n is α ` htpnq. Conditions (1), (3),
and (4) therefore hold for pα ` ω,ďT q. This completes the recursive
construction.

Observe that since every element of pω1,ďT q has more than one
immediate successor, if pω1,ďT q contains an uncountable chain, it must
contain an uncountable antichain. Suppose that A Ď ω1 is a maximal
antichain. Define f : ω1 Ñ ω1 by fpαq the least β such that there is
an element of A X β which is ďT -comparable with α. Observe that δ
is f -closed if and only if AX δ is a maximal antichain in pδ,ďT q. Since
xAα | α P ω1y is a ♦-sequence, there is a δ which is f -closed such that
AXδ “ Aδ. It follows that AXδ is a maximal antichain in pδ`ω,ďT q.
If there were an α P A which is greater than δ ` ω, there would be
an α1 ďT α of height δ. This α1 would satisfy δ ď α1 ă δ ` ω and
also would be incomparable with every element of A X δ. This would
contradict that AXδ is a maximal antichain in pδ`ω,ďT q. Thus A Ď δ
and hence A is countable. �
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20. Martin’s Axiom

In 1971, Robert Solovay and Stanley Tennenbaum developed the
technique of iterated forcing in order to prove the consistency of Souslin’s
Hypothesis with ZFC. Tony Martin observed that their technique could
be used to establish the consistency of a more general principle, now
known as MAℵ1 , which itself is sufficient to prove Souslin’s Hypothesis.

In order to state the principle, we need to develop some terminology.
Let pP,ďq be a partial order. In the definitions which follow, it is
useful to think of P as being the collection of nonempty open sets in a
topological space, ordered by Ď. Two elements of P are compatible if
they have a common lower bound in P ; otherwise they are incompatible.
It is common to write p ‖ q to mean that p and q are compatible and
p K q to denote that p and q are incompatible. In the context of set
theory, an antichain in a partial order is pairwise incompatible subset.
Note that this is stronger than being pairwise incomparable. We say
that P has the c.c.c. if every antichain in P is countable.

A subset of P is a filter if it is nonempty, upward closed, and down-
ward directed. A subset D of a partial order P is dense in P if for
every p in P there is a q in D such that q ď p. If D is a collection of
dense subsets of P , then a filter G Ď P is D-generic if GXD ‰ H for
every D P D .

We can now state Martin’s Axiom for θ many dense sets (MAθ):
whenever Q is c.c.c. and D is a collection of at most θ dense subsets
of Q, there is a filter G Ď Q which is D-generic. Historically Martin’s
Axiom is the assertion that MAθ holds for every cardinal θ less than
2ℵ0 . That said, MAℵ1 is become much more important as a hypothesis
than Martin’s Axiom. Many papers in the 1970s and 1980s in set
theory state results under the hypothesis MA `  CH but really only
invoke MAℵ1 .

MAθ is actually an assertion about Baire category. Recall that if K
is a topological space, a subset E of K is nowhere dense if the closure
of E has empty interior. This is equivalent to the assertion that for
every nonempty open set U of K, there is an nonempty open set V Ď U
such that E X V is empty.

Theorem 20.1. For any infinite cardinal θ, MAθ is equivalent to the
assertion that a c.c.c. locally compact space cannot be covered by θ
nowhere dense sets.

Before proving the theorem, we’ll establish the following lemma,
which will later be an important part of our proof that MAθ is consis-
tent with ZFC.
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Lemma 20.2. For any cardinal θ, if the conclusion of MAθ holds for
all c.c.c. posets of cardinality at most θ, then MAθ is true.

Proof. Suppose that Q is any c.c.c. partial order and D is any collection
of dense sets of cardinality at most θ. Let λ be a regular cardinal such
that Q and D are in Hλ and let M be an elementary submodel of Hλ

of cardinality θ such that Q P M and D Ď M . Let Q0 “ Q XM . By
elementarity, any two elements of Q0 have a common lower bound in
Q0 if and only if they have a common lower bound in Q. Thus Q0 is
also c.c.c.. Also by elementarity, if D P D , then DXQ0 is dense in Q0.
By our hypothesis, there is a filter G Ď Q0 which meets each element
of D . It follows that tp P Q | Dq P G pq ď pqu is a D-generic filter. �

Proof of Theorem 20.1. For the forward implication, let K be given
and E be a collection of nowhere dense subsets of K of cardinality at
most θ. Define Q to be the collection of all nonempty open subsets
U of K. Since K is c.c.c., so is Q. If E is in E , define DE to be the
collection of all U P Q such that the closure of U is disjoint from E.
Since E is nowhere dense, DU is dense. Let G Ď Q be a filter which
intersects DE for each E P E and let x P

Ş

tU | U P Gu. Since G
is a filter and K is compact, this intersection is nonempty. Since G
contains an element whose closure is disjoint from E, x is not in

Ť

E .
For the reverse implication, let Q be a c.c.c. poset. By Lemma 20.2

we may assume that Q has cardinality at most θ. A subset G of Q is
centered if every finite subset of G has a common lower bound in Q.
Let K be the collection of all X Ď Q such that X is upwards closed and
centered. It is easily checked that K is a closed subset of the compact
space PpQq « 2Q. If q is in Q, set Uq :“ tX P K | q P Xu. It is readily
checked that each Uq is a nonempty open set and that every nonempty
open subset of Q contains Uq for some q. Furthermore, p and q are
compatible if and only if Up X Uq is nonempty. It follows that since Q
is c.c.c., so is K. For each p P G, define

Wp,q :“
ď

tUr | pr ď p, qq _ pp K rq _ pq K rqu

Observe that for every p, q, r P Q, Wp,q X Ur ‰ H. In particular, Wp is
a dense open set for every p P Q. Next observe that if D Ď Q is dense,
then

Ť

tUp | p P Du is dense open in K. If D is a collection of at most
θ dense subsets of Q, let G P K be such that for all D P D , G is in
Ť

tUp | p P Du and for all p P Q, G is in Wp. We first claim that since
G P

Ş

pPQWp, G is a filter. To see this, suppose that p, q P G. Since
G is in Wp,q X Up X Uq, there is an r P G such that r ď p, q. It follows
that G is a filter. Since G is in

Ť

tUp | p P Du if and only if G XD is
nonempty, it follows that G is D-generic. �
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21. Consequences of MAθ

We’ll now give some consequences of MAθ. First we’ll show that
MAℵ1 implies Souslin’s hypothesis. If K is a complete linear order,
then K is locally compact and hence homeomorphic to a dense open
set in a compact space. Also observe that if K is a Souslin continuum,
then there is a closed P Ď K such that KzP is separable and every
separable subspace of P is nowhere dense in P . In particular, the next
theorem implies that MAℵ1 implies Souslin’s Hypothesis.

Theorem 21.1. If K is a Souslin continuum such that separable sub-
spaces are nowhere dense, K can be covered by ℵ1 many nowhere dense
sets.

Proof. Recursively construct a Ď-increasing sequence of countable sets
xDα | α P ω1y such that Dα`1 intersects every maximal open interval of
K which is disjoint from Dα. We claim that K “

Ť

tDα | α P ω1u. This
is sufficient since our hypothesis implies that each Dα is nowhere dense.
Suppose for contradiction that some x P K be outside

Ť

tDα | α P ω1u.
For each α, let Iα be the maximal open interval containing x as an
element and disjoint from Dα. By construction xIα | α P ω1y is strictly
Ď-decreasing, contradicting Proposition 17.2. �

We will now turn to a striking consequence that MAθ has for cardinal
arithmetic. A I is a countable set, a collection A of infinite subsets of
I is almost disjoint if every pair of elements have finite intersection.
If r P 2ω, define ar :“ træn | n P ωu. It follows that tar | r P 2ωu
is an almost disjoint family of subsets of 2ăω of cardinality 2ℵ0 . Since
|2ăω| “ ℵ0, there is an almost disjoint family of infinite subsets of ω of
cardinality 2ℵ0 .

Theorem 21.2 (Solovay’s almost disjoint coding). Assume MAθ. If
A Ď Ppωq is an almost disjoint family of cardinality θ, then for every
B Ď A, there is an x Ď ω such that a X x is infinite if and only if
a P B. In particular, 2θ “ 2ℵ0.

Proof. Assume MAθ and let B Ď A be given as in the statement of the
theorem. Define Q to be the collection of all pairs q “ pxq, Aqq such
that:

‚ xq is a finite subset of ω;
‚ Aq is a finite subset of AzB.

If p, q P Q, define q ď p to mean:

‚ xp is an initial part of xq and Ap Ď Aq;
‚ if a P Ap, then a is disjoint from xqzxp.
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Observe that if x Ď ω is finite then Qx “ tq P Q | xq “ xu is centered:
if F Ď Qx is finite, then px,

Ť

pPF Apq is a lower bound for F . Thus

Q is σ-centered and hence c.c.c.. Next notice that if a P AzB, then
Da :“ tq P Q | a P Aqu is dense.

Claim 21.3. For each b P B and n P ω,

Db,n :“ tq P Q | |bX xq| ě nu

is dense.

Proof. Let p P Q be arbitrary. Since A is almost disjoint and Ap is
finite,

Ť

tb X a | a P Apu is finite. Let k be a strict upper bound
for this set and let m ą k be such that |b X rk,ms| ě n. Define
q :“ pxpY pbX rk,msq, Apq. Since xqzxp Ď bzk, xqzxp is disjoint from a
for every a P Ap. It follows that q ď p is in Db,n. �

Now let G Ď Q be a filter which intersects Da for each a P AzB and
Db,n for each b P B and n P ω. Define x :“

Ť

txq | q P Gu. We will
show that for a P A, xX a is infinite if and only if a P B.

Suppose that a P AzB and let p P GXDa. We claim xzxp is disjoint
from a. If k P xzxp, let q P G be such that k P xq and let r P G such
that r ď p, q. It follows that k P xqzxp Ď xrzxp, which is disjoint from
a. Now suppose that b P B and let n P ω be arbitrary. Let p P GXDb,n.
Then xpXb Ď xXb and |xpXb| ě n. It follows that xXb is infinite. �
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22. Chain conditions

We’ll now turn to the study of a family of assumptions that the
compatibility relation of a given partial order might satisfy. For histor-
ical reasons, these types of assumptions are known as chain conditions
even though they really concern antichains more than chains. A subset
of a partial order P is linked if every two elements have a common
lower bound, n-linked if every n elements have a common lower bound
and centered if every finite subset has a common lower bound. The
modifier “σ-” means “is a countable union of” so, e.g. P is σ-centered
means that P is a countable union of centered sets. Also, a partial
order P satisfies Knaster’s condition (or has property K ) if every un-
countable subset contains an uncountable linked subset. Trivially every
σ-centered poset is σ-linked, every σ-linked poset has property K, and
every property K poset is c.c.c.. Observe that if K is a compact space,
the partial order of nonempty open subsets of K ordered by contain-
ment is σ-centered if and only if K is separable.

Theorem 22.1. Assume MAθ for σ-centered posets. Suppose that
F Ă Ppωq has the property that every finite subset of F has infi-
nite intersection. Then there is an infinite x Ď ω such that x Ď˚ y for
every y P F .

Remark 22.2. The minimum cardinality of a family F Ď Ppωq for
which the conclusion of the theorem fails is commonly denoted p. Mur-
ray Bell proved that p is the minimum cardinality of a cover of a separa-
ble compact space by nowhere dense sets or, equivalently, the minimal
cardinal θ for which MAθ fails for a σ-centered poset.

Proof. We may assume without loss of generality that F is closed under
finite intersections. Define Q to be the set of all q “ pxq, Fqq such that
xq Ď ω is finite and Fq P F . Define q ď p if xp is an initial part
of xq, Fq Ď Fp, and xqzxp Ď Fp. If x is a finite subset of ω, then
Qx :“ tq P Q | xq “ xu is centered and therefore Q is σ-centered. If
F P F and n P ω, define

DF,n :“ tq P Q | p|xq| ě nq ^ pFq Ď F qu.

To see that each DF,n is dense, let p P Q be given. Let y Ď Fp X F be
such that |y| ě n and maxpxq ă minpyq. Then q :“ pxp Y y, Fp X F q
satisfies q ď p and q P DF,n. Now let G Ď Q be a filter which intersects
DF,n for each F P F and n P ω. Define x :“

Ť

txp | p P Gu. Suppose
that F P F and n P ω are arbitrary. Let p P GXDF,n. As in the proof
of Theorem 21.2, xp is an initial part of x and xzxp Ď F . Since n was
arbitrary, it follows that x is infinite and x Ď˚ F . �
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Theorem 22.3. Assume MAθ. If E is a collection of Lebesgue measure
0 sets and |E | ď θ, then

Ť

E has measure 0.

Remark 22.4. If I is an ideal of set (i.e. closed under subsets and finite
unions), then addpI q is defined to the minimum cardinality of a subset
of I whose union is not in I . The previous theorem asserts that MAθ

implies addpN q ě θ where N is the ideal of measure 0 subsets of R.
Tomek Bartoszynski has shown that ZFC implies addpM q ě addpN q,
where M is the ideal of first category subsets of R.

Proof. Observe that E Ď R has measure 0 if and only if its intersection
with ra, bs has measure 0 for each a ă b. It therefore suffices to consider
collections E of subsets of r0, 1s. We will need the following claim.

Claim 22.5. The following are equivalent for a subset E of r0, 1s.

(a) E has measure 0;
(b) for every compact K Ď r0, 1s of positive measure and every ε ą 0,

there is a K 1 Ď K of measure at least λpKq ´ ε which is disjoint
from E;

(c) for every compact K Ď r0, 1s of positive measure and there is a
K 1 Ď K of positive measure which is disjoint from E.

Proof. To see (a) implies (b), suppose that E has measure 0 and let
K Ď r0, 1s have positive measure and ε ą 0. Since λpKzEq “ λpEq,
there is an increasing sequence xKn | n P ωy of compact subset of KzE
such that limn λpKnq “ λpKq. Let n be sufficiently large that λpKnq ą

λpKq ´ ε. Trivially (b) implies (c). To see that (c) implies (a), let A
be a maximal pairwise disjoint collection of compact subsets of r0, 1szE
of positive measure. Notice that A is countable. If λp

Ť

A q “ 1, then
λpEq “ 0 and we’re done. Suppose for contradiction that λp

Ť

A q ă 1
and let K Ď r0, 1sz

Ť

A be a compact set of positive measure. By
hypothesis, there is a compact K 1 Ď K of positive measure which is
disjoint from E. This contradicts the maximality of A . �

Returning to the main proof, by the claim, it suffices to show that
if K Ď r0, 1s is a compact set of positive measure, there is a compact
K 1 Ď K of positive measure which is disjoint from YE . Let K be given
and define Q to be the collection of compact subsets q of K such that
the measure of q is greater than r :“ λpKq{2.

Claim 22.6. Q is σ-linked.

Proof. Let U be the collection of all U Ď R such that U is a finite
union of rational open intervals and λpU XKq ą r. For each U P U ,
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define QU to be all q P Q such that q Ď U and

λpUzqq ă
1

2
pλpUq ´ rq.

Observe that U is countable and that Q “
Ť

tQU | U P U u. If
p, q P U , then

λpUzpX qq ď λpUzpq ` λpUzqq ă λpUq ´ r

and thus λppX qq ą r. In particular, QU is linked for each U . �

If E has measure 0, define DE to be the collection of all q P Q
such that q is disjoint from E. By Claim 22.5, DE is dense. My
MAθpσ ´ linkedq, there is a G Ď Q be a filter which intersects DE for
each E P E . Observe that since G consists of closed sets, there is a
countable filter G0 Ď G such that

Ş

G0 “
Ş

G. Since every element of
G0 has measure greater than r, the measure of K 1 :“

Ş

G0 is at least
r ą 0. It follows that

Ť

E is disjoint from K 1 and hence is measure
0. �

Next we turn to question of whether the c.c.c. is preserved by taking
products. If P and Q are partial orders, then their product has P ˆQ
as its underlying set, with pp0, q0q ď pp1, q1q if and only if p0 ď p1 and
q0 ď q1. Observe that a poset P is c.c.c. if whenever xpξ | ξ P ω1y are
elements of P (possibly not all distinct), there exist ξ ‰ η such that
pξ and pη are compatible. Similarly, P has property K if whenever
xpξ | ξ P ω1y are elements of P , there is an uncountable X Ď ω1 such
that if ξ ‰ η are in X, then pξ and pη are compatible.

