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1. Catalan Numbers

This document aims to give the reader an introduction to Catalan numbers, a sequence
of numbers arising throughout mathematics. We will explore some of the myriad of objects
counted by these numbers using the machinery of bijections. We begin with one such family
of objects called Dyck paths, and use them to get a formula for the Catalan numbers.

A lattice path is a sequence of length 1 east and north steps in the plane starting at (0, 0).
A Dyck path is a lattice path that does not go above the line y = x. Shown below are two
example lattice paths in the 3× 3 grid. The one on the left is a Dyck path, but the one on
the right is not.

Can you find the other four Dyck paths in the 3× 3 grid?
1
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Definition 1.1. For each n ≥ 1, define the Catalan number Cn to be the number of Dyck
paths in the n× n grid.

We will work toward giving a formula for Cn. First, recall the binomial coefficients.

Definition 1.2. For nonnegative integers n and k, the binomial coefficient
(
n
k

)
is the number(

n

k

)
=

n!

k!(n− k)!

which counts the number of ways to choose k objects at once out of a bag of n objects.

In other words,
(
n
k

)
counts the number of size k subsets of [n] = {1, 2, . . . , n}.

Example 1.3. The size 3 subsets of [5] = {1, 2, 3, 4, 5} are

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}.
Correspondingly, (

5

3

)
=

5!

3!(5− 3)!
=

5× 4× 3× 2× 1

(3× 2× 1)(2× 1)
= 10

To find a formula for the Catalan numbers, we begin with the following fact:

Lemma 1.4. For any m and n, there are
(
m+n
m

)
lattice paths from (0, 0) to (m,n) in the

m× n grid.

Proof. Think of a lattice path as a sequence of letters indicating the steps, N for north and
E for east. To reach (m,n), a lattice path must have exactly m E’s and n N ’s, but can have
them in any order. We can biject paths to size m subsets of [m + n]. Think of [m + n] as a
line of empty boxes. In each box we can place either an E or an N . We think of E in box i
as meaning “put i in the subset” and N as meaning “throw away i”. For example,

NEENNNNEENE corresponds to the subset{2, 3, 8, 9, 11} of [11].

�
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For example, for (m,n) = (3, 2), the bijection with size 3 subsets of [5] is

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}

{1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

Proposition 1.5. The lattice paths in the n×n grid that cross the line y = x are in bijection
with the lattice paths in the (n− 1)× (n + 1) grid.

Proof. Given a lattice path P in the n×n grid crossing the line y = x, we construct a lattice
path QP in the (n−1)× (n+ 1) grid. Let p be the first step of P that crosses the line y = x.
Let QP agree with P up to p, but after p swap the direction of each edge. For example:

p

P

QP

In the blue portion of P , there will always be exactly one more north steps than east steps
by the definition of p. Since there are exactly n north steps and n east steps in P , there
must be exactly one more east steps than north steps in the red portion of P .

Thus, both the blue and red portions of QP will have one more north steps than east
steps. Thus, QP will have n− 1 total east steps and n+ 1 total north steps. In other words,
QP will be a lattice path in the (n− 1)× (n + 1) grid.

For the inverse bijection, just draw in the n×n diagonal in the (n− 1)× (n+ 1) grid and
do the same reflection again! �

For n = 2, there are four non-Dyck paths, and they biject to all lattice paths in the 1× 3
grid:
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We can now describe the Catalan numbers.

Theorem 1.6. The Catalan numbers are given by the formula

Cn =

(
2n

n

)
−
(

2n

n− 1

)
Proof. Cn counts the number of lattice paths in the n × n grid that do not cross the line
y = x. There are

(
2n
n

)
total lattice paths. Of these, there are the same number as bad paths

as there are lattice paths in the (n− 1)× (n + 1) grid. That is, there are
(

2n
n−1

)
. Hence,

Cn = # of total paths−# of bad paths =

(
2n

n

)
−
(

2n

n− 1

)
.

�

The first few Catalan numbers are C0 = 1 (basically a definition), C1 = 1, C2 = 2, C3 = 5,
C4 = 14, C5 = 42. What is so special about these numbers, you might ask. It turns out
they count many, many completely different objects! We will look at a handful of these in
the next section.

2. Objects Counted by Catalan Numbers

In this section, introduce various families of mathematical objects and give bijections
between them to show that they are counted by Catalan numbers. We begin with ballot
sequences.

