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This document aims to give the reader an introduction to the use of recurrence relations
in combinatorics. Recurrences can be used to count families of objects that depend on an
integer parameter. We will define recurrences and use them to explore various objects. We
begin by returning to subsets of [n].

1. A Recurrence for Subsets

Recall the set [n] = {1, 2, 3, . . . , n}. A subset of [n] is a collection of these numbers with
no repeats. For instance, if n = 2, then we could take {1}, {2}, {1, 2}, or we could take
neither 1 nor 2, giving the empty set, denoted ∅. So for n = 2, there are 4 subsets.

How many subsets of [n] are there in general? We are going to count them in a different
way than you might have seen before. Let an denote the number of subsets of [n]. Our
strategy is to relate an to an−1 and work backwards to figure out what an is.

The trick is to make an obvious statement: Given a subset A of [n], either n ∈ A (n is in
A) or n /∈ A (n is not in A). Exactly one of these must be true. For example, when n = 3
we have

∅, {3},
{1}, {1, 3},
{2}, {2, 3},
{1, 2}, {1, 2, 3}.

Let’s now look at both cases.
If n ∈ A, then A consists of a subset of [n − 1] together with the element n. This shows

that the subsets of [n] which contain n are in bijection with the subsets of [n− 1] via adding
or removing n. Consequently, there are an−1 subsets of [n] containing n.

On the other hand, the subsets of [n] not containing n are exactly the subsets of [n− 1],
so there are an−1 of these as well. Whatever an may be, we have shown that
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an = an−1 + an−1 = 2an−1

A with
n ∈ A

A ⊆ [n] A with
n /∈ A

The nice thing is that we were nonspecific about which n we were using, so what we proved
should hold for all appropriate n. Replacing n by n− 1, we get

an = 2an−1 = (2× 2)an−2.

What if we keep going like this? What are the limits of this line of thinking? Is it true that

a2 = 2a1 = (2× 2)a0 = (2× 2× 2)a−1 = · · · = 2100a−98?

Our original question “How many subsets of [n] are there?” only makes sense when n is
nonnegative, so negative indices do not make sense. So the best we can do is say

an = 2an−1 = 22an−2 = 23an−3 = · · · 2n−1a1 = 2na0.

Okay, so if we know a0, then we know an for any n > 0. What is a0?
Well, by definition a0 is the number of subsets of [0], a set with no elements (so ∅). Since

[0] = ∅ has no elements, the only subset it can have is itself. Thus a0 = 1, and an = 2n for
all n ≥ 0.

The trick behind this solution method was to relate the subsets of [n] with subsets of a
smaller set, in this case [n− 1]. With this in mind, we make the following definition.

Definition 1.1. Given a sequence of numbers b0, b1, b2, . . ., a recurrence relation is an equa-
tion relating bn to any of bn−1, bn−2, . . . , bn−k for some fixed k and each n ≥ k.

Recurrence relations can indicate internal structure within an object of size n in some
collection of objects. There are many different types of recurrence relations that arise, and
many approaches to solving them explicitly. We will focus mostly on finding and explaining
recurrences in this document. We first turn our attention to a famous recurrence.

2. Fibonacci Numbers

Imagine a line of n adjacent boxes. Consider two types of domino tiles, a 1×1 square and
a 1× 2 rectangle.

1× 1 tile 1× 2 tile

How many ways are there to exactly cover the n boxes using the two types of tiles? This
number is called the nth Fibonacci number, and is denoted Fn. The cases for n ≤ 3 are
shown below. Can you fill in the five tilings of n = 4 boxes?
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n = 4 :

n = 3 :

n = 2 :

n = 1 :

n = 0 :

∅

So far we have F0 = 1 (the only way to tile zero boxes is by doing nothing), F1 = 1,
F2 = 2, F3 = 3, and F4 = 5. If we were to play around some more, we would find F5 = 8,
F6 = 13, and F7 = 21. That’s 1, 1, 2, 3, 5, 8, 13, 21. Do you see a pattern in these numbers?
Can you write your pattern as a recurrence relation for Fn? When you have your guess in
hand, turn over to see the solution.