Proposition 22.7. Suppose that P satisfies the c.c.c. and Q has prop-
erty K. Then P ˆQ has the c.c.c..

Proof. Let xppξ, qξq | ξ P ω1y be a sequence of elements of P ˆQ. Since
Q has property K, there is an uncountable X Ď ω1 such that if ξ ‰ η
are in X, then qξ and qη are compatible. Since P is c.c.c., there are
ξ ‰ η in X such that pξ and pη are compatible. Thus ppξ, qξq and
ppη, qηq are compatible and hence P ˆQ has the c.c.c.. �

Proposition 22.8. Assume MAℵ1. Every c.c.c. partial order has
property K.

Proof. Let Q be a c.c.c. partial order and suppose that xpξ | ξ P ω1y is
a sequence of elements of Q. We will first show that, for some p P Q,
if q ď p then there are uncountably many ξ such that pξ is compatible
with q. If not, let qξ ď pξ be such that for all but countably many
η, qξ is incompatible with pη. It follows that for all ξ P ω1, qξ is
compatible with qη for only countably many η. It follows that for some
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uncountable X Ď ω1, tqξ | ξ P Xu is an uncountable antichain, which
is a contradiction.

Let Q0 be the partial order of all q P Q such that q ď p and order Q0

with the order inherited from Q. Clearly Q0 is c.c.c.. For each ξ P ω1,
define

Dξ :“ tq P Q0 | Dη ą ξ pq ď pηqu.

To see that Dξ is dense, let q ď p and ξ be given. By assumption, there
is an η ą ξ such that q is compatible with pη. If r is a lower bound
for q and pη, then r P Dξ and r ď q. Let G0 Ď Q0 be a filter which
intersects Dξ for each ξ P ω1 and let G be the upwards closure of G0

in Q. It follows that G is linked and contains pξ for uncountably many
ξ P ω1. �

Corollary 22.9. MAℵ1 implies that the product of c.c.c. partial orders
is c.c.c..

Remark 22.10. The proof of Proposition 22.8 actually shows that if Q
is a c.c.c. partial order and X Ď Q is uncountable, then X contains an
uncountable centered family. Stevo Todorcevic and Boban Veličković
have shown that in fact MAℵ1 is equivalent to this assertion. It is an
open problem whether MAℵ1 is equivalent to the assertion that every
c.c.c. partial order has property K. It is also unknown whether MAℵ1 is
equivalent to the assertion that the product of two c.c.c. partial orders
is c.c.c..



MATH 6870: SET THEORY 57

23. Specializing trees

Given a tree T , it is very natural to ask when it has an uncountable
chain. An obstruction to a tree T containing an uncountable chain is
the existence of a cover of T by countably many antichains. Trees with
such a cover are said to be special. It was shown in the exercises that a
tree T is special precisely when there is a function f : T Ñ Q such that
fpsq ă fptq whenever s ă t. Many examples of nonspecial trees with-
out uncountable chains. Perhaps the easiest to describe is σQ, which
consists of all strictly increasing sequences of elements of Q, ordered by
extension. We will see, however, that MAθ implies that every tree of
cardinality at most θ is special unless it contains an uncountable chain.
We will begin by the following general consequence of MAθ.

Theorem 23.1. Assume MAθ. If Q is a c.c.c. poset and |Q| ď θ,
then Q is σ-centered.

Proof. If θ “ ℵ0, this is trivially true, so we may assume that θ ě ℵ1. In
particular Qn is c.c.c. for all n P ω. Let Qăω be the partial order of all
finite sequences of elements of Q ordered by q ď p if domppq Ď dompqq
and whenever i P domppq, qpiq ď ppiq. Notice that since each Qn is
c.c.c., so is Qăω. For each p P Q, define Dp Ď Qăω to consist of all
q P Qăω such that for some n, qpnq ď p. Clearly Dp is dense for all p:
if q P Qăω then qaxpy is in Dp and is below q. By MAθ, there is a filter
G Ď Qăω such that GXDp ‰ H for all p P Q. If Gn “ tqpnq | q P Gu,
then Gn is centered and Q “

Ť

tGn | n P ωu. �

Lemma 23.2. Suppose that T is a tree with no uncountable chains. If
A,B Ď T are uncountable, there are uncountable A1 Ď A and B1 Ď B
such that every element of A1 is incomparable with every element of B1.

Proof. Let U be the set of all u P T such that there are uncountably
many s P A with u ă s and let V be the corresponding set for B. First
suppose that U ‰ V . Without loss of generality, we may assume that
there is a u P UzV . Define

A1 :“ ts P A | u ă su B1 :“ tt P B | pu ę tq ^ pt ę uqu.

Clearly A1 is uncountable and every element of A1 is incompatible with
every element of B1. To see that B1 is uncountable, observe that if
t P BzB1, then either t ě u or t ď u. Since the predecessors of u form
a chain, there are only countably many elements of B below u. Since
u R V , there are only countably many t P B with t ě u. Thus BzB1 is
countable hence B1 is uncountable.

Now suppose that U “ V . If there exist u, v P U which are incompa-
rable, then define A1 :“ ts P A | u ď su and B1 :“ tt P B | v ď tu and
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observe that A1 and B1 are as desired. The alternative is that U “ V
is a chain, which therefore is countable by our assumption. If U has
a greatest element u, then let A0 and B0 be the set of immediate suc-
cessors of u which have elements of A and B respectively above them.
Observe that since u is a maximal element of both U and V , A0 and
B0 are uncountable. Let A10 Ď A0 and B10 Ď B0 be uncountable disjoint
sets and define A1 be the set of elements of A above some element of
A10 and B1 be the set of elements of B above some element of B1. Since
A10 and B10 are disjoint subsets of a single level of T , it follows that
every element of A1 is incomparable with every element of B1 (in fact
A1 Y B1 is an antichain). Finally suppose that U “ V is a chain but
has no greatest element. If u P U , define

Au :“ ts P A | u ă su Bu :“ tt P B | pu ę tq ^ pt ę uqu

noting that every element of Au is incomparable with every element
of Bu. By definition of U , each Au is uncountable. Since U has no
last element B “

Ť

tBu | u P Uu. Since U is countable, some Bu is
uncountable and for this u, Au Ď A and Bu Ď B satisfy the conclusion
of the lemma. �

The following lemma is useful in establishing the c.c.c..

Lemma 23.3. Suppose that K Ď rω1s
2 has the property that whenever

A,B Ď ω1 are uncountable, there are uncountable A1 Ď A and B1 Ď B
such that tα, βu P K for every α P A1 and β P B1. The poset Q of finite
q Ď ω1 such that rqs2 Ď K ordered by reverse containment is c.c.c..

Proof. Let xqξ | ξ P ω1y be a sequence of elements of Q. By refining
the sequence of necessary, we may assume that each qξ has cardinality
n for some n P ω. Let qξ “ tqξpiq | i P nu. Construct uncountable
Ak, Bk Ď ω1 for k ă n2 such that:

‚ Ak`1 Ď Ak and Bk`1 Ď Bk if k ă n2 ´ 1 and
‚ if k “ i` jn, then for all ξ P Ak and η P Bk, tqξpiq, qηpjqu P K.

If ξ P An2´1 and η P Bn2´1, then qξ Y qη is in K. �

Theorem 23.4. Assume MAθ. If T is a tree with no uncountable
branches such that |T | ď θ, then T is a countable union of antichains.

Proof. Let Q be the poset of all finite antichains in T . By Lemmas 23.2
and 23.3, Q is c.c.c.. By Corollary 23.1, there a countable collection of
centered sets tGn | n P ωu whose union is Q. Set An :“

Ť

Gn, noting
that An is an antichain. Since ttu P Q for each t P T ,

Ť

tAn | n P ωu “
T . �
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24. Pressing down and verification of the c.c.c.

The pressing down lemma is often useful in verifying the c.c.c. in
situations where posets are not σ-linked. Suppose that X is a set and
F is a set consisting of finite subsets of F . We say that F is a ∆-
system with root R if R Ď F for every F P F and tF zR | F P F u is
pairwise disjoint and consists of sets of the same cardinality. The next
lemma is known as the ∆-System Lemma.

Lemma 24.1. Suppose that F is a collection of finite sets and |F | is
a regular uncountable cardinal. Then F contains a ∆-system F0 such
that |F0| “ |F |.

Proof. Set X :“
Ť

F and observe that |X| “ |F |. Define κ :“ |F |
and observe that, by replacing F by its image under a bijection, we
may assume that X “ κ. Let xFξ | ξ ă κy enumerate F without
repetition. Define f : κÑ κ by fpαq :“ suptmaxpFξq ` 1 | ξ P αu and
let E Ď κ be the set of all limit ordinals α which are f -closed. If α ă κ
is a limit ordinal, let rpαq “ maxppFα X αq Y t0uq ` 1. By the pressing
down lemma, there is a stationary S Ď E consisting of limit ordinals
and an γ ă κ such that rpαq “ γ if α P S. By shrinking S if necessary,
we may assume that for some n P ω and R Ď γ:

‚ |Fα| “ n for all α P S;
‚ Fα X α “ R for all α P S

To see that F0 :“ tFα | α P Su is a ∆-system, it suffices to check that
if α ă β are in S, then Fα X Fβ “ R. This follows from the fact that
Fα X α “ Fβ X β “ R and

maxpFαq ă fpαq ă β ď minpFβzβq.

�

Corollary 24.2. Suppose that θ is any cardinal and Q is the poset
consisting of all functions q : Dq Ñ 2 such that Dq Ď θ is finite,
ordered by q ď p if q extends p. If X Ď Q has regular uncountable
cardinality κ, then X contains a centered family of cardinality κ.

Remark 24.3. A subset of this poset is centered if and only if it is
linked. If θ is larger than 2ℵ0 , this poset is not σ-linked.

Proof. By the ∆-System Lemma, there is an X 1 Ď X of cardinality
κ such that tdompqq | q P Xu forms a ∆-system with root D. Let
X2 Ď X 1 have cardinality κ be such that if p, q P X2, pæD “ qæD. It
follows that X2 is centered. �

Sometimes the Pressing Down Lemma needs to be used more directly.
In order to illustrate this, we will prove another consequence of MAℵ1 .
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A ladder system on ω1 is a sequence xCα | α P limpω1qy such that if
α P limpω1q, Cα Ď α is cofinal and has ordertype ω. Recall that if f
and g are functions with a common domain D, then f “˚ g denotes
the assertion that tx P D | fpxq ‰ gpxqu is finite.

Theorem 24.4. Assume MAℵ1. If xCα | α P limpω1qy is a ladder
system and xfα | α P limpω1qy is a sequence of functions such that
fα : Cα Ñ ω, then there is a function g : ω1 Ñ ω such that for all limit
ordinals α, gæCα “

˚ fα.

Proof. Let Q be all functions q : Dq Ñ ω such that:

‚ Dq “
Ť

tCα | α P Fqu for some finite Fq Ď limpω1q and
‚ if α P Dq, then qæCα “

˚ fα.

Order q ď p if q extends p. Observe that for each γ P ω1, tqæγ | q P Qu
is countable.

We’ll first show that Q is property K. Suppose that xpξ | ξ P ω1y is
a sequence of conditions from Q and let Fξ denote Fpξ . If tFξ | ξ P ω1u

is countable, then we can an uncountable X Ď ω1 such that if ξ, η P X
such that pξ “ pη. Otherwise, there is an uncountable X Ď ω1 such
that tFξ | ξ P Xu forms a ∆-system with root R. For each α P ω1,
let ξα P X be such that α is not in Fξα . Let E Ď ω1 be the closed
and unbounded set consisting of all limit ordinals δ such that if α ă δ,
then maxpFξαq ă δ. If α P E, define rpαq to be the least upper bound
for

Ť

tCη X α | η P Fξαu. By the Pressing Down Lemma, there is a
stationary S Ď E such that r is constantly γ on S. By refining S if
necessary, we may assume that if α, β are in S, then qαæγ “ qβæγ.
Now observe that if α ă β are in S, then dompqξαq Ď β and hence
dompqξαq X dompqξβq Ď γ. It follows that tqξα | α P Su is linked.

Claim 24.5. If α is a limit ordinal, tq P Q | α P Fqu is dense.

Proof. Let p P Q be arbitrary. If α P Fq, there is nothing to show. If
not, then Cα X domppq is finite. Define

q :“ pY pfαæpCαz domppqqq

and observe that q ď p and q P Dα. �

By MAℵ1 , there is a filter G Ď Q which meets Dα for every limit
ordinal α. Define

gpξq :“

#

qpξq if q P G and ξ P dompqq

0 otherwise

This function satisfies the conclusion of the theorem. �
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25. Forcing and its syntax

Paul Cohen developed the method of forcing to establish that the
Continuum Hypothesis is not provable from the axioms of ZFC. This
method was refined considerably by Solovay and has become the pri-
mary tool for proving that set theoretic hypotheses are consistent with
ZFC. In order to get an intuitive understand of what we will formalize,
let us begin with two thought experiments. First consider the follow-
ing “paradox” in probability: if Z is a continuous random variable,
then for any possible outcome z in R, the event Z ‰ z occurs almost
surely (i.e. with probability 1). How does one reconcile this with the
fact that, in a truly random outcome, every event having probability
1 should occur? Recasting this in more formal language we have that,
“for all z P R, almost surely Z ‰ z”, while “almost surely there exists
a z P R, Z “ z.”

Next suppose that, for some index set I, xZi | i P Iy is a family of
independent continuous random variables. It is a trivial matter that
for each pair i ‰ j, the inequality Zi ‰ Zj holds with probability 1.
For large index sets I, however,

|tZi | i P Iu| “ |I|

holds with probability 0; in fact this event contains no outcomes if I
is larger in cardinality than R. In terms of the formal logic, we have
that, “for all i ‰ j in I, almost surely the event Zi ‰ Zj occurs”, while
“almost surely it is false that for all i ‰ j P I, the event Zi ‰ Zj
occurs”.

It is natural to ask whether it is possible to revise the notion of al-
most surely so that its meaning remains unchanged for simple logical
assertions such as Zi ‰ Zj but such that it commutes with quantifi-
cation. For instance one might reasonably ask that, in the second
example, |tZi | i P Iu| “ |I| should occur almost surely regardless of
the cardinality of the index set. Such a formalism would describe truth
in a necessarily larger model of mathematics, one in which there are
new outcomes to the random experiment which did not exist before
the experiment was performed.

We will now be more formal. A forcing is simply a set Q equipped
with a transitive, reflective relation ď which has a greatest element 1.
This will serve as an abstraction of the set of events of positive probabil-
ity in a probability space. We will be interested in studying the logical
properties of a “generic” filter in Q — something that corresponds to
the analysis of a random outcome in probability. The central objects
of study in forcing are the forcing relation , and the Q-names. These
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are the abstractions of “almost surely” mentioned above and of random
variables, respectively. It will turn out that the formal definitions of
, and of Q-names are not as informative as their properties. We will
therefore introduce their properties axiomatically first and then later
return to given them a formal definition.

Unless we explicitly state otherwise, we will assume the forcing Q is
separative: whenever p, q P Q, if p ę q, then there is a p1 ď p such that
p1 K q. That is, for all p, q P Q, p “ q if and only if the set of conditions
compatible with p is the same as the set of conditions compatible with
q. This assumption is a minor one: Q is any forcing, we can define
p ” q if

tr P Q | p ‖ ru “ tr P Q | q ‖ ru.
The relation ď on Q naturally induces an order on the quotient Q{ ”.
Thus we lose little generality in assuming all forcings are separative.
If Q is the collection of all Borel subsets of r0, 1s of positive measure,
then pQ,Ďq is not separative: in this case p ” q if p and q differ by a
measure 0 set.

