Mathematics 6310

Assignment 8, due November 8, 2010

Read $9.3,9.4,13.1,13.2,13.4$, the relevant parts of 13.5 , and the handout on the primitive element theorem. Then do the following:

- 9.4 (pp. 311-313): 2(c) [Hint: I don't like the book's hint.]
- 13.2 (pp. 529-531): 19, 20, 21 [Note: These exercises indicate a method that you could have used in Exercise 7.3.14.]
- 13.4 (p. 545): 5
- 13.5 (pp. 551-552): 5, 7

Additional problems.

1. Deduce from the proof of the primitive element theorem that $\sqrt{2}+\sqrt{3}$ is a primitive element in the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$.
2. By the universal $n \times n$ matrix I mean the matrix $X=\left(x_{i j}\right)$ in the polynomial ring $R:=\mathbb{Z}\left[x_{11}, \ldots, x_{n n}\right]$ in n^{2} variables. Show that the determinant of X is irreducible in R. [This is intuitively clear, since if there were a universal factorization of the determinant, you would have learned about it in your first linear algebra course. For a rigorous proof, view det X as a polynomial in x_{11} with coefficients in the polynomial ring in the other variables, and apply Gauss's lemma. If this seems too trivial, you're probably forgetting to check something.]