4 RECURRENCES

Theorem 2.1. The Fibonacci numbers satisfy the recurrence

Fn = Fn−1 + Fn−2 for n > 1

with F0 = 1 and F1 = 1.

How do we go about proving this? The key is to bring it from the level of numbers of
tilings to the level of the tilings themselves. The goal is to split the tilings of n boxes into
two separate groups: a group that is essentially the same as the tilings of n− 1 boxes, and
a group that is essentially the same as the tilings of n − 2 boxes. Counting the groups will
exactly give the result.

Proof. Let Tn denote the set of tilings of n boxes by 1×1 and 1×2 tiles, so Fn is the number
of elements of Tn. Separate the tilings into sets An and Bn as follows: An will consist of
all tilings whose leftmost tile is 1× 1 and Bn will consist of all tilings whose leftmost tile is
1× 2.

For n = 4, draw in the tilings from before in the appropriate set:

A4 B4

Clearly, An and Bn have no common members, so

Fn = |Tn| = |An|+ |Bn|.
To complete the proof, can you find bijections from An to Tn−1 and from Bn to Tn−2? This
will show that

|An| = |Tn−1| = Fn−1 and |Bn| = |Tn−2| = Fn−2.

�

3. Catalan Numbers

We now revisit the Catalan numbers Cn. Recall that Cn counts many many things, and
is given by the formula

Cn =

(
2n

n

)
−
(

2n

n− 1

)
,

which we discussed by counting Dyck paths. For example, the first few Catalan numbers are
C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429, C8 = 1430, and C9 = 4862.
Additionally, even though n = 0 does not work with the formula, C0 is just defined to be 1
(the recurrence later will show why this is a good choice).
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Do you see a pattern with these numbers? Their pattern is much more involved. We will
find a recursion satisfied by the Catalan numbers. Since we have so many objects to choose
from, we will work with triangulations first. We will ask you to reinterpret the recurrence
later for different objects in an exercise.

Recall that an n-sided polygon (n-gon for short) is obtained by connecting n distinct
points (called vertices) on a circle with line segments to their closest neighbors, and then
filling in the enclosed region. Here are n-gons for n = 4, 5, 6:

A diagonal of an n-gon is a line segment between two vertices that are not neighbors on
the circle. A triangulation of an n-gon is a set of n− 3 diagonals that don’t intersect inside
the polygon and that chop the polygon up into triangles. There are Cn−2 triangulations of
an n-gon. Recall C3 = 5:

So how do we go about trying to find a recurrence? For the Fibonacci numbers, we broke
the objects into groups and identified each group with smaller objects. We will do something
similar here. Start with an n-gon and imagine placing diagonals so that the top edge is in a
triangle:
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How many ways are there to finish the triangulation of this 8-gon? The key insight is that
no diagonal can cross the triangle you made. So if you took some scissors and the cut out
your first triangle, there would be no harm in triangulating the smaller polygons that came
from the cut however you wanted and then gluing them back together.

So how many ways were there to finish this triangulation? Well, one for each pair of ways to
triangulate a 4-gon and a 5-gon! There are C2 ways to triangulate a 4-gon and C3 ways to
triangulate a 5-gon, so if we insisted on starting with this particular first triangle, we could
obtain

C2 × C3 = 2× 5 = 10
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triangulations of our original 8-gon! That’s not all the triangulations of the 8-gon though.
What if we had picked a different first triangle using that top edge?

None of these options will have any triangulations in common: they all do something different
with the top edge! So how do we count up all the possibilities from each of these cases?
Well,

C5
C4

C3
C5

C1

C3

C1

C2

C2 C4

Thus

C6 = C5 + C1C4 + C2C3 + C3C2 + C4C1 + C5

= 42 + (1× 14) + (2× 5) + (5× 2) + (14× 1) + 42

= 132.