Fix for the moment a forcing Q. There are two examples of Q-names
which deserve special mention. The first is the “check name”: for each
set x, there is a Q-name x̌. This corresponds to a random variable
which is constant — it does not depend on the outcome. The other
is the Q-name 9G for the generic filter; this corresponds to the random
variable representing the outcome of the random experiment.

The forcing language associated to Q is the class of all first order
formulas in the language of set theory augmented by adding a constant
symbol for each Q-name. If q is in Q and φ is a sentence in the forcing
language, then informally the forcing relation q , φ asserts that if
the event corresponding to q occurs, then almost surely φ will be true.
In the absence of the definitions of “Q-name” and “,,” the following
properties can be regarded as axioms which govern the behavior of
these primitive concepts. They can be proved from the definitions of
Q-names and the forcing relation once they are in hand.

Property 1. For any x and y and any p P Q, p , x̌ P y̌ if and only if
x P y.

Property 2. 1 , 9G Ď Q̌ and for every p, q P Q, p , q̌ P 9G if and only
if p ď q.

It is useful to define the following terminology: if there is a z such
that q , 9y “ ž, then we say that q decides 9y (to be z). Similarly, if
p , φ or p ,  φ, then we say that p decides φ.
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Property 3. For any x, any Q-name 9y, and p P Q, if p , 9y P x̌, then
there is a q ď p which decides 9y.

Property 4. If 9x is a Q-name and p P Q, then the collection of all
Q-names 9y such that 1 , 9y P 9x forms a set and the collection of all
Q-names 9y such that 1 , 9y “ 9x forms a set.

Remark 25.1. Unlike the other properties, this one is dependent on the
definition of Q-name which we will later give.

Property 5. If p P Q and φ is a formula in the forcing language, then
p ,  φ if and only if there is no q ď p such that q , φ.

Observe that this property implies that if p , φ and q ď p, then q , φ.

Property 6. If p P Q, then p , Dvφpvq if and only if there is a Q-name
9x such that p , φp 9xq.

Property 7. For any q P Q, the collection of sentences in the forcing
language which are forced by q contains the ZFC axioms, the axioms of
first order logic, and is closed under modus ponens. Moreover, if the
axioms of ZFC are consistent, then so are the sentences forced by q.

Observe that since the 1 forces the Axiom of Extensionality, if x and
y are sets and p P Q, then p , x̌ “ y̌ if and only if x “ y. If 1 , φ,
then we will sometimes say that “Q forces φ” or, if Q is clear from the
context, that “φ is forced.” Similarly, we will write “ 9x is a Q-name
for...” to mean “ 9x is a Q-name and Q forces that 9x is...”.

A key aspect of the forcing construction is that, for a given forcing
Q, the collection of sentences forced by Q is often a proper extension of
ZFC. For instance, if Q is the partial order of all finite partial functions
from ω2 to 2 ordered by q ď p if q extends p, then we will see that Q
forces the negation of CH. By Property 7, this implies ZFC is consistent
with  CH.
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26. Some further properties of the forcing relation

In order to demonstrate how the properties of the forcing relation
can be used, we will prove the some propositions which will be useful.
The first illustrates the central feature of the forcing syntax: that 9G is
forced to be V-generic.

Proposition 26.1. 1 , x 9G is a filtery. Furthermore, for every dense

D Ď Q, 1 , 9GX Ď ‰ H.

Proof. The proof that 1 , x 9G is a filtery will be a homework exercise. If
the second part of the proposition were false for some dense set D Ď Q,
by Property 5 there would exist a p P Q such that p , 9G X Ď “ H.
Since D is dense, there is a q ď p in D. By Property 2, q , q̌ P 9G and
by Property 1, q , q̌ P Ď. By Properties 6 and 7, q , Drpr P 9G X Ďq

or equivalently q , 9GX Ď ‰ H. Since q ď p, this contradicts Property
5. �

Proposition 26.2. Suppose that x is a set and φpvq is a formula in
the forcing language. If for all y P x, p , φpy̌q, then p , @y P x̌ φpyq.

Proof. We will prove the contrapositive. Toward this end, suppose
that p does not force @y P x̌ φpyq. It follows from Property 5 there is
a q ď p such that q ,  @y P x̌ φpyq. By Property 7, this is equivalent
to q , Dy P x̌  φpyq. By Property 6, there is a Q-name 9y such that

q , p 9y P x̌q ^ p φp 9yqq.

By Property 7, q , 9y P x̌ and therefore by Property 3, there is a r ď q
and a z in x such that r , 9y “ ž. But now, by Property 7, r ,  φpžq
and hence by Property 5, p does not force φpžq. �

Proposition 26.3. Suppose that φpv̄q is a formula in the language of
set theory with only bounded quantification. If x̄ is a tuple of sets and
φpx̄q is true, then 1 , φpˇ̄xq.

Proof. The proof is by induction on the length of φ. If φ is atomic,
then this follows from Property 1. If φ is a conjunct, disjunct, or a
negation, then the proposition follows from Property 7 and the induc-
tion hypothesis. Finally, suppose φpv̄q is of the form @w P vi ψpv̄, wq.
If @w P xiψpx̄, wq is true, then for each w P xi, ψpx̄, wq is true. By
our induction hypothesis, 1 , φpˇ̄x, w̌q for each w P xi. By Proposition
26.2, it follows that 1 , @w P x̌i ψpˇ̄x,wq. �

Proposition 26.4. If 9α is a Q-name, p P Q, and p , x 9α is an ordinaly,
then there is an ordinal β such that p , 9α P β̌.
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Proof. Let p and 9α be given. Suppose for contradiction that for every
q ď p and every β P ON, q ­, 9α P β̌. Observe that if β is an ordinal,
then by Proposition 26.3 and Property 7, p , β̌ P ON. By Property 7
applied to Theorem 3.3,

p , pβ̌ P 9αq _ p 9α P β̌q _ p 9α “ β̌q.

By Properties 5 and 7, it must be that p , β̌ P 9α. But this means that

tβ̌ | pβ P ONq ^ pp , β̌ P 9αqu

is a proper class, which contradicts Property 4. �

Proposition 26.5. Suppose that T is a set consisting of finite length
sequences, closed under taking initial segments. If there is a forcing Q
and some q P Q forces “there is an infinite sequence σ, all of whose
finite initial parts are in T ,” then such a sequence σ exists.

Proof. If no such sequence σ exists, then there is a function ρ : T Ñ ON
such that if s is a proper initial segment of t, then ρptq P ρpsq. Such
a ρ certifies the nonexistence of such a σ since such a σ would define
a strictly decreasing infinite sequence of ordinals. Observe that the
assertion that ρ is a strictly decreasing map from T into the ordinals is
a statement about ρ and T involving only bounded quantification. By
Proposition 26.3, this statement is forced by every forcing Q. �

There is a special class of forcings for which there is a more con-
ceptual picture of the forcing relation. We begin by stating a general
fact about forcings. Recall that a Boolean algebra is complete if every
subset has a least upper bound.

Theorem 26.6. For every forcing Q, Q is isomorphic to a dense sub-
order of the positive elements of a complete Boolean algebra.

A typical example of a complete Boolean algebra is the algebra of
measurable subsets of r0, 1s modulo the ideal of measure zero sets. The
algebra of Borel subsets of r0, 1s modulo the ideal of first category sets
is similarly a complete Boolean algebra.

Suppose now thatQ is the positive elements of some complete Boolean
algebra B. If φ is a formula in the forcing language, then define the
truth value rrφss of φ to be the least upper bound of all b P B such that
b , φ. Observe that if a ď rrφss, then a cannot force  φ. Hence rrφss
forces φ. The rules which govern the logical connectives now take a
particularly nice form:

rr φss “ rrφssc rrφ^ ψss “ rrφss ^ rrψss rrφ_ ψss “ rrφss _ rrψss
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rr@vφpvqss “
ľ

9x

rrφp 9xqss rrDvφpvqss “
ł

9x

rrφp 9xqss

Notice that while 9x ranges over all Q-names in the last equations — a
proper class — the collection of all possible values of rrφp 9xqss is a set
and therefore the last items are meaningful.

In spite of the usefulness of complete Boolean algebras in under-
standing forcing and also in some of the development of the abstract
theory of forcing, forcings of interest rarely present themselves as com-
plete Boolean algebras. While Theorem 26.6 allows us to represent any
forcing inside a complete Boolean algebra, defining forcing strictly in
terms of complete Boolean algebras would prove cumbersome in prac-
tice. We will return to complete Boolean algebras to prove a key result
about iterated forcing.
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27. Forcing semantics: names and interpretation

We will now turn to the task of giving a formal definition of what
is meant by a Q-name and q , φ. This will in turn be used to give a
semantic perspective of forcing. Fix a forcing Q.

If x is a set, x̌ is defined recursively by

tpy̌,1q | y P xu.

Notice that this implicitly depends on Q. Also, define 9G :“ tpq̌, qq |
q P Qu.

A set 9x is a Q-name if the following conditions are satisfied:

‚ every element of 9x is of the form p 9y, pq where 9y is a Q-name and
p is in Q and

‚ for all p 9y, pq P 9x and all p 9z, qq P 9y, either q ď p or 9z “ ǔ for
some u.

Notice that this apparently implicit definition is actually a definition
by recursion on rank. It should be clear that for any set x, x̌ is a
Q-name and 9G is a Q-name.

As mentioned in the previous section, the notion of a Q-name is
intended to describe a procedure for building a new set from a given
filter G Ď Q. This procedure is formally described as follows. If G is
any filter and 9x is any set, define 9xpGq recursively by

9xpGq :“ t 9ypGq | Dp P G pp 9y, pq P 9xqu

Again, this is a definition by recursion on rank. In the analogy with
randomness, 9xpGq corresponds to evaluating a random variable at a
given outcome.

The following gives the motivation for the definitions of x̌ and 9G.

Proposition 27.1. If H is any filter and x is any set, then x̌pHq “ x.

Proposition 27.2. If H is any filter, then 9GpHq “ H.

We now turn to the formal definition of the forcing relation. The
main complexity of the definition of the forcing relation is tied up in
the formal definition of p , 9x P 9y.

If Q is a forcing and 9x and 9y are Q-names, then we define the meaning
of p , 9x “ 9y and p , 9x P 9y as follows (the definition is by simultaneous
recursion on rank):

(1) p , 9x “ 9y if and only if for all 9z and p1 ď p,

pp1 , 9z P 9xq Ø pp1 , 9z P 9yq.

(2) p , 9x P 9y if and only if for every p1 ď p there is a p2 ď p1 and a
p 9z, qq in 9y such that p2 ď q and p2 , 9x “ 9z.
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Notice that the definition of p , 9x “ 9y is precisely to ensure that the
Axiom of Extensionality is forced by any condition. The definition of
the forcing relation for nonatomic formulas is straightforward and is
essentially determined by Properties 1–7:

(1) p ,  φ if there does not exist a q ď p such that q , φ.
(2) p , φ^ ψ if and only if p , φ and p , ψ.
(3) p , φ_ψ if there does not exist a q ď p such that q ,  φ^ ψ.
(4) p , @vφpvq if and only if for all 9x, p , φp 9xq.
(5) p , Dvφpvq if and only if there is an 9x such that p , φp 9xq.

The following theorem is one of the fundamental results about forc-
ing. It connects the syntactic properties of the forcing relation with
truth in generic extensions of models of set theory. If M is a count-
able transitive model of ZFC, Q is a forcing in M , and G Ď Q is an
M -generic filter, define

M rGs :“ t 9xpGq | 9x PM and 9x is a Q-nameu.

In this context, M rGs is the generic extension of M by G and M is
referred to as the ground model. Notice that

M “ tx̌pGq | x PMu ĎM rGs and G “ 9GpGq PM rGs.

The following theorem relates the semantics of forcing (i.e. truth in
the generic extension) with the syntax (i.e. the forcing relation).

Theorem 27.3. Suppose that M is a countable transitive model of
ZFC and that Q is a forcing which is in M . If q is in Q, φpv̄q is a
formula in the language of set theory, and 9x0, . . . , 9xn´1 are in M , then
the following are equivalent:

(a) q , φp 9x0, . . . , 9xn´1q.
(b) M rGs |ù φp 9x0pGq, . . . , 9xn´1pGqq whenever G Ď Q is an M-

generic filter and q is in G.

Remark 27.4. This theorem can be modified to cover countable tran-
sitive models of sufficiently large finite fragments of ZFC. In fact this
is crucial if one wishes to give a rigorous treatment of the semantics.
By Gödel’s second incompleteness theorem, ZFC alone does not prove
that there are any set models of ZFC (countable or otherwise).

While we will generally not work with the semantics of forcing, let
us note here that it is conventional to use 9x to denote a Q-name for
an element x of a generic extension M rGs. While such names are
not unique, the choice generally does not matter and this informal
convention affords a great deal of notational economy.
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We will now discuss some notational conventions concerning names.
It is frequently the case in a forcing construction that one encounters a
Q-name for a function 9f whose domain is forced by some condition to
be a ground model set; that is, for some set D, p , domp 9fq “ Ď. A par-
ticularly common occurrence is when D “ ω or, more generally, some
ordinal. Under these circumstances, it is common to abuse notation
and regard 9f as a function defined on D, whose values are themselves
names: 9fpxq is a Q-name 9y such that it is forced that 9fpx̌q “ 9y. Notice

that if, for some sets A and B, p , 9f : ǍÑ B̌, it need not be the case
that 9fpaq is of the form b̌ for some b in B — i.e. p need not decide the

value of 9fpaq for a given a P A.
In most cases, names are not constructed explicitly. Rather a pro-

cedure is described for how to build the object to which the name is
referring. Properties 6 and 7 are then implicitly invoked. For example,
if 9x is a Q-name,

Ť

9x is the Q-name for the unique set which is forced
to be equal to the union of 9x. Notice that there is an abuse of notation
at work here: formally, 9x is a set which has a union y. It need not be
the case that y is even a Q-name and certainly one should not expect
1 ,

Ť

9x “ y̌. This is one of the reasons for using “dot notation”: it
emphasizes the role of the object as a name.

A more typical example of is ω1, the least uncountable ordinal. Since
ZFC proves “there is a unique set ω1 such that ω1 is an ordinal, ω1 is
uncountable, and every element of ω1 is countable,” it follows that if Q
is any forcing, 1 , Dxφpxq, where φpxq asserts x is the least uncountable
ordinal. In particular there is a Q-name 9x such that 1 , φp 9xq. Unless
readability dictates otherwise, such names are denoted by adding a
“dot” above the usual notation (e.g. 9ω1).

Another example is R. Recall that R is the completion of Q with
respect to its metric — formally the collection of all equivalence classes
of Cauchy sequences of rationals. We use this same formal definition
of R to define 9R: if Q is a forcing, 9R is the collection of all Q-names for
equivalence classes of Cauchy sequences of rational numbers. Notice
that 9R is not the same as Ř and, more to the point, we need not even
have that 1 , 9R “ Ř for a given forcing Q. This construction also
readily generalizes to define 9X if X is a complete metric space. The
Q-name 9X is then the collection of all Q-names 9x such that 1 forces
that 9x is an equivalence class of Cauchy sequences of elements of X̌.
That is, 9X is a Q-name for the completion of X̌.

Finally, there are some definable sets which are always interpreted
as ground model sets and do not depend on the generic filter. Two
typical examples are finite and countable ordinals such as 0, 1, ω, and
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ω2 as well as sets such as Q. In such cases, checks are suppressed in
writing the names for ease of readability — we will write Q and not Q̌
or 9Q in formulae which occur in the forcing language.
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28. Chain conditions and the preservation of cardinals
and cofinalities

An important question when studying a given forcing is whether the
forcingQ preserves cardinals: if κ is a cardinal, does 1 ,Q xκ̌ is a cardinaly?
If the answer is “yes,” we say that Q preserves “κ is a cardinal” or some-
times just “Q preserves κ.” A related question is whether cofinalities
are preserved: if cfpλq ě κ, does 1 ,Q cfpλ̌q ě κ̌? Observe that an
ordinal κ is a regular cardinal if and only if cofpκq “ κ. Thus if a forc-
ing preserves cofinalities, then it preserves that regular cardinals are
regular cardinals. Since supremums of sets of cardinals are cardinals,
forcings which preserve cofinalities preserve all cardinals.

