Mathematics 6310

Assignment 9, due November 7, 2011

Read 12.1. Then do the following:

- 12.1 (pp. 468-472): 2, 10, 11, 12 [There's a typo in 10 (missing hypothesis).]

Additional problems.

1. This exercise fills in the details of the theory of algebraic independence that I sketched in class. A good old-fashioned reference for this is van der Waerden, pp. 99-103 and 200-202. You are welcome (and even encouraged) to read this, but please write the proofs in your own words and with modern notation. Let K / F be a field extension. Recall that $\alpha_{1}, \ldots, \alpha_{n} \in K$ are algebraically independent over F if they satisfy no polynomial equation $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$ with $f \neq 0$ in $F\left[x_{1}, \ldots, x_{n}\right]$. And $\beta \in K$ is said to depend algebraically on elements $\alpha_{1}, \ldots, \alpha_{n}$ (which are not necessarily independent) if β is algebraic over $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. I will often omit the word "algebraically" below. Prove the following:
(a) $\alpha_{1}, \ldots, \alpha_{n}$ are independent if and only if no α_{i} depends on the set of α_{j} with $j \neq i$.
(b) If β depends on $\alpha_{1}, \ldots, \alpha_{n}$ but not on $\alpha_{1}, \ldots, \alpha_{n-1}$, then α_{n} depends on $\alpha_{1}, \ldots, \alpha_{n-1}, \beta$.
(c) If γ depends on $\beta_{1}, \ldots, \beta_{k}$ and each β_{i} depends on $\alpha_{1}, \ldots, \alpha_{n}$, then γ depends on $\alpha_{1}, \ldots, \alpha_{n}$.
(d) (Exchange property, or replacement property) Let A and B be (finite) subsets of K such that A is independent and each $\alpha \in A$ depends on B. Then there is a subset $A^{\prime} \subseteq B$ with $\left|A^{\prime}\right|=|A|$ such that $\left(B \backslash A^{\prime}\right) \cup A$ is equivalent to B (i.e., everything in one set depends on the other set).
(e) Two equivalent independent sets have the same number of elements.
(f) If K is finitely generated over F, then any set of generators has an algebraically independent subset $\alpha_{1}, \ldots, \alpha_{n}$ such that K is a finite extension of $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. The number n, called the transcendence degree of K over F, is well defined (i.e., independent of the choices).
2. Exercise 12.1.2 implies, in particular, that every integral domain R has the invariant basis number property (IBN), i.e., if F is a finitely-generated free R module, then all bases of F have the same size. Equivalently, if $R^{n} \cong R^{m}$, then $n=m$. [I actually used this tacitly a couple times in the proof of the stacked basis theorem.] This generalizes a familiar property of vector spaces. In the present exercise you will generalize the IBN property to a larger class of rings than integral domains. [Note: It does not hold for arbitrary rings.]
(a) If R is a ring (not necessarily commutative) that admits a homomorphism to a field, then R has the IBN property.
(b) More generally, if R admits a homomorphism to a commutative ring in which $1 \neq 0$, then R has the IBN property.
3. Let R be a PID. The proof of the structure theorem for finitely-generated R modules given in class (and in the text) is nonconstructive at the point where one has to pick a maximal element from a collection of ideals. If R is a Euclidean domain, however, such as \mathbb{Z} or $F[x]$, the proof can be done in a more concrete,
constructive way. This is outlined in Exercises 16-19 in Section 12.1. Read through those exercises to see the method, and then use the method to analyze the structure of the abelian group (\mathbb{Z}-module) M with three generators x, y, z and the following three defining relations:

$$
\begin{aligned}
& 2 x+2 y+14 z=0 \\
& 2 x+4 y+2 z=0 \\
& 5 z+5 y+29 z=0 .
\end{aligned}
$$

This means, by definition, that M is the quotient of \mathbb{Z}^{3} by the subgroup generated by $(2,2,14),(2,4,2)$, and $(5,5,29)$.

