Mathematics 6310

Assignment 10, due November 14, 2010

Read the parts of 15.1 that you haven't read yet, up to the section on computations (p. 664). [Read about computations too if you're interested, but we won't have time to cover this material in class.] Read 15.2 up to primary decomposition. Then do the following:

- 15.1 (pp. 668-673): $16,19,20,25,26,28^{*}$ [The asterisk means that you don't have to do this problem; but you should read the statement of it and then say to yourself, "Oh, so that's why people care about tensor products."]
- 15.2 (pp. 686-691): 21

Additional problem.
Recall that I discussed $\mathbb{A}^{1} \backslash\{0\}$ in class and suggested that it should be thought of as an "abstract affine algebraic set" with coordinate ring $k\left[t, t^{-1}\right]$. Here t is the coordinate function on \mathbb{A}^{1}. Generalize this example as follows. Let V be an affine algebraic set with coordinate ring $R:=k[V]$. Let $f \in R$ be arbitrary, and consider the open subset

$$
V_{f}:=\{x \in V: f(x) \neq 0\}
$$

as in Exercise 15.2.21. Let R_{f} be the ring of fractions of R obtained by inverting f. [If you haven't seen this before, look at Theorem 36 on p. 707, and take $D:=$ $\left\{f^{n} \mid n \geq 0\right\}$.] Show that R_{f} can be identified with a ring of functions on V_{f} and that $\left(V_{f}, R_{f}\right)$ is an abstract affine algebraic set as defined in class. Thus you want to find an affine algebraic set W and a bijection $V \rightarrow W$ under which R_{f} corresponds to $k[W]$.