Forcings which satisfy the countable chain condition always preserve
cardinals. In fact it will be useful to state a more general result. If κ
is a cardinal forcing Q satisfies the κ-c.c. if every antichain in Q has
cardinality less than κ. The next lemma is the key to understanding
the influence of the κ-c.c..

Lemma 28.1. Suppose that Q is κ-c.c., X is a set and

p , 9x P X̌.

There is a Y Ď X such that |Y | ă κ and p , 9x P Y̌ .

Proof. Define

Y :“ ty P X | Dq ď p pq , 9x “ y̌qu.

To see that |Y | ă κ, choose a qy for each y P Y such that qy , 9x “ y̌.
Notice that if y ‰ y1 are in Y , then qy and qy1 must be incompatible:
if r ď qy, qy1 , then r , y̌ “ 9x “ y̌1, which is impossible. Since Q is
κ-c.c., |tqy | y P Y u| ă κ and hence |Y | ă κ. To see that p , 9x P Y̌ ,
let q ď p be arbitrary and find a r ď q such that r decides 9x to be y.
Then y P Y and r , 9x P Y̌ . Since q was arbitrary, p , 9x P Y̌ . �

Theorem 28.2. Suppose κ is a regular cardinal and Q is a forcing
which satisfies the κ-c.c.. If cfpλq ě κ, then 1 , cfpλ̌q ě κ̌. In
particular Q preserves cardinals which are greater than or equal to κ.

Proof. Suppose that 9f and 9δ are Q-names such that

1 , p 9δ P 9κq ^ p 9f : δ̌ Ñ λ̌q.

It suffices to find a γ P λ such that 1 , rangep 9fq Ď γ̌. By Lemma 28.1

and the regularity of κ, there is a δ0 P κ such that 1 , 9δ P δ0. For each
α P δ0, let Aα Ď λ be such that |Aα| ă κ and

1 , pα̌ P domp 9fqq Ñ p 9fpα̌q P Ǎαq
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Set A :“
Ť

tAα | α P δ0u and observe that |A| ă κ and hence A is
bounded in λ by some γ. By Proposition 26.2,

1 , @α P domp 9fq p 9fpαq P γ̌q.

�

Theorem 28.3 (Cohen). For any α, ZFC is consistent with |2ω| ě ℵα.

Proof. Set θ “ ℵα and let Q consist of all finite partial functions from
θ ˆ ω to 2. As we have seen already, Q is c.c.c. and hence preserves
cardinals. In particular, for each ordinal ξ, 1 , 9ℵξ̌ “ ℵ̌ξ. Define 9g to be

the name for the union of 9G and define 9rξ so that 1 , 9rξpnq “ 9gpξ, nq.
Since tq P Q | pξ, nq P dompqqu is dense for each pξ, nq P θ ˆ ω, 9g is
forced to be a total function from θ ˆ ω to 2. Since

tq P Q | Dnpqpξ, nq “ 0 ‰ 1 “ qpη, nqqu

is dense for each α ‰ β P θ, 1 , |t 9rξ | ξ P θ̌u| ě |θ̌| “ 9ℵα̌. Thus the
theory of what is forced by Q contains ZFC and |2ω| ě ℵα. �

It should be noted that while the property of being c.c.c. is far from
characterizing the preservation of cardinals, there are forcings which
collapse cardinals. For instance, if X is any set and Q is the poset
of all finite partial functions from ω to X, then Q forces that X is
countable — the union of the generic filter is forced to be a surjection
from ω onto X.
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29. Closure properties of forcings

Another fundamental question concerning a forcing Q is whether
forcing with Q adds new subsets to a ground model set or, more gen-
erally, new functions between two ground model sets. Of particular
interest is whether forcing with Q adds new subsets of ω or — equiva-
lently — new real numbers.

A poset Q is κ-closed if whenever xqξ | ξ P αy is a decreasing sequence
in Q of length less than κ, then there is a q̄ P Q such that q̄ ď qξ for
all ξ P α. An ω1-closed poset is often said to be σ-closed or countably
closed.

Theorem 29.1. Suppose that κ is a regular cardinal and Q is a κ-
closed forcing. If X is a set and 9s is a Q-name for a sequence of
elements of X of length less than κ, then the set of conditions which
decide 9s is dense. In particular, Q preserves cardinals and when cofi-
nalities are at least κ.

Proof. Let p P Q be arbitrary. By extending p if necessary, we may
assume that p decides the length of 9s to be α for some α P κ. Construct
a decreasing sequence xqξ | ξ P αy by recursion so that q0 ď p and for

all ξ P α there is a (unique) xξ such that qξ , 9spξ̌q “ x̌ξ. Since Q is
κ-closed, there is a q̄ such that q̄ ď qξ for all ξ P α. Now q̄ , @ξ P
α p 9spξq “ x̌ξq and therefore if t :“ xxξ | ξ P αy, q̄ , 9s “ ť. �

Corollary 29.2. If Q is σ-closed, Q forces 9R “ Ř and 9ω1 “ ω̌1.

Consider the poset Q of all countable partial functions from ω1 to
2, ordered by extension. Let 9g be the Q-name for the union of the
generic filter. By a standard density argument, 1 , 9g : ω̌1 Ñ 2.
For each ξ P ω1, fix a Q-name 9rξ for the element of 2ω such that
9rξpnq “ 9gpω ¨ ξ ` nq. For any s P 2ω, define Ds to be the set of all q in
Q such that for some ξ, rω ¨ ξ, ω ¨ ξ`ωq is contained in the domain of q
and spnq “ qpω ¨ ξ`nq for all n P ω. Clearly Ds is dense and if q P Ds,

q , Dξ P ω̌1 pš “ 9rξq

It follows that 1 , |Ř| ď ω̌1. Since Q is clearly σ-closed, Q forces
9R “ Ř and 9ω1 “ ω̌1 and hence that CH holds. In fact it is possible to
prove more.

Theorem 29.3. Let Q be the poset of all countable partial functions
from ω1 to 2. Q forces ♦.

Proof. First notice that since |ω1ˆω1| “ |ω1|, the poset of all countable
partial functions from ω1ˆω1 to 2 is isomorphic to Q. We will use this



74 JUSTIN MOORE

poset instead for convenience. Let 9g be the name for the union of the
generic filter. By standard density arguments, 9g is forced to be a total
function from ω1ˆω1 to 2. Define a sequence of Q-names x 9Aα | α P ω1y

by β P 9Aα if and only if β P α and 9gpα, βq “ 1. It suffices to show that

for every p P Q, if p , 9X Ď 9ω1, then there is a δ P ω1 and a q ď p such
that q , 9X X δ̌ “ 9Aδ̌.

Set δ0 :“ ω, p0 “ p and construct conditions pn and countable
ordinals δn such that:

‚ pn`1 ď pn decides 9X X δ̌n to be Yn;
‚ the domain of pn`1 is contained in δn`1 ˆ δn`1.

Notice that this is possible since, because Q is σ-closed, 1 , 9Ppδnq “
P̌pδnq. Set δ :“ suptδn | n P ωu and Y :“

Ť

tYn | n P ωu and observe

that if q ď pn for all n, then q , 9X X δ̌ “ Y̌ . Define

qpα, βq :“

$

’

&

’

%

pnpα, βq if pα, βq P domppnq

1 if β P α “ δ and β P Y

0 if β P α “ δ and β R Y

Notice that
q , 9X X δ̌ “ Y̌ “ 9Aδ̌

as desired. �

Remark 29.4. Baumgartner generalized this argument to show that if
Q is a σ-closed forcing which added a new subset of ω1, then Q forces
♦.

Consider the forcing Q which is obtained by taking the separative
quotient of prωsω,Ďq. Observe that if xxn | n P ωy is a sequence of
infinite subsets of ω such that xn`1 Ď

˚ xn, then there is an infinite
x P rωsω such that x Ď˚ xn for all n: for instance set

x :“ tminp
č

iăn

xiznq | n P ωu

In particular, even though prωsω,Ďq is not σ-closed, Q is σ-closed.
An ultrafilter U on ω is selective if it is nonprinciple and for every

f : ω Ñ ω there is a U P U such that fæU is either constant or one-
to-one. It can be shown that U is a selective ultrafilter if and only if
U is nonprinciple and whenever f : rωsd Ñ k for k, d P ω, then there
is a U in U such that færU sd is constant. Thus selective ultrafilters
are also known as Ramsey ultrafilters.

Theorem 29.5. The partial order prωsω,Ďq forces that 9G is a selective
ultrafilter on ω.
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Proof. As noted above, the separative quotient Q of this partial order
is σ-closed and in particular does not add new functions from ω to ω.
Thus it suffices to show that for every f : ω Ñ ω and every p P Q there
is a q ď p such that

q , Dy P 9G pf̌æy is constant or one-to-oneq

Let x be in the equivalence class of p. If there is a k such that xXf´1pkq
is infinite, set y :“ x X f´1pkq. Otherwise fæx is finite-to-one and
y :“ tminpx X f´1pkqq | k P rangepfæxqu is infinite. Let q be the

equivalence class of y and observe that q , y̌ P 9G. �

Remark 29.6. Let Rθ be the forcing consisting of all compact subsets
of 2θ of positive measure, ordered by Ď. Kunen has shown that if θ is
a cardinal greater than 2ℵ0 , then Rθ forces that there are no selective
ultrafilters.
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30. Product forcing

We will now discuss product forcing and iterated forcing with the
ultimate aims of proving the consistency of MAℵ1 with ZFC and of
constructing Solovay’s model in which all sets of reals are Lebesgue
measurable and ZF holds. It will sometimes be informative to take
a less formal, more semantic approach to forcing going forward. We
will frequently talk about starting with a ground model V of ZFC,
taking a V -generic filter G for some forcing Q in V , and forming the
generic extension V rGs. This can always be formalized syntactically
(but sometimes with great notational headache) or semantically by
applying the reflection theorem and the Löwenheim-Skolem theorem to
find countable transitive models of arbitrary finite fragments of ZFC
(but introducing a certain amount of irrelevant baggage). Regardless
of the type of formalism, the rigor tends to obscure and distract from
the underlying set theory.

First we will discuss product forcing. If P and Q are forcings, what
is the effect of forcing with P ˆ Q? It turns out that the following
three operations are essentially the same: forcing with P and then Q,
forcing with Q and then P , and forcing with P ˆ Q. Let us note the
following fact.

Proposition 30.1. Suppose that P and Q are forcings and K Ď PˆQ
is a filter. Then K “ GˆH for some filters G Ď P and H Ď Q.

Proof. Let K Ď P ˆQ be given and define

G :“ tp P P | Dq ppp, qq P Kqu

H :“ tq P Q | Dp ppp, qq P Kqu.

Observe that trivially K Ď G ˆ H. To see the other containment,
suppose p P G and q P H. Let q1 P Q be such that pp, q1q P K and let
p1 P P be such that pp1, qq P K. Since K is a filter, there is a pp̄, q̄q P K
such that p̄ ď p, p1 and q̄ ď q, q1. Since pp̄, q̄q ď pp, qq and since K is a
filter, pp, qq P K. Since pp, qq P GˆH was arbitrary, GˆH Ď K. �

Theorem 30.2. Suppose that V is a transitive model of ZFC and
P,Q P V are forcings. If G Ď P and H Ď Q are filters, the following
are equivalent:

(1) G is V -generic and H is V rGs-generic.
(2) GˆH Ď P ˆQ is V -generic.

Proof. To see the forward implication, suppose that D Ď P ˆ Q is
dense. Define

9E :“ tpq̌, pq | pp, qq P Du.
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Claim 30.3. P forces that 9E is dense.

Proof. Let p0 P P be arbitrary and 9q0 be such that p0 ,P 9q0 P Q̌. Let
p1 be such that p1 ď p0 decides 9q0 to be q1. Since D is dense, there is
a pp, qq P D such that p ď p1 and q ď q1. Now p ď p0 and

p ,P pq̌ ď 9q0q ^ pq̌ P 9Eq.

Since p0 and 9q0 were arbitrary, P forces 9E is a dense subset of Q̌. �

By the claim, since G is V -generic, V rGs satisfies that E Ď Q is
dense. SinceH is V rGs-generic, V rGs satisfies thatHXE contains some
q. But this means precisely that there is p P G such that pp, qq P D.
Thus pp, qq P GˆH.

To see the reverse implication, suppose that D0 Ď P is dense and in
V and D1 Ď Q is dense and in V rGs. Let 9D1 be a P -name in V whose

interpretation by G is D1 and let p0 P G be such that p0 forces 9D1 is
dense. Define

D :“ tpp, qq P P ˆQ | ppp P D0q ^ pp ,P q̌ P 9D1qq _ pp K p0qu

Claim 30.4. D is dense in P ˆQ.

Proof. Let pp1, q1q P P ˆ Q be given. If there is a p ď p1 which is
incompatible with p0, then pp, q1q ď pp1, q1q is in D. Otherwise, p1

forces 9D1 is dense in Q̌. Thus there is a Q-name 9q such that

p1 ,P p 9q ď q̌1q ^ p 9q P 9D1q

Since p1 ,P 9q P Q̌, there is a p ď p1 which decides 9q to be q for some
q P Q. Now pp, qq P D and pp, qq ď pp1, q1q. Hence D is dense. �

Since G ˆ H is V -generic, there is a pp, qq P G ˆ H X D. But now
p P D0 and q P D1. Thus G is V -generic and H is V rGs-generic. �
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31. Iterated forcing

Suppose now that P is a forcing in a transitive model V of set theory
and Q is a forcing in VrGs. We would like to view the process of forcing
first with P and then Q as being equivalent to forcing with a single
poset P ˚ 9Q. This is useful for a number of reasons. First, it allows us to
understand two step generic extensions purely from the ground model.
Second, it provides the foundation on which transfinite iterations of
forcings are built. While achieving two step generic extensions via a
single iterated poset is partly a convenience, it becomes an existential
issue for transfinite iterations. For instance if Gn`1 is generic over
M rGns for the poset Qn, what is the candidate for the generic extension
of M by xGn | n P ωy? Typically

Ť

nM rGns will not be a model of
ZFC and it will not contain tGn | n P ωu. In order to address this
issue, we need to better understand two step iterations.

If P is a forcing and 9Q is P -name for a forcing, define P ˚ 9Q to be
all pairs pp, 9qq such that p P P , 9q is a P -name, and p , 9q P 9Q. By

Property 4, P ˚ 9Q is a set. Define ď on P ˚ 9Q by pp1, 9q1q ď pp0, 9q0q if
p1 ď p0 and p1 , 9q1 ď 9q0. It is easily checked that ď is both reflexive
and transitive. Typically ď is not separative or even antisymmetric.
We will implicitly work with the separative quotient, which we will also
denote P ˚ 9Q. The forcing P ˚ 9Q is called the iteration of P and 9Q.

Notice that if P and Q are forcings, P ˚ Q̌ is not the same as P ˆQ.
The set tpp, q̌q | pp, qq P P ˆ Qu is is dense in P ˚ 9Q, however, and
pp, qq ÞÑ pp, q̌q is an isomorphism onto its range. Theorem 30.2 has the
following analog for iterations, whose proof is left as an exercise.

Theorem 31.1. Suppose that M is a transitive model of ZFC and
P ˚ 9Q is an iteration of forcings in M . If K Ď P ˚ 9Q is a filter, then
the following are equivalent:

(1) G :“ tp P P | D 9q ppp, 9qq P Kqu is a M-generic filter and H :“
tq P Q | Dp P G ppp, 9qq P Kqu is a M rGs-generic filter.

(2) K is M-generic.

The next theorem is what might be referred to as the fundamental
theorem of iterated forcing.