2.1. Ballot Sequences. A ballot sequence of length 2n is a sequence with n −1’s and n
1’s such that every partial sum is nonnegative. Equivalently, as you read the sequence left-to-
right, you always encounter at least as many 1′s as−1’s. For example, (1,−1, 1, 1,−1,−1,−1, 1)
has partial sums 1, 0, 1, 2, 1, 0, −1, and 0, so it is not a ballot sequence. For n = 3, there
are five ballot sequences:

(1, 1, 1,−1,−1,−1) (1, 1,−1, 1,−1,−1) (1, 1,−1,−1, 1,−1)

(1,−1, 1, 1,−1,−1) (1,−1, 1,−1, 1,−1)
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We show that ballot sequences are counted by Catalan numbers through a bijection to
Dyck paths!

Proposition 2.1. There are Cn ballot sequences of length 2n.

Proof. Given a ballot sequence b, replace each 1 by E and each −1 by N to get a lattice path
P . We claim P is actually a Dyck path. Since the partial sums of b are nonnegative, in any
initial segment of b there are at least as many 1’s as −1’s. Then in each initial segment of D,
there are at least as many E’s as N ’s. Thus, D never goes above the line y = x. Reversing
this process gives a map from Dyck paths to ballot sequences. �

When n = 3, we get the bijection:

(1, 1, 1,−1,−1,−1) (1, 1,−1, 1,−1,−1) (1, 1,−1,−1, 1,−1)

(1,−1, 1, 1,−1,−1) (1,−1, 1,−1, 1,−1)

2.2. Parenthesizations. Fix a string of n + 1 letters. A parenthesization is an insertion
of n− 1 open parentheses and n− 1 close parentheses so that the resulting expression only
involves products of two adjacent things at a time. For n = 2, we are looking at the string
abc and inserting one pair of parentheses. This can be done in two ways:

a(bc) and (ab)c.

Can you find five parenthesizations of abcd?

Proposition 2.2. There are Cn parenthesizations of n + 1 letters.
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Proof. We give a bijection to Dyck paths. Take a parenthesization of n+1 letters and remove
all the right parentheses and the very last letter to get a string of length 2n − 1 consisting
of n − 1 open parentheses and the first n letters. Note that this is bijective since we can
recover the full parenthesization from this information. Try an example to see how you do
this:

Add a ‘(’ to the beginning of the string. To get a Dyck path, replace each ‘(’ by E and
each letter by N . For example,

(a((bc)d))(ef)

( (

( (

(

a

b

c

d

e

For this not to be a Dyck path, at some point prior to the end of the path there would have
to be more N steps than E steps. Then at the corresponding point in the original parenthe-
sization (which will be before the last letter), there would have been at least two more letters
than ‘(’s (two, since we added a ‘(’ while building the path). In any valid parenthesization,
there can only be at most one more letter than open parenthesis at any point, otherwise we
will end up trying to multiply three or more things at once. To convince yourself of this, try
writing down 6 letters and only 4 open (and closed if you want) parentheses in various ways
in the space below. Can you make it so that at least two more letters than open parentheses
occur prior to the last letter? What goes wrong?

This completes a map from parenthesizations to Dyck paths. Explain how you can reverse
this map to go from Dyck paths to parenthesizations. This will complete the bijective
proof. �
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Using the five parenthesizations of abcd you found earlier, complete the n = 3 bijection:

((ab)c)d

a(b(cd))

3. Exercises

For the exercises, we will define more objects counted by Catalan numbers and ask you
to find bijections to prove it. For each type of object, we will show you the case n = 3 for
you to play around with.

3.1. Nonintersecting Chords. Imagine 2n points in the plane lying on a circle.

Consider all the ways of connecting the 2n points by n chords (line segments lying inside
the circle) such that no two chords ever cross. For n = 3, there are five ways to do this:
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Exercise 3.1. For each n, find a bijection between the arrangements of nonintersecting
chords on 2n points and the Dyck paths in the n × n grid. Use your bijection to conclude
that there are Cn arrangements of nonintersecting chords on 2n points for each n.