As a reality check, this agrees with our earlier formula:

C6 =

(
2× 6

6

)
−
(

2× 6

5

)
= 924− 792 = 132.
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The ideas we used above to work through an 8-gon can be applied to any n, giving the
following recurrence. To make the formula prettier, we use here the definition we made
earlier of C0 = 1:

Theorem 3.1. The Catalan numbers Cn for n > 0 satisfy the recurrence

Cn = C0Cn−1 + C1Cn−2 + C2Cn−3 + · · ·+ Cn−2C1 + C0Cn−1

4. Exercises

Exercise 4.1. A permutation of [n] is an arrangement of 1, 2, . . . , n in any order. For
instance, there are are 6 permutations of [3], namely 123, 132, 213, 231, 312, and 321. Let
an denote the number of permutations of [n], with a1 = 1. Prove that an = nan−1 for all
n ≥ 1 and use this to find a formula for an.

Exercise 4.2. Recall the binomial coefficients(
n

k

)
= # subsets of [n] with size k.

Without using the formula (
n

k

)
=

n!

k!(n− k)!

which you might have seen previously, prove the recurrence relation(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Exercise 4.3. A set partition of [n] is a decomposition of [n] into disjoint nonempty subsets.
For instance

[8] = {1, 3} ∪ {2, 6, 7} ∪ {4} ∪ {5, 8}
is a set partition of [8]. You can think of the partition as a set of subsets {{1, 3}, {2, 6, 7}, {4}, {5, 8}},
since the order of the subsets does not matter. The subsets in the decomposition are called
blocks of the partition.

Denote by S(n, k) the number of set partitions of [n] into exactly k blocks, with S(0, 0)
defined to be 1. For example, S(4, 2) = 3 since the set partitions of [4] with two parts are

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, and {{1, 4}, {2, 3}}.
Prove that for all n, k ≥ 1,

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1).

Exercise 4.4. Let B(n) denote the total number of set partitions of [n], with B(0) defined
to be 1. In other words,

B(n) = S(n, 0) + S(n, 1) + S(n, 2) + · · ·+ S(n, n).

For example, B(4) = 15:

{{1}, {2}, {3}, {4}},
{{1, 2}, {3}, {4}}, {{1, 3}, {2}, {4}}, {{1, 4}, {2}, {3}},
{{1}, {2, 3}, {4}}, {{1}, {2, 4}, {3}}, {{1}, {2}, {3, 4}},
{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}},

{{1, 2, 3}, {4}}, {{1, 3, 4}, {2}}, {{1, 2, 4}, {3}}, {{2, 3, 4}, {2}},
{{1, 2, 3, 4}}
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Prove that

B(n) = 1 +

(
n− 1

1

)
B(1) +

(
n− 1

2

)
B(2) + · · ·+

(
n− 1

n− 1

)
B(n− 1)

for n ≥ 1.

Exercise 4.5. A partition of a positive integer n is a sequence λ = (λ1, λ2, . . . , λk) of positive
integers with λ1 ≥ λ2 ≥ · · · ≥ λk and λ1 + λ2 + · · · + λk = n. For example, (4, 3, 1, 1) and
(3, 3, 3) are both partitions of 9. The entries of a partition are called parts. Let pk(n)
denote the number of partitions of n with exactly k parts. For example, p3(5) = 2 since the
only partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1). By
convention, p0(0) is defined to be 1. Prove the recurrence relation

pk(n) = pk−1(n− 1) + pk(n− k).

Exercise 4.6. Recall the nth Fibonacci number Fn is the number of ways to tile a line of n
adjacent boxes with the tiles

1× 1 tile 1× 2 tile

and .

Earlier, we proved the recurrence relation Fn = Fn−1 + Fn−2. Using similar reasoning about
tilings, prove the recurrence relation

Fn − 1 = F1 + F2 + · · ·+ Fn−2.

Exercise 4.7. We proved the Catalan recurrence by working with triangulations of polygons,
which were counted by Catalan numbers. What about all the other things counted by
Catalan numbers? Try to prove the recurrence again using one of the other objects counted
by Catalan numbers (for example Dyck paths, ballot sequences, parenthesizations. . . ).
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