Theorem 31.2. Suppose that M is a transitive model of ZFC, P is
a forcing in M and G Ď P is a M-generic filter. If N is a transitive
model of ZFC such that M Ď N Ď M rGs, then there is an iteration

P0 ˚ 9Q in M and filters G0 Ď P0 and H Ď Q in M rGs such that G0 is
M-generic, H is M rG0s-generic, N “M rG0s and M rGs “ N rHs.
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Remark 31.3. By N Ď M rGs is a transitive model of ZFC we mean
that N is a transitive class from the point of view of M rGs and that
pN, Pq satisfies ZFC.

Before we prove this theorem, it will be useful to make a few general
observations. The first is that every dense subset of a forcingQ contains
a maximal antichain. On the other hand, if A Ď Q is a maximal
antichain, then the set of conditions which extend some element of A
is dense. In particular, if M is a transitive model of ZFC and Q is a
forcing in M , a filter G Ď Q is M -generic if and only if it intersects
every maximal antichain in M .

Next suppose M is a transitive model of set theory, Q is a forcing
in M and Q0 Ď Q is dense and in M . If G Ď Q if a M -generic filter,
then G X Q0 is a M -generic filter and if G Ď Q0 is a M -generic filter,
then the upwards closure of G in Q is a M -generic filter. In particular,
generic extensions of M by Q coincide with the generic extensions of
M by Q0.

If Q0 Ď Q are forcings and every maximal antichain in Q0 is a
maximal antichain in Q, then we say that Q0 is a regular suborder of
Q. This is equivalent to the assertion that

1 ,Q x 9GX Q̌0 is V̌-genericy

If B is a complete Boolean algebra and A is a complete subalgebra of
B, then A` is a regular suborder of B`. Finally, we recall that if Q is
any separative forcing, Q embeds as a dense suborder of the positive
elements of a complete Boolean algebra B. Recall that if φ is a formula
in the forcing language associated to B`, rrφss is the maximum element
of B such that rrφss , φ. We are now ready to give the proof of Theorem
31.2.

Proof. By the observations made above, we may assume that P is the
positive elements of a complete Boolean algebra B. Let M Ď N Ď

M rGs be given as in the statement of the theorem and let φpvq be a
formula in the forcing language which defines the class N within M rGs.

First suppose that X P N is a set of ordinals and let 9X be the P -name
whose evaluation is X. Notice that while rr 9X Ď ON^φp 9Xqss need not

be one, there is a P -name 9Y such that rr 9X “ 9Y ss “ rr 9X Ď ON^φp 9Xqss

and rr 9Y Ď ON ^ φp 9Y qss “ 1. Thus we may assume without loss of

generality that rr 9X Ď ON ^ φp 9Xqss “ 1. Let A 9X be the complete

subalgebra of B generated by trrα̌ P 9Xss | α P ONu. Observe that

A :“ tA 9X | rr
9X Ď ON^ φp 9Xqss “ 1u

is contained in PpBq and hence is a set.
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Claim 31.4. There is an A 9Y P A such that every other element of A
is a subset of A 9Y .

Proof. Let t 9Xξ | ξ P κu be a list of P -names such that for each ξ P κ,

rr 9X Ď ON^ φp 9Xqss “ 1 and

tA 9X | rr
9X Ď ON^ φp 9Xqss “ 1u “ tA 9Xξ

| ξ P κu.

By Proposition 26.4, there is a sufficiently large ordinal λ such that for
every ξ P κ, rr 9Xξ Ď λ̌ss “ 1. Define a P -name 9Y for a subset of λ ¨ κ by

rrκ̌ 9ξ ` α̌ P 9Y ss “ rrα̌ P 9Xξss.

In particular A 9Xξ
Ď A 9Y for all ξ P κ. By definition A 9Y P A . �

Let 9Y be as in the claim and let Y be the interpretation of 9Y by G.
Let κ be such that rr 9Y Ď κ̌ss “ 1. Since both Y and 9Y are in N ,

trrα̌ P 9Y ss | α P Y u Y trrα̌ R 9Y ss | α P κzY u

is a set in N . Let G0 be the filter generated by this set, noting that
G0 “ G X A. Now observe that if a is any set in N , there is a set of
ordinals X in N such that a is in any transitive model of ZFC which
has X as an element. Thus we have shown that N “M rG0s.

To see that M rGs is a generic extension of M rG0s, define I Ď B
to be the set of complements of elements of G0 in B. I is an ideal
and we can define B{I to be the quotient Boolean algebra. Let Q be
the positive elements of B{I. We leave it as an exercise that G{I is
M rG0s-generic for Q. �

While we will see that the analysis of finite products and iterations
of forcings can be very fruitful, many applications of forcing require
one to work with a transfinite iteration of forcings. We will only work
with the simplest type of transfinite iterated forcing which well suited
for working within the class of c.c.c. forcings but nothing more.
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32. Finite Support Iterated forcing

A finite support iteration of forcings is a sequence xPα | α P θy of
forcings such that:

‚ each element of Pα is a sequence of length α;
‚ if α P β P θ, then Pα “ tpæα | p P Pβu;

‚ if α ` 1 P θ, then there is a Pα-name 9Qα such that is in

Pα`1 :“ tpax 9qy | pp P Pαq ^ pp ,Pα 9q P 9Qαqu

‚ if p P Pα, then tξ P α | ppξq ‰ 91u is finite.

The set in the last condition is known as the support of p. The orderings
are required to satisfy the following conditions:

‚ if β is a limit ordinal and p, q P Pβ, then q ď p if and only if for
all α P β, qæα ď pæα.

‚ if β “ α ` 1 and p, q P Pβ, then q ď p if and only if qæα ď pæα
and qæα ,Pα qpαq ď ppαq.

It follows that if α P β P θ and p, q P Pβ, then q ď p implies qæα ď pæα.
Notice that P0 always consists of a single element — namely the

sequence of length 0. Also, there is a canonical isomorphism between
Pα`1 and Pα ˚ 9Qα — namely p ÞÑ ppæα, ppαqq. Furthermore, if β is a
limit ordinal, then p P Pβ if and only if pæα P Pα for all α P β and
the support of p is finite. Thus xPα | α P θy is uniquely determined

by the sequence x 9Qα | α ` 1 P θy and indeed transfinite iterations of
forcings are typically specified by recursively selecting the sequence of
Qα’s. Typically θ is a limit ordinal, in which case there is a unique
forcing Pθ such that xPα | α P θ` 1y is a finite support iteration. Pθ is

referred to as the finite support iteration of the iterands x 9Qα | α P θy.
It is often the case that θ is called the length of the iteration.

A fundamental problem in set theory is to determine what effect
properties of the iterands in an iteration have on the iteration itself. In
the case of finite support iterations, this is fairly straightforward. This
is largely because finite support iterations are only useful in iterating
c.c.c. forcings and this is a fairly restrictive class. Countable support
iterations allow for the iteration of a much broader class of forcings
but their analysis can be very challenging and the preservation of basic
properties such as when no new real numbers are added is still not
fully understood (and likely intractable). The most fundamental fact
about finite support iterations is contained in the following theorem of
Solovay and Tennenbaum.

Theorem 32.1. Suppose that xPα | α P θy is a finite support iteration

such that for each α, Pα forces that 9Qα is c.c.c.. Then Pθ is c.c.c..
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Remark 32.2. One of the most important features of the class of c.c.c.
forcings is that they preserve cardinals (and ℵ1 in particular) and are
preserved by finite support iterations. It is not difficult to show that
if xPn | n P ωy is a finite support iteration and for infinitely many n,

Pn forces that 9Qn is not c.c.c., then Pω collapses ℵ1. Forcings which
preserve stationary subsets of rXsω for every uncountable X are known
as proper forcings. The class of proper forcings includes both the class
of all c.c.c. forcings and all σ-closed forcings. This class of forcings
preserves ℵ1 and is closed under taking countable support iterations.

Proof. We will first show that if P ˚ 9Q is an iteration, P is c.c.c. and
9Q is forced to be c.c.c., then P ˚ 9Q is c.c.c.. To see this, suppose that
xppξ, 9qξq | ξ P ω1y is a sequence of conditions in P ˚ 9Q. Since P is c.c.c.,
there is an r0 P P such that

r0 ,P x 9Ξ :“ tξ P ω1 | p̌ξ P 9Gu is uncountabley.

Since 9Q is forced to be c.c.c., there are P -names 9ξ and 9η such that r0

forces 9ξ ‰ 9η are in 9Ξ and 9q 9ξ is compatible with 9q 9η. Let r ď r0 decide 9ξ

and 9η to be ξ and η. Since r forces p̌ξ and p̌η are in 9G, it must be that
r ď pξ, pη and in particular pξ and pη are compatible. Since r forces 9qξ̌
and 9qη̌ are compatible, there is a P -name 9s such that r forces 9s P 9Q is

a lower bound for 9qξ̌ and 9qη̌. Now pr, 9sq P P ˚ 9Q is a lower bound for

ppξ, 9qξq and ppη, 9qηq. It follows that P ˚ 9Q is c.c.c..
We will now prove Theorem 32.1 by induction on θ. If θ “ α ` 1

for some α, then Pθ is isomorphic to Pα ˚ 9Qα. Since Pα is c.c.c. by our
induction hypothesis, the conclusion of the theorem follows from the
special case of the theorem for length 2 iterations. Now suppose that
θ is a limit ordinal and that xpξ | ξ P ω1y is a sequence of elements of
Pθ. Define Dξ :“ tα P θ | qξpαq ‰ 1u. By the ∆-System Lemma, there
is an uncountable Ξ Ď ω1 such that tDξ | ξ P Ξu forms a ∆-system
with root R. Since θ is a limit ordinal, there is an α P θ be such that
R Ď α. By our inductive assumption, there are ξ ‰ η such that pξæα
and pηæα have a common lower bound q0 P Pα. Define

qpβq :“

$

’

’

’

&

’

’

’

%

q0pβq if β ă α

pξpβq if β P Dξzα

pηpβq if β P Dηzα

1 otherwise

Since Dξ XDη “ R Ď α, q is well defined. Clearly q P Pθ, q ď pξ, and
q ď pη. This completes the proof that Pθ is c.c.c.. �



MATH 6870: SET THEORY 83

33. Some bookkeeping lemmas

We would now like to show that, for any regular uncountable cardinal
θ, there is always a c.c.c. forcing P which forces MAθ. The forcing P
will be constructed as a finite support iteration of c.c.c. forcings of
length κ :“ 2θ and will force 2θ “ 2ℵ0 . Before we do this, we will need
to establish a number of lemmas which allow us to keep track of the
tasks we need to accomplish.

First observe that if P Ď Q are forcings, then any P -name is a Q-
name. If P is a regular suborder of Q, and φ is any formula in the
forcing language associated to P , then p ,P φ if and only if p ,Q φ for
any p P P . If every condition occurring in a Q-name 9x is in P , then 9x is
also a P -name. If there is a natural embedding of P into Q, it is often
common to treat P as a suborder of Q. In particular, P -names are
regarded as Q-names via this embedding. This issue commonly arises
in the context of iterations: P is naturally embedded into P ˚ 9Q as a
regular suborder via the map p ÞÑ pp, 91q. We will abuse notation and

treat P -names as P ˚ 9Q-names without further mention. This will also
be true for finite support iterations.

Lemma 33.1. Suppose that µ and κ are infinite cardinals such that
κăµ “ κ and such that µ is regular. If P is a µ-c.c. poset containing a
dense set of cardinality at most κ, then P forces κăµ “ κ.

Proof. Observe that every element of κăµ is a subset of κˆ µ of cardi-
nality less than µ. Since µ ď κ (otherwise κ ă κκ ď κăµ), it suffices
to show that P forces there are κ many subsets of κ of cardinality less
than µ. Let D Ď P have cardinality at most κ.

Suppose now that 9X is a P -name such that

p , p 9X Ď κq ^ p| 9X| ă µq

for some p P P . For each α P κ, set

Dα :“ tq P D | pq ď pq ^ pq , α̌ P 9Xqu

and let Aα Ď Dα be an antichain which is maximal with respect to
being contained in Dα. Define

9Y :“ tpα̌, qq | pα P κq ^ pq P Aαqu.

Claim 33.2. p , 9Y “ 9X.

Proof. This is left as an exercise. �

Observe that, since P is µ-c.c., each Aα has cardinality less than µ.
Thus 9Y is a union of sets of fewer than µ sets, each of cardinality less
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than µ. Since µ is regular, | 9Y | ă µ. Also, 9Y is a subset of κ ˆD and
|κ ˆD| “ κ. We’ve therefore show than every subset of κ of size less
than µ in the generic extension has a P -name which has cardinality less
than µ and is a subset of a set of size κ. This completes the proof. �

A P -name 9X such that elements of 9X have the form px̌, pq for p P P

and such that for each x, tp P P | px̌, pq P 9Xu is an antichain are
sometimes called nice names. As the previous lemma shows, nice names
are useful in estimating cardinalities in generic extensions. We showed
that if 9X is a P -name for a subset of a ground model set, then there is
a nice P -name 9Y such that 1 , 9Y “ 9X.

We will also need the following general fact about cardinal arith-
metic.

Theorem 33.3 (König). Suppose that θ is an infinite cardinal. The
cofinality of 2θ is greater than θ.

Proof. Let xAξ | ξ P θy be a partition of θ into θ sets of cardinality
θ. Suppose that Fξ Ď 2θ for each ξ P θ and that |Fξ| ă 2θ. Since
PpAξq “ 2θ, there is a gξ : Aξ Ñ 2 such that gξ ‰ fæAξ for any
f P Aξ. Define g : θ Ñ 2 by g “

Ť

tgξ | ξ P θu, noting that g is not in
Fξ for any ξ P θ. Thus 2θ is not the union of θ sets, each of cardinality
less than 2θ. �

Lemma 33.4. Let θ be an infinite cardinal and suppose that xPα |
α P γy is an iteration of c.c.c. posets, each of which is forced to have
cardinality at most θ. Then Pγ has a dense subset of cardinality at
most maxp|γ|, θq.

Proof. The proof is by induction on γ. If γ “ 0, there is nothing to
show since |P0| “ 1 ă θ. If γ “ β ` 1, let D Ď Pβ be a dense set of
cardinality at most maxp|β|, θq and fix a sequence of names x 9qξ | ξ P θy

such that Pβ forces 9Qβ “ t 9qξ | ξ P θ̌u. If p P Pβ and 9q is a Pβ-name for

an element of 9Qβ, then there is a ξ P θ and a p1 ď p in D such that
p1 , 9qξ “ 9q. In particular,

tp P Pα | ppæβ P Dq ^ Dξ P θ pppβq “ 9qξqu

is dense and of cardinality at most |D| ¨ θ ď maxp|γ|, θq. If γ is a limit
ordinal, let Dα Ď Pα be a dense set of cardinality at most maxp|α|, θq
for each α P γ. Define D Ď Pγ to be all p P Pγ such that for some
α P γ, pæα P Dα and if α ă β ă γ, ppβq “ 1. It follows that
|D| ď |γ| ¨maxp|γ|, θq “ maxp|γ|, θq. �
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34. How to force MAθ

We will now begin the recursive construction of the iteration. This
is done by recursively constructing a sequence x 9Qα | α P κy, defining

as we go Pγ to be the finite support iteration of x 9Qα | α P γy. This
construction will be carried out so as to satisfy that for each α P κ, Pα
forces 9Qα is a c.c.c. forcing of cardinality at most θ̌. By Lemma 32.1,
this will imply that Pα is c.c.c. for all α ď κ. Moreover, by Lemma
33.4, Pα will have a dense subset of cardinality less than κ. If α ď κ, let
9Gα denote the Pα-name for the generic filter and 9Hα be the Pα`1-name

for the V r 9Gαs-generic filter in 9Qα.

Now suppose that we’ve constructed x 9Qα | α P γy for some γ P κ.

By Lemma 33.1, there are Pγ-names x 9Qγ,ξ | ξ P κy such that if 9Q is a
Pγ-name for a partial order on a subset of θ,

tξ P κ | 1 ,Pγ 9Q “ 9Qγ,ξu

is cofinal in κ. Let α and ξ be such that γ “ 2α ¨ p2ξ ` 1q. If 1 ,Pγ
x 9Qα,ξ is c.c.c.y, define 9Qγ “ 9Qα,ξ if γ “ 2α ¨ p2ξ ` 1q. Otherwise define
9Qγ to be the Pγ-name for the trivial partial order. This completes

the recursive definition. The next lemma is the final ingredient to
completing the argument.

