
Mathematics 6310

Assignment 9, due November 7, 2011

Read 12.1. Then do the following:

• 12.1 (pp. 468–472): 2, 10, 11, 12 [There’s a typo in 10 (missing hypothesis).]

Additional problems.

1. This exercise fills in the details of the theory of algebraic independence that
I sketched in class. A good old-fashioned reference for this is van der Waer-
den, pp. 99–103 and 200–202. You are welcome (and even encouraged) to read
this, but please write the proofs in your own words and with modern notation.
Let K/F be a field extension. Recall that α1, . . . , αn ∈ K are algebraically
independent over F if they satisfy no polynomial equation f(α1, . . . , αn) = 0
with f 6= 0 in F [x1, . . . , xn]. And β ∈ K is said to depend algebraically on
elements α1, . . . , αn (which are not necessarily independent) if β is algebraic
over F (α1, . . . , αn). I will often omit the word “algebraically” below. Prove the
following:
(a) α1, . . . , αn are independent if and only if no αi depends on the set of αj with

j 6= i.
(b) If β depends on α1, . . . , αn but not on α1, . . . , αn−1, then αn depends on

α1, . . . , αn−1, β.
(c) If γ depends on β1, . . . , βk and each βi depends on α1, . . . , αn, then γ depends

on α1, . . . , αn.
(d) (Exchange property, or replacement property) LetA andB be (finite) subsets

of K such that A is independent and each α ∈ A depends on B. Then there
is a subset A′ ⊆ B with |A′| = |A| such that (BrA′)∪A is equivalent to B
(i.e., everything in one set depends on the other set).

(e) Two equivalent independent sets have the same number of elements.
(f) If K is finitely generated over F , then any set of generators has an alge-

braically independent subset α1, . . . , αn such that K is a finite extension of
F (α1, . . . , αn). The number n, called the transcendence degree of K over F ,
is well defined (i.e., independent of the choices).

2. Exercise 12.1.2 implies, in particular, that every integral domain R has the
invariant basis number property (IBN), i.e., if F is a finitely-generated free R-
module, then all bases of F have the same size. Equivalently, if Rn ∼= Rm, then
n = m. [I actually used this tacitly a couple times in the proof of the stacked
basis theorem.] This generalizes a familiar property of vector spaces. In the
present exercise you will generalize the IBN property to a larger class of rings
than integral domains. [Note: It does not hold for arbitrary rings.]
(a) If R is a ring (not necessarily commutative) that admits a homomorphism

to a field, then R has the IBN property.
(b) More generally, if R admits a homomorphism to a commutative ring in which

1 6= 0, then R has the IBN property.

3. Let R be a PID. The proof of the structure theorem for finitely-generated R-
modules given in class (and in the text) is nonconstructive at the point where
one has to pick a maximal element from a collection of ideals. If R is a Euclidean
domain, however, such as Z or F [x], the proof can be done in a more concrete,
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constructive way. This is outlined in Exercises 16–19 in Section 12.1. Read
through those exercises to see the method, and then use the method to analyze
the structure of the abelian group (Z-module) M with three generators x, y, z
and the following three defining relations:

2x+ 2y + 14z = 0

2x+ 4y + 2z = 0

5z + 5y + 29z = 0.

This means, by definition, that M is the quotient of Z3 by the subgroup gener-
ated by (2, 2, 14), (2, 4, 2), and (5, 5, 29).