3.2. Noncrossing Arcs. Imagine 2n points in the plane lying on a horizontal line.

Consider all the ways of connecting the 2n points by n arcs lying above the line such that
each arc connects exactly two points and no arcs ever cross. For n = 3, there are five ways
to do this:

Exercise 3.2. For each n, find a bijection between the arrangements of noncrossing arcs on
2n points and the arrangements of nonintersecting chords on 2n points. Use your bijection
to conclude that there are Cn arrangements of noncrossing arcs on 2n points for each n.

3.3. Binary and Full Binary Trees. Binary trees are a type of graph (think of a diagram
consisting of points and lines, not the graph of a function or a data plot) that represent
a sequence of yes/no choices. Consider the following feline diagnostic tool as a motivating
example.
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Do you feed your
cat regularly?

Do you regularly
play with your

cat?

Is it on a diet?

It’s hungry! That’s why!

Cats need
frequent love.

Cats are mysterious
creatures. You may
never know why.

Why is my cat mad?
Legend

No

Yes

You begin at the top of the graph. At each point, you have at most two choices for how to
answer. Each choice takes you further down the graph. When you reach a point with no
more choices, you stop.

We now formally describe graphs with this kind of structure, called binary trees. The
definition works recursively, defining a binary tree of a given size in terms of smaller binary
trees. In general, it is not required that there are exactly two choices at each vertex. Binary
trees with this property are called full binary trees.

Recall that a graph is a set of points, called vertices, and line segments between them,
called edges. Binary trees are the members of a family of graphs defined recursively:

• The empty graph (no vertices or edges) is a binary tree.

• A nonempty binary tree consists of a root vertex v0, a left-subtree TL, and a right
subtree TR such that both TL and TR are binary trees, and v0 has an edge to the
roots of both.

v0

TL
TR

Exercise 3.3. Explain in the example above why TL is itself a binary tree. Where is its
root? Why are its left and right subtrees binary trees?
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Here are the five binary trees on 3 vertices:

Let T be a binary tree, and fix a vertex v in T . The vertices that have an edge with v
and are farther away from the root vertex of T are called the children of v.

Exercise 3.4. Prove that in a binary tree, each vertex has 0, 1, or 2 children.

A full binary tree is a binary tree where each vertex has either zero or two children. Here
are the five full binary trees on 7 vertices:

Exercise 3.5. For each n, find a bijection between the full binary trees on 2n + 1 vertices
and the parenthesizations of n + 1 letters. Use your bijection to conclude that there are Cn

full binary trees on 2n + 1 vertices for each n.

Exercise 3.6. Find a bijection between the full binary trees on 2n + 1 vertices and the
binary trees on n vertices.

3.4. Triangulations. An n-sided polygon, or n-gon for short, is obtained by connecting n
distinct points (again called vertices) on a circle with line segments to their closest neighbors,
and then filling in the enclosed region. Here are n-gons for n = 4, 5, 6:

A diagonal of an n-gon is a line segment between two vertices that are not neighbors on
the circle. A triangulation of an n-gon is a set of n− 3 diagonals that don’t intersect inside
the polygon and that chop the polygon up into triangles. As you may be expecting by now,
there are five triangulations of a 5-gon:
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Exercise 3.7. Find a bijection between triangulations of n-gons and either binary trees on
n vertices or full binary trees on 2n+1 vertices. Conclude that there are Cn−2 triangulations
of an n-gon.

3.5. Plane Trees. Similar to binary trees, plane trees are the members of a family of graphs
defined recursively. Every plane tree P has a root vertex v0 (and so is nonempty). Either
this is all of T , or T has subtrees T1, . . . , Tk all of which are plane trees whose roots have an
edge to v0.

v0

T3T2
T1

Exercise 3.8. Explain in this example why T2 is itself a plane tree. Where is its root? What
are its subtrees, and why are they plane trees?

As you probably guessed, there are five plane trees with 4 vertices:

Exercise 3.9. Find a bijection between plane trees with n + 1 vertices and Dyck paths in
the n× n grid.
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Exercise 3.10. Find a bijection between plane trees with n + 1 vertices and binary trees
with n vertices.

4. Even More Catalan!

So far, we have the following chart of objects and bijections:

Parenthesizations

Dyck Paths

Full Binary
Trees

Binary Trees

Plane Trees

Noncrossing
Arcs

Nonintersecting
Chords

Ballot
Sequences

Triangulations

Can you add any more bijections to this chart?
For more Catalan objects than you can imagine, the book [2] describes over 200 different

objects counted by the Catalan numbers!
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