Lemma 34.1. Suppose that for each ξ P θ, Xξ is a set of cardinality

at most θ and 9Yξ is a nice Pκ-name such that 1 , @ξ P θ 9Yξ Ď 9Xξ.

There is an α P κ such that for all ξ P θ, 9Xξ is a Pα-name.

Proof. First observe that since 2θ “ κ, Theorem 33.3 implies the cofi-
nality of κ is greater than θ. For each ξ P θ, set

Sξ :“ tp P Pκ | Dx P Xξppx̌, pq P 9Yξqu.

Since |Xξ| ď θ and Pθ is c.c.c., |Sξ| ď θ. Consequently S :“
Ť

tSξ | ξ P
θu has cardinality at most θ. Since θ ă cofpκq, there is an α P κ such
that S is contained in Pα (in the sense indicated above). It follows that
9Xξ is a Pα-name for all ξ P θ. �

Suppose now that p 9Q, 9ďq and x 9Dξ | ξ P θy are Pθ-names such that

p P Pθ forces p 9Q,ďq is a c.c.c. poset of cardinality at most θ and for

all ξ P θ̌, 9Dξ Ď 9Q is dense. Without loss of generality we name assume

that 9Q, 9ď and each 9Dξ are nice Pθ-names. Let α P κ be such that
p P Pα and all of these names are Pα-names. Let ξ P κ be such that
p ,Pα 9Qα,ξ – 9Q. Since p ,Pθ

9Q is c.c.c., p ,Pα x 9Q is c.c.c.y. It follows

that p forces 9Hα Ď 9Qα is a filter which is t 9Dξ | ξ P θu-generic.
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35. The Levy Collapse

Suppose that X is a set of ordinals and λ is an infinite regular car-
dinal. Define Collpλ,Xq to be the collection of all partial functions p
defined on X ˆ λ such that the domain of p has cardinality less than
λ and if pα, ξq P domppq, ppα, ξq P maxpα, ωq. Collpλ,Xq is ordered
by extension. For each infinite α P X, define a Collpλ,Xq-name 9eα
for a function on λ by 9eβpξq “ α if and only if there is a p P 9G such

that ppβ, ξq “ α. Observe that it is forced that 9eα witnesses |α̌| ď |λ̌|.
Also Collpλ,Xq is λ-closed and therefore does not add new sequenced
of length less than λ.

The main cases of interest are when X “ κ for some strongly inac-
cessible cardinal and either λ “ ω or λ “ ω1. In this case Collpλ, κq
is known as the Levy collapse of κ to λ`. This terminology is stan-
dard but is perhaps misleading since, under the assumption that κ is
inaccessible, κ remains a cardinal in the generic extension.

Lemma 35.1. If κ is a regular cardinal, Collpω, κq is κ-c.c..

Remark 35.2. More generally, if κ is regular and κăλ “ κ, then Collpλ, κq
is κ-c.c..

Proof. Suppose that xpξ | ξ P κy is a sequence of conditions in Collpω, κq.
By the ∆-system lemma there is a Ξ Ď κ of cardinality κ such that
tdomppξq | ξ P Ξu forms a ∆-system with root R. Let α P κ be such
that if pβ, nq P domppξq, then β P α. Since there are fewer than κ
finite partial functions from αˆ ω to α, there are ξ ‰ η in Ξ such that
pξæR “ pηæR. But now pξ Y pη is a lower bound for pξ and pη. Thus
Collpω, κq is κ-c.c.. �

Next we will make some simple but useful observations about the
Levy collapse.

Lemma 35.3. If X “ Y Y Z is a partition of a set of ordinals into
two disjoint pieces, Collpλ,Xq – Collpλ, Y q ˆ Collpλ, Zq.

Proof. The function p ÞÑ ppæλˆ Y, pæλˆ Zq is an isomorphism. �

A forcing Q is atomless if every element of Q has two incompatible
extensions. Let C denote all finite sequences from ω of positive length,
ordered by extension.

Proposition 35.4. If Q is a countable atomless partial order, Q con-
tains a dense subset isomorphic to C.

Proof. We first must show that if Q is atomless, then for every p P Q,
the set of extensions of p contains an infinite antichain. To see this,
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construct pn and qn by recursion so that pn`1, qn ď pn are incompatible
with p0 “ p. It follows that tqn | n P ωu is an infinite antichain of
extensions of p. Now let Q “ tqn | n P ωu and construct tps | s P Cu
by recursion on the length of s. Select ps for s P C of length 1 so as
to enumerate a maximal antichain in Q. Given ps of length n ` 1, let
tpsaxiy | i P ωu be an infinite maximal antichain of extensions of ps
such that for each i, psaxiy either extends qn or is incompatible with qn.
Notice that if q is compatible with ps, then q is compatible with psaxiy
for some i P ω. In particular, for each n, tps | s P C ^ |s| “ nu is a
maximal antichain in Q. We’ve ensured that s ÞÑ ps is an isomorphism
which preserves incompatibility. To see that the range is dense, let
qn P Q be given. Since tps | s P C^|s| “ n`1u is a maximal antichain,
there is an s such that ps is compatible with qn. By construction, it
must be that ps ď qn. Hence tps | s P Cu is dense. �

Lemma 35.5. Suppose that P is a forcing and 9Q0 and 9Q1 are P -names
for forcings such that it is forced by 1 that 9Q0 and 9Q1 have isomorphic
dense subsets. Then P ˚ 9Q0 and P ˚ 9Q1 have isomorphic dense subsets.

Proof. Let 9φ be a P -name for isomorphism between dense subsets of
9Q0 and 9Q1. If p forces 9q P domp 9φq, let 9φp 9qq denote a P -name for the

value of 9q under 9φ. Let D Ď P ˚ 9Q0 denote the set of all pp, 9qq such

that p , 9q P domp 9φq. Define ψ : D Ñ P ˚ 9Q1 by ψppp, 9qqq “ pp, 9φp 9qqq.
It can be checked that D is dense, the range of D under ψ is dense,
and ψ is an isomorphism. �

The next proposition gives a key property of the Levy collapse,
known as the absorption property.

Proposition 35.6. Suppose that κ is a cardinal and Q is a forcing
with |Q| ă κ. Collpω, κq and Q ˆ Collpω, κq contain isomorphic dense
subsets.

Proof. By Lemma 35.3

Collpω, κq – Collpω, t0uq ˆ Collpω, κzt0uq – Collpω, t0uq ˆ Collpω, κq.

The partial order Collpω, t0uq is just the collection of all finite partial
functions from ω to ω. In particular, it is countable and atomless.
Observe that

Qˆ Collpω, κq – pQˆ Collpω, t0uq ˆ Collpω, κq

is isomorphic to a dense suborder of Collpω, κq ˚ pQ̌ˆCollpω, t0uq. Fur-
thermore, Collpω, κq forces Q̌ˆCollpω, t0uq is countable and atomless.
The proposition now follows from Lemmas 35.4 and 35.5. �
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36. Universally Baire sets

Suppose that B is a Borel subset of R and Q is a forcing. How to
we interpret B in a generic extension by Q? One option is B̌ but if Q
adds new reals, this set will typically not be Borel. In this section, we
will give a very general procedure for resolving this issue.

Suppose Q is a forcing, A and B are nonempty sets, and A is count-
able. Observe that if 9x is a nice Q-name for an element of B̌Ǎ, then
there is a countable collection D of dense subsets of Q such that if
G Ď Q is a D-generic filter, then 9xpGq is in BA.

A subset X of BA is Q-universally Baire if there is a Q-name 9X
such that whenever 9y is a nice Q-name for an element of B̌Ǎ, there is
a countable collection D of dense subsets of Q such that if G Ď Q is a
D-generic filter then the following are equivalent:

‚ 9ypGq P X;

‚ there is a p P G such that p , 9y P 9X;
‚ there is no p P G such that p , 9y R 9X;

We will say that 9X witnesses that X is Q-universally Baire and that
D certifies 9X for 9y.

Proposition 36.1. If 9X and 9Y are Q-names which witness that X Ď

BA is universally Baire, then 1 ,Q 9X “ 9Y .

Proof. If the proposition is false, then there is a p P Q such that p ,
9X ‰ 9Y and let 9z be forced by p to be in p 9Xz 9Y qYp 9Y z 9Xq. By extending

p if necessary, we may assume that p decides 9z P 9X and by exchanging
the roles of 9X and 9Y if necessary, we may assume p , 9z P 9Xz 9Y . Let
D be a countable collection of dense subsets of Q which which certifies
both 9X and 9Y for 9z. Now let G Ď Q be a D-generic filter with p P G.
Since p , 9z P 9X, 9zpGq P X but since p , 9z R 9Y , 9zpGq R X, a
contradiction. �

Armed with this proposition, we will fix, for each Q-universally Baire
set X Ď BA, a Q-name 9X which witnesses that X is universally Baire.

Theorem 36.2. Suppose that Q is a forcing, A and B are nonempty
sets and A is countable. The Q-universally Baire subsets of BA form a
σ-algebra which contains the Borel subsets of BA, where B is equipped
with the discrete topology. Moreover:

(1) if U Ď BA is open and 9U witnesses U is universally Baire,

1 , x 9U is openy.

(2) if X Ď BA is universally Baire and Y “ BAzX, then 1 , 9Y “

B̌Ǎz 9X.
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(3) if Y “
Ť

tXn | n P ωu and 9Xn witnesses Xn is Q-universally

Baire, then 1 , 9Y “
Ť

t 9Xn | n P ωu.

Proof. If U Ď BA is open, define 9U to be all pairs p 9x, pq such that:

‚ 9x is a nice Q-name for an element of B̌Ǎ Ď PpǍˆ B̌q
‚ for some finite F Ď A, p decides 9xæF to be some s : F Ñ B

and for every y P BA which extends s, y P U .

It should be clear that 9U is forced to be open. Now suppose that 9y is
a nice Q-name for an element of B̌Ǎ. For each finite F Ď A, let DF

denote the set of all q in Q such that for some p P Q and s : F Ñ B,

we have that q ď p and p ­pa, spaqq, pq P 9y for every a P F . Observe that
if G Ď Q is a filter which meets DF , then 9ypGq is a function whose
domain contains F and if s :“ 9ypGqæF , then there is a q P G such that
q , š “ 9yæF̌ .

If 9Xn witnesses that Xn is universally Baire for all n P ω and Dn

certifies 9Xn for some nice Q-name 9y, then the Q-name 9Y for
Ť

t 9Xn |

n P ωu witness that Y :“
Ť

tXn | n P ωu is universally Baire and
Ť

tDn | n P ωu certifies 9Y for 9y. Similarly, if 9X witnesses that X is

universally Baire and D certifies 9X for 9y, then the name for B̌Ǎz 9X
witnesses that BAzX is universally Baire and D certifies this name for
9y. The remainder of the theorem follows from Proposition 36.1. �

We are now in a position to make the following definitions. Suppose
that 9r is a Q-name for an element of R. We say that p forces 9r is a
Cohen real if for all meager Borel sets B Ď R, p , 9r R 9B. Similarly, p
forces 9r is a random real if whenever B is a measure 0 Borel subset of
R, 1 , 9r R 9B. Let R denote the collection of all compact set subsets
of R of positive measure. The next proposition is left as an exercise.

Proposition 36.3. The following are true for a forcing Q and a Q-
name for a real number 9r:

‚ p forces 9r is a Cohen real if and only if p forces t 9ræn | n P ωu Ď
ωăω is a V̌-generic filter.

‚ p forces 9r is a Random real if and only if p forces tB P R | 9r P
9Bu is a V̌-generic filter.
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37. Homogeneity and a proof of Solovay’s theorem

Are nearly ready to prove the following theorem of Solovay.

Theorem 37.1 (Solovay). Suppose that κ is an inaccessible cardi-
nal and φpu, vq is a formula in the language of set theory. If 9a is a

Collpω, κq-name for an element of ONω and 9X is the Collpω, κq-name

for the set tx P R | φpx, 9aqu, then 1 forces that 9X is Lebesgue measur-
able, has the Baire property, and has the perfect set property.

Recall that if X Ď R:

‚ X is Lebesgue measurable if there is a Borel set B such that
X4B is measure 0.

‚ X has the Baire property if there is a Borel set B such that
X4B is meager.

‚ X has the perfect set property if either X is countable or else
X contains a nonempty closed set with non isolated points.

It is possible to show that if X Ď R is definable from an ω-sequence of
ordinals, then X is in LpRq, the minimum model of ZF which contains
all real numbers. In particular, Solovay showed that if ZFC is consistent
with the existence of an inaccessible cardinal, then so is ZF together
with the assertion that all subsets of R are Lebesgue measurable, have
the Baire property, and have the perfect set property. It is known that
the inaccessible cardinal is required in Solovay’s theorem, at least for
two of the conclusions.

Theorem 37.2 (Miller). If every Π1
1 set of reals has the perfect set

property, then ω1 is an inaccessible cardinal in L.

Theorem 37.3 (Shelah). If every Σ1
3 set is Lebesgue measurable, then

ω1 is an inaccessible cardinal in L.

Shelah has shown, however, that if ZFC is consistent then so is ZF
together with “All subsets of R have the Baire property.”

In order to prove Solovay’s result, we need one more forcing tech-
nique. Suppose that Θ : P – Q is an isomorphism. This function
induces a class function Θ̂ which maps P -names to Q-names:

Θ̂p 9xq :“ tpΘ̂p 9yq,Θppqq | p 9y, pq P 9xu.

Observe that Θ̂px̌q “ x̌ (though technically the former x̌ is a P -name
and the latter is a Q-name). The next proposition has a routine proof
which is left as an exercise.

Proposition 37.4. If Θ : P – Q is an isomorphism of posets and Θ̂
is the induced map on P -names, then p ,P φp 9xi | i ă nq if and only if
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Θppq ,Q φpΘ̂p 9xiq | i ă nq whenever φpvi | i ă nq is a formula in the
language of set theory and x 9xi | i ă ny is a sequence of P -names.

If Q is a poset and p P Q, set Qp :“ tq P Q | q ď pu. A poset Q is
weakly homogeneous if for every p, q P Q, there are p1 ď p and q1 ď q
such that Qp1 – Qq1 . Proposition 37.4 now yields:

Proposition 37.5. Suppose that Q is a weakly homogeneous poset,
φpvi | i ă nq is a formula in the language of set theory and xxi | i ă ny
is a sequence of sets. Either 1 , φpx̌i | i ă nq or 1 ,  φpx̌i | i ă nq.

Proof. If the conclusion of the proposition is false, there are p, q P Q
such that p , φpx̌i | i ă nq and q ,  φpx̌i | i ă nq. By extending p and
q if necessary, we may assume that Qp – Qq are isomorphic by some

Θ. Since Θ̂px̌iq “ x̌i, we have a contradiction to Proposition 37.4. �

Note that Collpω, κq is weakly homogeneous: if p, q P Collpω, κq, we
can find p1 ď p and q1 ď q such that dompp1q “ dompq1q. If r ď p1,
define Θprq :“ przp1q Y q1.

We are now ready to give a proof of Solovay’s theorem. We will first
argue that it suffices to prove Solovay’s theorem when 9a “ ǎ for some
a P ONω. To see this, let 9a be a Collpω, κq-name for an element of
ONω. Since 9a is forced to be countable and Collpω, κq is κ-c.c., there
is a δ P κ such that 9a is a Collpω, δq-name. But now

Collpω, κq – Collpω, δq ˆ Collpω, κzδq ” Collpω, δq ˚ Collpω, κ̌q

and therefore we can derive the conclusion of Solovay’s theorem for
9a by applying the ground model version of Solovay’s theorem in the
generic extension by Collpω, δq.

Lemma 37.6. Suppose κ is inaccessible, G Ď Collpω, κq is V -generic,
and r P R X V rGs. There is a filter H Ď Collpω, κq such that H is
V rrs-generic and V rGs “ V rrsrHs.

Proof. Let δ P κ be such that r is in V rG X Collpω, δqs and set G1 :“
GXCollpω, δq and G2 :“ GXCollpω, κzδq. By Theorem 31.2, there are
posets P P V , Q P V rrs and filters G0 Ď P and H0 Ď Q such that G0 is
V -generic, V rG0s “ V rrs, H0 is V rrs-generic, and V rG1s “ V rG0srH0s.
Observe that by applying Lemma 35.5 in V rrs,

Q˚Collpω, κzδq ” Collpω, κzδq˚Q̌ ” Collpω, κzδq˚Collpω, δq ” Collpω, κq.

Therefore there is anH Ď Collpω, κq such that V rrsrGs “ V rrsrH0srG
2s.
�
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Suppose now that we wish to show that tx P 9R | φpx, ǎqu is forced by

1 P Collpω, κq to be Lebesgue measurable. Let 9E denote the Collpω, κq-
name for the union of all Borel measure 0 sets in V . Since κ is inaccessi-
ble, the set of ground model measure 0 sets is countable and hence it is
forced by 1 that 9E is measure 0. Notice that if 9r is any Collpω, κq-name

for an element of 9Rz 9E, then 1 , x 9r is a random real over V̌y.
Now consider the truth value B :“ rr1 ,Collpω,κq φp 9̌r, ǎqss with respect

to forcing with the complete Boolean algebra of the Borel subsets of R
modulo the measure 0 sets. It suffices to show that 1 forces that for
all r P 9Rz 9E, r P 9B if and only if φpr, ǎq.

Let G Ď Collpω, κq be a V -generic filter and let r P R X V rGs with
r R E. By Lemma 37.6, there is a V rrs-generic filter H Ď Collpω, κq
such that V rrsrHs “ V rGs. Since r is a random real over V , r P BV rGs

if and only if 1 ,Collpω,κq φpř, ǎq. By homogeneity of Collpω, κq, this is
equivalent to 1 does not force  φpř, ǎq. Since H is a V rrs-generic filter
and V rGs “ V rrsrHs, r P BV rGs if and only if V rrsrHs |ù φpr, aq.

This argument adapts mutatis mutandis to show that

V rGs |ù xtr P R | φpr, aqu has the Baire propertyy

One simply replaces the complete Boolean algebra of Borel sets modulo
measure 0 sets with Borel sets modulo meager sets and replaces the
notion of a random real with that of a Cohen real.

The proof of the perfect set property is somewhat different. For
notational simplicity, we’ll prove the perfect set property for subsets of
2ω. As before, we may assume that a P ONω is in V . If

1 ,Collpω,κq tr P 2ω | φpr, ǎqu Ď q2ω

then we are done since 1 ,Collpω,κq | q2ω| “ ℵ0. If not, let 9r be a

Collpω, κq-name and p P Collpω, κq be such that p , 9r R q2ω ^ φpr, ǎq.
Let δ P κ be such that 9r is a Collpω, δq-name and p P r. In V rGs, let
xDn | n P ωy be an enumeration of the dense subsets of Collpω, δq in
V . Construct xpt | t P 2ăωy and xst | t P 2ωy such that:

‚ if t P 2n, pt P Dn and pt forces št Ď 9r,
‚ if u Ď v are in 2ăω, then pv ď pu ď p,
‚ if u K v are in 2ăω then su and sv are incompatible.

Notice that it must be that |st| ě n if t is in 2n. For each x P 2ω, let
Gx Ď Collpω, δq be the filter generated by tpxæn | n P ωu. Each Gx is
V -generic and hence 9rpGxq “

Ť

tsxæn | n P ωu satisfies that φp 9rpGxq, aq
is true. Notice that x ÞÑ 9rpGxq is continuous and injective and its range
is contained in tr P 2ω | φpr, aqu.
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38. Supercompact cardinals

We will now turn to a result of Shelah and Woodin which explains
the special foundational role Solovay’s model LpRq plays.

Theorem 38.1 (Shelah-Woodin). Suppose that there is a supercom-
pact cardinal. The theory of LpRq can not be changed by forcing. In
particular, every set of reals in LpRq is Lebesgue measurable, has the
Baire Property, and has the Perfect Set Property.

First we will definite the notion of a supercompact cardinal and prove
some basic facts about them. Suppose that M and N are transitive
classes. An elementary embedding j : M Ñ N is a class function such
that for any formula φpv̄q in the language of set theory and any tuple
of sets x̄, M |ù φpx̄q if and only if N |ù φpjpx̄qq. If X is any set,
then j2X :“ tjpxq | x P Xu Ď jpXq. In particular, jpαq ě α holds
for all ordinals α. Also observe that the restriction of an elementary
embedding to the ordinals is an order preserving function. We note the
following fact.

Proposition 38.2. Suppose M Ď V is a transitive class and j : V Ñ

M is an elementary embedding which is not the identity. If x is a set
of minimum rank κ such that jpxq ‰ x, then jpκq ą κ. In particular
jæON is not the identity.

The least ordinal moved by an elementary embedding j is called the
critical point of j and is denoted critpjq. The next lemma gives a useful
characterization of when j2X “ jpXq.

Lemma 38.3. Suppose that j : M Ñ N is an elementary embedding
with critical point κ. If X P M, then M |ù |X| ă κ if and only if
j2X “ jpXq.

Proof. Set θ :“ |X| and let f : θ Ñ X be a bijection. By elementarity,
jpfq is a bijection from jpθq to jpXq. If θ ă κ, then jpfq has domain θ
and if fpξq “ x, jpfqpξq “ jpxq and hence the range of jpfq is tjpxq | x P
Xu. If θ ě κ, then κ is not in the range of j. It follows that jpfqpκq P
jpXq is not of the form jpxq for any x P X. To see this, suppose x P X
and let ξ P θ be such that fpξq “ x. Then jpfqpjpξqq “ jpxq and since
jpfq is one-to-one and κ is not in the range of j, jpxq “ jpfqpjpξqq ‰
jpfqpκq. �

If κ is the critical point of an elementary embedding from V to
M Ď V, then we say that κ is measurable. If κ is the critical point
of an elementary embedding j : V Ñ M Ď V such that additionally
jpκq ą λ and Mλ Ď M, then we say that κ is λ-supercompact. If κ
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is supercompact if it is λ-supercompact for every ordinal λ. The next
proposition gives the first hint at the scale of these cardinals.

Proposition 38.4. Suppose that κ is the critical point of an elementary
embedding j : V Ñ M Ď V. κ is a strongly inaccessible cardinal and
moreover tδ P κ | δ is strongly inaccessibleu is stationary in κ.

Proof. Since 0 and ω are the least ordinal and the least limit ordinal
in both V and M, it follows that 0 ‰ κ and ω ‰ κ. Now suppose
that f : α Ñ κ for some α P κ. By Lemma 38.3, j2f “ jpfq and since
f Ď α ˆ κ, j2f “ f . In particular, rangepjpfqq Ď κ and therefore

M |ù Dβ P jpκqprangepjpfqq Ď βq.

By elementarity of j, there is a β1 P κ such that rangepfq Ď β1. Since
f was arbitrary, this implies that κ is a regular cardinal. Next we will
show that κ is a strong limit cardinal. Suppose that α P κ and observe
that if A Ď α, Lemma 38.3 implies jpAq “ A. By Lemma 38.3, it
suffices to show that jpPpαqq “ Ppαq. This follows from α ă critpjq
and the fact that for any set S, jpPpSqq “ PpjpSqq. �

Notice that, a priori, the assertion that κ is λ-supercompact is not a
formula in the language of set theory. There is, however, an equivalent
definition which is purely set theoretic. An ultrafilter U on rλsăκ is
normal if whenever U0 P U and r : U0 Ñ λ satisfies rpMq P M for
all M P U0, there is a set in U on which r is constant. An ultrafilter
U on rλsăκ is fine if for every ξ P λ, tM P rλsăκ | ξ P Mu is in U .
Note that normal ultrafilters on rλsăκ are closed under intersections of
cardinality less than κ.

Suppose now that U is an ultrafilter on a set I. The ultrapower of
V by U is defined as follows. If f, g P VI , define

f “U g if and only if ti P I | fpiq “ gpiqu P U

f PU g if and only if ti P I | fpiq P gpiqu P U .

If f P VI , define f{U to be set of all elements of the “U equivalence
class of f which are of minimal rank. Define VI{U to be the class of all
f{U such that f P VI . If x is any set, define fx to be the function with
domain I which is constantly x. By  Lós’s Theorem for ultraproducts,
the map x ÞÑ fx{U defines an elementary embedding of V into VI{U .

If U is countably complete, then PU is well founded. Let πU :
pVI , PU q Ñ pM, Pq be the transitive collapse. It follows that jU pxq “
πU pfxq defined an elementary embedding jU : V Ñ M Ď V. This
embedding is the identity if and only if U is a principle ultrafilter.
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Proposition 38.5. If κ and λ are ordinals, then κ is λ-supercompact
if and only if there is a fine normal ultrafilter on rλsăκ.

Proof. If j : V Ñ M Ď V is an elementary embedding witnessing that
κ is λ-supercompact, then define U :“ tU Ď rλsăκ | λ P jpUqu. We
must show that U is fine and normal. To see that U is fine, let ξ P λ
be given.

To see that U is normal, suppose that U P U and r : U Ñ λ satisfies
rpaq P a for all a P U .

If U is a fine normal ultrafilter on rλsăκ, then it can be checked that
the ultrapower embedding jU witnesses that κ is λ-supercompact. �
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39. Stationary reflection

Suppose that S Ď rθsω. Is there a “small” subset X of θ such that
S X rXsω is stationary? If S X rXsω is stationary, it is common to say
that (the stationarity of) S reflects to X.

Theorem 39.1. Suppose that κ is a supercompact cardinal and θ is an
arbitrary cardinal. Every stationary subset of rθsω reflects to a set X
of cardinality less than κ which contains ω1.

Proof. Suppose that S Ď rθsω is stationary and set λ :“ |rθsω|. Let
j : V Ñ M Ď V witness that κ is λ-supercompact. By Lemma 38.3, if
a P rθsω, jpaq “ j2a. Define X to be the image of θ under j and

S 1 :“ j2S “ tjpaq | a P Su “ tj2a | a P Su.

Notice that since jæθ is a bijection between θ and X, S 1 is stationary
in rXsω and ω1 Ď X. Furthermore, since |X| “ θ ď λ, X P M.
Consequently S 1 Ď jpSq X rXsω and hence jpSq X rXsω is stationary.
Since λ ă jpκq, by elementarity, there is Y Ď θ such that rY sω X S is
stationary, ω1 Ď Y and |Y | ă κ. �

It turns out that if a supercompact cardinal κ is collapsed to ω2, this
reflection principle persists. For an uncountable cardinal θ, RPθ is the
assertion that stationary subsets of rθsω reflect to sets of size ℵ1 which
contain ω1.

Theorem 39.2. If κ is a supercompact cardinal, then

1 ,Collpω1,κq xRPθ holds for all θ ą ω1y.

The proof of this theorem is similar to the proof of Theorem 39.1
but it requires some additional lemmas.

Lemma 39.3. Suppose that j : V Ñ M Ď V is an elementary embed-
ding with critical point κ and Q is a forcing in V which is κ-c.c.. If
H Ď jpQq is an M-generic filter and G :“ j´1pHq, then G is V-generic
and j extends to an elementary embedding from VrGs to MrHs.

Proof. First we will show that G Ď Q is a V-generic filter. It suffices
to show that if A Ď Q is a maximal antichain in V, then GX A ‰ H.
Since Q is κ-c.c., |A| ă κ and hence by Lemma 38.3, jpAq is the image
of A under j. By elementarity, M |ù xjpAq is a maximal antichainy and
hence there is a q P H X jpAq. Let p P Q be such that jppq “ q, noting
that p P GX A.

Extend j so that jp 9xpGqq :“ jp 9xqpHq. This does not depend on
the choice of 9x: if 9xpGq “ 9ypGq, then there is a p P G such that
p ,Q 9x “ 9y. By elementarity jppq ,jpQq jp 9xq “ jp 9yq. Since jppq P
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H, jp 9xqpHq “ jp 9yqpHq. By the same reasoning, the extension is an
elementary embedding. �

Lemma 39.4. If S Ď rθsω is stationary and Q is σ-closed, 1 ,Q Š Ď

rθ̌sω is stationary.

Proof. Let λ be a sufficiently large regular cardinal that S and Q are
in Hλ. Let p P Q be any condition and 9f be such that p , 9f : θ̌ăω Ñ θ̌.
We need to find a q ď p and an a P S such that q ,Q xǎ is 9f -closedy.

Without loss of generality, we may assume that 9f is a nice name and
hence in Hλ. By Lemma 11.9, there a countable elementary submodel
M of Hλ such that p, 9f and Q are in M and a :“ M X θ is in S. Let
xDn | n P ωy list the dense subsets of Q which are in M and recursively
construct a decreasing sequence xpn | n P ωy such that p0 :“ p and
pn`1 ď pn is in DnXM . This is possible by elementarity of M . Notice

that for any ξ̄ P θăω XM , the set of conditions which decide 9fpξ̄q is a
dense set. Since it is definable from parameters in M , this dense set is
in M . Thus for each ξ̄ P θăω XM , there is an n such that pn decides
9fpξ̄q to be some η. Since η is definable from parameters in M , it is in
M as well. Let q be a lower bound for tpn | n P ωu and observe that q

forces ǎ P Š is 9f closed. �

Proof of Theorem 39.2. We’ll give an informal semantic proof for ease
of reading. Let G Ď Collpω1, κq be V-generic and suppose that θ ą ω1

is a cardinal and S Ď rθsω is stationary in VrGs. Set λ :“ |rθsω| and fix
an elementary embedding j : V Ñ M Ď V which witnesses that κ is λ-
supercompact. Define X :“ tjpξq | ξ P θu and observe that since Mλ Ď

M, X is in M . Since Collpω1, jpκqq – Collpω1, κq ˆ Collpω1, jpκqzκq, it
is possible to find a V-generic H Ď Collpω1, jpκqq such that G Ď H. By
Lemma 39.3, j extends to an elementary embedding j : VrGs Ñ MrHs.
Since Collpω1, jpκqzκq is σ-closed and VrHs is a generic extension of
VrGs by Collpω1, jpκqzκq, Lemma 39.4 implies S is still stationary in
VrHs. Since MrHs Ď VrHs, MrHs satisfies S is stationary. As in
Theorem 39.1, j2S Ď rXsω is stationary and contained in jpSq X rXsω.
Observe that |X| ď λ ă jpκq and hence

MrHs |ù |λ| “ ω1 ă |jpκq| “ ω2.

Thus MrHs satisfies that there is an X Ď jpθq of cardinality ℵ1 such
that ω1 Ď X and jpSq X rXsω is stationary. By elementarity of the
extended embedding, there is a Y Ď θ of cardinality ℵ1 such that
ω1 Ď Y and S X rY sω is stationary. �
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40. Analysis of NS`ω1
using the Reflection Principle

The hypotheses RPθ have many uses in set theory and it applications.
We will focus on its effect on the forcing NS`ω1

— the collection of all
stationary subsets of ω1 ordered by containment. This forcing will play
an integral role in our proof of the LpRq Absoluteness Theorem.

It will be helpful to develop some terminology. For the time being,
set θ :“ 2ℵ1 . If M and N are countable sets, we will say that N is an
ω1-end extension of M if M Ď N and M X ω1 “ N X ω1. If A Ď NS`ω1

is a maximal antichain, we say M captures A if:

‚ M XHθ` ă Hθ` is countable;
‚ A PM and there is an A PM XA such that M X ω1 P A.

M is good if M captures all maximal antichains in NS`ω1
which are an

element of M .

Lemma 40.1. Assume RP2θ . There is a club of countable M ă Hθ`

such that for every maximal antichain A Ď NS`ω1
in M there is an

ω1-end extension N of M capturing A .

Proof. Suppose not and let S consist of all countable M ă Hθ` such
that for some AM PM , there is no ω1-end extension N of M capturing
AM . By assumption S is stationary and by the Pressing Down Lemma,
there is a stationary S0 Ď S such that M ÞÑ AM is constantly A on
S0 for some A . By RP2θ there is an X Ď Hθ` such that ω1 Ď X,
|X| “ ℵ1, and S0XrXs

ω is stationary. Let xMξ | ξ P ω1y be a continuous
Ď-chain in rXsω such that Mξ X ω1 “ ξ for all ξ P ω1. It follows that
Ξ :“ tξ P ω1 |Mξ P S0u is stationary. Let A P A be such that ΞXA is
stationary. Let N ă Hθ` be such that xMξ | ξ P ω1y P N , A P N and
δ :“ N X ω1 P A X Ξ. By elementarity of N , Mξ Ď N whenever ξ P δ
and by continuity, Mδ Ď N . Thus N is an ω1-end extension of M and
N captures A via A, contradicting that M P S0. �

Lemma 40.2. Assume RP2θ . If M is a countable elementary submodel
of Hp2θq` and A PM is a maximal antichain in NS`ω1

, then M has an
ω1-end extension N ă Hp2θq` which captures A .

Proof. Let M ă Hp2θq` and A P M be a maximal antichain in NS`ω1
.

By elementarity, there is a club E Ď rHθ`s
ω in M as stipulated in

Lemma 40.1. Observe that M0 :“ M X Hθ` is in E and therefore
there is an ω1-end extension N0 ă Hθ` of M0 which captures A . Let
A P A X N0 be such that N0 X ω1 P A. Define N to be the set of all
fpAq such that f P M is a function defined on A . We will show that
N ă Hp2θq` is an ω1-end extension of M .
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First notice that x P M then the function which takes the constant
value x on A is in M and hence M Ď N . Also, A P N since the
identity function on A is in M . To see that N ă Hp2θq` , suppose that
xfi | i ă ny are functions defined on A which are in M and for some φ

Hp2θq` |ù Dy φpf0pAq, . . . , fn´1pAq, yq.

Define B :“ tB P A | Hp2θq` |ù Dy φpf0pBq, . . . , fn´1pBq, yqu noting
that B is in M by elementarity and A P B. Let g P M be a function
defined on A such thatHp2θq` |ù φpf0pBq, . . . , fn´1pBq, gpBqq whenever
B P B. We have gpBq P N and Hp2θq` |ù Dy φpf0pAq, . . . , fn´1pAq, yq,
verifying the Tarski-Vaught criterion for elementarity of N .

To see N X ω1 “ M X ω1, let α P N X ω1 and fix a function f P M
with fpAq “ α. Define g : A Ñ ω1 by gpBq “ fpBq if fpBq P ω1 and
gpBq “ 0 otherwise. Then gpAq “ fpAq and g PM XHθ` “M0. Since
g and A are in N0, α “ gpAq P N0 X ω1 “M X ω1.

�

Lemma 40.3. Assume RP2θ . For every stationary set S, the set of
good M ă Hθ` with M X ω1 P S is stationary.

Proof. Let S Ď ω1 be stationary and define Γ Ď rHθ`s
ω to consist of

all good M with M X ω1 P S. Let M ă Hp2θq` be countable with
M X ω1 P S and S in M . Since Γ is definable from parameters in M ,
Γ P M . By iterating Lemma 40.2, we can find an ω1-end extension N
of M which is good. Since NXHθ` P Γ and Γ P N , Γ is stationary. �

Lemma 40.4. Assume RP2θ . If xAn | n P ωy is a sequence of an-
tichains in NS`ω1

, then for every p P NS`ω1
, there is a q ď p such that

for every n, q is compatible with at most ℵ1 elements of An.

Proof. Let p be given and define Γ to be the set of all good M ă Hθ`

such that tAn | n P ωu P M and M X ω1 P p. Γ is stationary and
hence RP2θ implies that there is a continuous Ď-increasing sequence
xNξ | ξ P ω1y such that Nξ X ω1 “ ξ and q :“ tξ P ω1 | Nξ P Γu is
stationary. Notice that q Ď p. It suffices to show that if A P An is
compatible with q, then A P Nξ for some ξ P ω1. For each ξ P q X A,
let Bξ P Nξ XAn be such that ξ P Bξ. By the Pressing Down Lemma,
there is B an a stationary C Ď q X A such that if ξ P C, Bξ “ B. It
follows that C Ď B XA and since An was assumed to be an antichain,
it must be that A “ B. �

Lemma 40.5. Suppose that p ,NS`ω1
9f P }Vω1 and that A Ď NS`ω1

is a maximal antichain of conditions which decide 9f . If at most ℵ1

elements of A are compatible with p, then there is an h P Vω1 such
that p ,NS`ω1

ȟ “ 9G
9f .
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Proof. Let tAξ | ξ P ω1u list the elements of A which are compatible

with p and let fξ be such that Aξ ,NS`ω1
9f “ f̌ξ. Define hpξq “ fηpξq

where η ă ξ is minimal such that ξ P Aη; if no such η exists, define

hpξq “ 0. Suppose that q ď p decides 9f , noting that q ,NS`ω1
9f “ f̌η

for some η ă ω1. Since A is an antichain, q is contained in Aη modulo

a stationary set. Since q , Ǎη P 9G, it suffices to show that

B :“ tξ P Aη | hpξq ‰ fηu

is nonstationary. If ξ P B, then there is an η1 ă η such that ξ P Aη1
and hpξq “ fη1pξq ‰ fηpξq. If B were stationary, there would be a
single η1 and a stationary B1 Ď B such that for all ξ P B1, ξ P Aη1
and hpξq “ fη1pξq. But this means B1 Ď Aη X Aη1 while fη ‰ fη1 ,
contradicting that tAξ | ξ P ω1u Ď A is an antichain. �

Proposition 40.6. Assume RP2θ . The following are forced by NS`ω1
:

‚ }Vω1{ 9G is well founded;

‚ the transitive collapse of }Vω1{ 9G is closed under ω-sequences and

in particular contains 9R.

Proof. Suppose that x 9fn | n P ωy is a sequence of NS`ω1
-names for

elements of }Vω1 and let p P NS`ω1
be arbitrary. Let An Ď NS`ω1

be

a maximal antichain of conditions which decide 9fn. By Lemma 40.4,
there is a q ď p such that q is compatible with at most ℵ1 elements of
An for all n. By Lemma 40.5, there are functions hn P Vω1 such that
for all n, q ,NS`ω1

ȟn “ 9G
9fn. Define g P Vω1 by gpξq “ thnpξq | n P ωu.

It follows that q forces that for all x P }Vω1 , x P 9G ǧ if and only if

x “ 9G ȟn for some n if and only if x “ 9G
9fn for some n.

Since }Vω1{ 9G is forced to satisfies the same theory as V̌, }Vω1{ 9G mod-

els the Axiom of Foundation. Therefore q forces }Vω1{ 9G |ù xǧ has an P 9G

minimal elementy. Thus q forces x 9fn | n P ωy has an P 9G-minimal ele-

ment. Since p was arbitrary, 1 ,NS`ω1
x }Vω1{ 9G is well foundedy. Notice

that this also establishes the second conclusion: if π 9G is the collapsing

isomorphism, 1 ,NS`ω1
π 9Gpǧq “ xπ 9Gp

9fnq | n P ωy. �
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41. The LpRq Absoluteness Theorem

If Q is a forcing, we will say that ThpLpRqq is absolute for Q if
whenever φ is a sentence in the language of set theory, LpRq |ù φ if

and only if 1 ,Q xLp 9Rq |ù φy. The LpRq Absoluteness Theorem asserts
that if there is a supercompact cardinal, then ThpLpRqq is absolute for
every forcing. We’ll begin with some observations.

We will eventually show that if κ is a supercompact cardinal, then
ThpLpRqq is absolute for Collpω, κq. Suppose for a moment that we’ve
established this. If Q is in Vκ, then by Proposition 35.6, Q ˚Collpω, κq
is forcing equivalent to Collpω, κq. Also Proposition 39.3 implies that
1 ,Q xκ is supercompacty. Thus if φ is any sentence, then LpRq |ù φ
if and only if 1 ,Collpω,κq xLpRq |ù φy if and only if 1 ,Q x1 ,Collpω,κq

xLpRq |ù φyy. Next suppose that Q is any forcing and let j : V Ñ

M Ď V be an elementary embedding witnessing that κ is |PpQq|-
supercompact. Let Q0 “ j2Q and observe that Q0 P M and if 9r
is a nice Q0-name for a real, then 9r is in M. It follows that V |ù

xp ,Q0 xLpRq |ù φyy if and only if M |ù xp ,Q0 xLpRq |ù φyy. By
elementarity, M |ù xjpκq is supercompacty and therefore that M |ù

xThpLpRqq is absolute for Q0y. It follows that ThpLpRqq is absolute for
Q0 – Q.

We will now turn to proving that ThpLpRqq is absolute for Collpω, κq
if κ is supercompact. Since Collpω, κq is weakly homogeneous, it is
sufficient to show that for some forcing P :

‚ ThpLpRqq is absolute for P and
‚ P forces there is an H Ď Collpω, κq which is a V̌-generic filter

such that 9R Ď VrHs.

The forcing P will be of the form Collpω1, κq˚NS`ω1
˚ 9Q for some 9Q such

that Collpω1, κq ˚ NS`ω1
forces 9Q does not add reals.

Observe that ThpLpRqq is absolute for forcings which do not add new
reals and so the absoluteness of ThpLpRqq for the iteration reduces to
showing that

1 ,Collpω1,κq xThpLpRqq is absolute for 9NSω1y.

Since Collpω1, κq forces RP2θ , this is a consequence of Proposition 40.6.

Lemma 41.1. Suppose that j : V Ñ M witnesses that κ is 2κ-

supercompact. If H Ď Collpω1, jpκqq ˚ 9NS
`

ω1
is V-generic, then G :“

j´1pHq Ď Collpω1, κq ˚ 9NS
`

ω1
is V-generic and j extends to an elemen-

tary embedding of VrGs into MrHs.
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Proof. Let G0 and H0 be the projections of G and H to Collpω1, κq
and Collpω1, jpκqq, respectively. By Lemma 39.3, G0 is V-generic and
j extends to an embedding of VrG0s into MrH0s. Working in VrG0s,
let Γ be the set of all good M ă Hθ` such that M X ω1 P B.

By RP2θ and arguing as in the proof of Lemma 40.1, there is a
continuous Ď-chain xMν | ν P ω1y such that Mν X ω1 “ ν and C :“
tν P ω1 |Mν P Γu is stationary. Set Mω1 :“

Ť

tMν | ν P ω1u. If suffices
to show that if ξ P ω1 and A P AξzMω1 , then A X C is nonstationary.
Define a function r on tMν | ν P AXCu by letting rpMνq be the element
of Aξ XMν which has ν as an element. If AXC were stationary, there
would be an A1 P Aξ XMω1 such that r´1pA1q is stationary. But then
A1 X A is stationary, a contradiction. �

Lemma 41.2. If G Ď Collpω1, κq ˚ NS`ω1
is a V-generic filter and

r P VrGs, then there is a Q0 Ď Collpω1, κq ˚ NS`ω1
in V such that:

‚ V |ù |Q0| ă κ;
‚ V |ù xQ0 is a regular suborder of Collpω1, κq ˚ NS`ω1

y;
‚ r P VrGXQ0s.

Proof. It suffices to show that for every p P Collpω1, κq ˚ NS`ω1
, there

is a V-generic filter G satisfying the conclusion of the lemma such
that p P G. Let 9r be a Collpω1, κq ˚ NS`ω1

-name such that p , 9r P
9R. Let j : V Ñ M Ď V witness that κ is 2κ-supercompact and
set Q0 :“ j2 Collpω1, κq ˚ NS`ω1

. Since |Q0| ď 2κ, PpQ0q Ď M. Let
H Ď Collpω1, jpκqq ˚ NS`ω1

be V-generic with jppq P H and set

G :“ tp P Collpω1, κq ˚ NS`ω1
| jppq P Hu

noting that p P G. By Lemma 41.1, G is V-generic and hence H XQ0

is M-generic. Since H was arbitrary, it follows that M satisfies Q0 is
a regular suborder of Collpω1, jpκqq ˚NS`ω1

. By elementarity, jp 9rqpHq “
jp 9rpGqq. Since j is the identity on hereditarily countable sets, jp 9rpGqq “
9rpGq. Thus jp 9rqpHq “ jp 9rqpH X Q0q. We’ve established that MrHs
satisfies Q0 is a regular suborder of Collpω1, jpκqq ˚ NS`ω1

of cardinality
at most 2κ ă jpκq and that 9rpHq “ 9rpH X Q0q is in MrH X Q0s. The
conclusion of the lemma now follows by elementarity of j. �

The next proposition finishes the proof.

Proposition 41.3. Suppose that κ is a supercompact cardinal. There
is a Collpω1, κq ˚ NSω1-name 9Q for a forcing with the properties that:

‚ forcing with 9Q does not add new reals and
‚ forcing with 9Q adds a V-generic filter 9H Ď Collpω, κq such that

9R Ď Vr 9Hs.
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Proof. Let G Ď Collpω1, κq ˚ NSω1 be a V-generic filter and work in
VrGs. Define Q P VrGs to be the set of all q “ pHq, δqq such that
δq P κ and Hq Ď Collpω, δq is a V-generic filter. Define q ď p if δp ď δq
and Hp “ Hq X Collpω, δpq.

Claim 41.4. For all ν P κ, tq P Q | ν ď δqu is dense in Q.

Proof. Let p P Q be arbitrary. If ν ď δp, there is nothing to show.
Otherwise Collpω, νq – Collpω, δpq ˆ Collpω, νzδpq, which is countable.
Since κ is inaccessible in VrHps and PpCollpω, νzδpqqXVrHps is count-
able, there is a filter K Ď Collpω, νzδpq which is VrHps-generic. If we
define

Hq :“ ts P Collpω, νq | psæδp ˆ ω P Hpq ^ psæpνzδpq ˆ ω P Kqu

and δq :“ ν, then Hq is V-generic and q ď p. �

Claim 41.5. For all r P RXVrGs, tq P Q | r P VrHqsu is dense in Q.

Proof. Let p P Q be arbitrary. Let s P R be such that Hp and
r are in Vrss. Applying Lemma 41.2, there is a regular suborder
Q0 Ď Collpω1, κq ˚ NSω1 in V such that |Q0| ă κ and s P VrG X Q0s.
By Proposition 38.4, there is a ν P κ such that V satisfies ν is an
inaccessible cardinal greater than |Q0|. Since Q0 ˚ Collpω, νq is forcing
equivalent to

Collpω, νq – Collpω, δpq ˆ Collpω, νzδpq,

there is a V-generic filter H Ď Collpω, νq containing Hp that G X Q0

is in VrHs. By an application of Lemma 37.6 in VrHps and using
that Collpω, νzδpq – Collpω, νq, there is an Hq Ď Collpω, νq such that
Hp Ď Hq and GXQ0 P VrHqs. �

It just remains to show that forcing with Q does not add new reals.
Let p P Q and 9r be a nice Q-name for a real. We will find a q ď p which
decides 9r. Observe that Q and 9r are both in Hℵ2 . By Proposition 38.4,

S :“ tν P ω1 | V |ù xν is inaccessibleyu

is stationary. Let M be a countable elementary submodel of Hℵ2 such
that Q, p, and 9r are in M and ν :“ M X ω1 is in S. Construct a
decreasing sequence xpn | n P ωy in M X Q such that p0 :“ p and
tpn | n P ωu meets every dense subset of Q which is in M . By Claim
41.4, suptδpn | n P ωu “ ν. Define δq :“ ν and Hq :“

Ť

tHpn | n P ωu.
To see that Hq is V-generic, suppose that A Ď Collpω, νq is a maximal
antichain in V. Since ν is inaccessible in V, A Ď Collpω, αq for some
α P ν. If n is such that α ď δpn , then A X Hpn is nonempty. Thus
q P Q is a lower bound for tpn | n P ωu. Since 9r is in M and q is a
lower bound for an M -generic filter, q decides 9r. �


