
Mathematics 6310 Take-home prelim Due November 29, 2011

What follows is an introduction to the theory of I-adic filtrations. Your task is
to fill in the proofs of all results in Sections 2–7 that are labeled as Theorems,
Propositions, Lemmas, or Corollaries. [Section 1 is general topology rather than
algebra, and I have included sketches of proofs of all results. Section 8 is optional;
you may do it for extra credit if you want.] I have written “*** Your proof goes
here. ***” in all places where you are required to give a proof.

You may use any result proved in class, in the assigned reading, or in your
homework. You may not use any sources other than your textbook and class notes.
Anna and I will be glad to clear up any ambiguities; please do not discuss the
exam with anyone else.

All rings in what follows will be assumed commutative.

1. Preliminaries on topological abelian groups

Recall that a topological (abelian) group is a group G that is also a topological
space, such that (x, y) 7→ x + y and x 7→ −x are continuous. Notice that we are
writing the group law additively because we are only considering the abelian case.
Note also that, in contrast to some treatments of topological groups, we do not
require G to be Hausdorff.

The theory is slightly simpler if we confine attention to topologies that arise from
(pseudo)norms. A pseudonorm on an abelian group G is a function x 7→ |x| from
G to the nonnegative reals, satisfying:

• |x+ y| ≤ |x|+ |y|
• |−x| = |x|
• |0| = 0

We will drop the prefix “pseudo” if, in addition,

• |x| = 0 =⇒ x = 0

A pseudonorm defines a pseudometric

d(x, y) := |x− y|
and hence a topology, making G a topological group. [A pseudometric is like
a metric, except that we allow the possibility that d(x, y) = 0 for x 6= y.] A
neighborhood base at 0 is given by the open balls {x : |x| < ε}. A topological
abelian group that arises in this way will be called (pseudo)metrizable. For brevity,
we will call a pseudometrizable topological abelian group a PTAG. The following
observation clarifies the difference between metrizability and pseudometrizability:

Proposition 1. Let G be a PTAG, and choose any pseudonorm giving its topology.
Then the following conditions are equivalent:

(i) G is Hausdorff.
(ii) {0} is closed.

(iii) The intersection of all neighborhoods of 0 is {0}.
(iv) The chosen pseudonorm is a norm.
(v) G is metrizable.

In general, G0 := {x : |x| = 0} is a closed subgroup and G/G0, with the quotient
topology, is a metrizable topological abelian group.
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Sketch of proof. It is easy to check that G0 is the closure of {0} and is the in-
tersection of all neighborhoods of 0. The equivalence of (ii)–(iv) follows at once.
Clearly (i) =⇒ (ii). Conversely, if (ii)–(iv) hold, then the diagonal in G × G is
{(x, y) ∈ G×G : x− y = 0} and is a closed set; this implies (i). So we now have
the equivalence of (i)–(iv). The implications (iv) =⇒ (v) =⇒ (i) are trivial, so
(i)–(v) are equivalent. Finally, G/G0 inherits a norm from the pseudonorm on G,
and the algebraic quotient map G � G/G0 maps open balls to open balls. This
implies that it is an open map and hence a topological quotient map. �

The quotient map G→ G/G0 is called the Hausdorffification of G; it is universal
for continuous homomorphisms from G to a Hausdorff PTAG.

We close this section with some remarks about subgroups and quotient groups.
Note first that if G is a PTAG, then every subgroup of G (with the subspace
topology) is also a PTAG. The following lemma treats quotients.

Lemma 1. Let G be a PTAG, let H be a subgroup, and let K := G/H be the
quotient group. Then K, with the quotient topology, is a PTAG.

Sketch of proof. Choose a pseudonorm giving the topology on G, let π : G� K be
the quotient map, and set

|y| := inf
π(x)=y

|x|

for y ∈ K. [Thinking of y as a coset of H in G, this is just the distance from that
coset to 0.] This is a pseudonorm on K. Note that |π(x)| ≤ |x| for x ∈ G, so π is
continuous if we topologize K via this pseudonorm. And π maps every open ball
in G centered at 0 onto the corresponding open ball in K, so π is an open map
(again when we topologize K via the pseudonorm). It follows that the pseudonorm
topology is the quotient topology. �

2. Filtrations

From now on we restrict our attention to a particular type of topology that
arises in commutative algebra. Let G be an abelian group with a filtration, i.e., a
descending chain of subgroups

G = G0 ≥ G1 ≥ G2 ≥ · · · .

For example, Z is filtered by the subgroups pnZ for a fixed prime p; this filtration
is called the p-adic filtration.

Proposition 2. There is a unique topology on G such that G is a PTAG with the
subgroups Gn as a neighborhood base at 0. The pseudonorm defining the topology
can be taken to satisfy the following strong form of the triangle inequality:

• |x+ y| ≤ max {|x|, |y|}.
A basis for the topology on G is given by the inverses images of points under the
quotient maps G� G/Gn (n ≥ 0).

Proof. *** Your proof goes here. *** �

[Hint: Consider the function v : G→ Z ∪ {∞} given by v(x) := sup {n : x ∈ Gn}.]
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3. I-adic topologies

Let A be a (commutative) ring and I an ideal. The I-adic topology on A is the
topology induced by the filtration {In} by powers of I. This generalizes the p-adic
topology mentioned above.

Lemma 2. A with the I-adic topology is a topological ring (i.e., it is a topological
abelian group, and multiplication A×A→ A is continuous).

Proof. *** Your proof goes here. *** �

Similarly, any A-module M has an I-adic topology induced by the filtration
{InM}. This makes M a topological A-module (i.e., the action A ×M → M is
continuous).

To prove anything significant about I-adic topologies we will need to assume that
A is noetherian. We will do this in Section 5, after some remarks about graded
rings.

4. Digression: Graded rings

A graded ring is a ring A that comes equipped with an additive decomposition

A = A0 ⊕A1 ⊕A2 ⊕ · · ·
such that AiAj ⊆ Ai+j for all i, j ≥ 0. The elements of the subgroup An are said
to be homogeneous of degree n. Thus every a ∈ A is uniquely expressible as

a =
∑
n≥0

an

with an homogeneous of degree n and an = 0 for almost all n.

Example 1. Let A be a polynomial ring k[x1, . . . , xm]. Then A is a graded ring with
An equal to the set of homogeneous polynomials of degree n in the usual sense; in
other words, An is the k-span of the set of monomials of degree n.

Starting from this example one can create many more examples by forming
quotients by homogeneous ideals. Here an ideal I is said to be homogeneous if it
has the form I =

⊕
n≥0 In, where In is an additive subgroup of An; equivalently,

I is generated by homogeneous elements. For example, any monomial ideal in a
polynomial ring is homogeneous. If I is a homogeneous ideal, then A/I is a graded
ring with (A/I)n := An/In.

Graded rings occur naturally in many subjects. For example, the following
construction arises in algebraic geometry in connection with “blowing up”. Let A
be a ring with a filtration

A = A0 ⊇ A1 ⊇ A2 ⊇ · · ·
by ideals such that AiAj ⊆ Ai+j . [The I-adic filtration has this property for any
ideal I in A.] Then we can form the external direct sum

A∗ :=
⊕
n≥0

An

and use the given multiplication maps Ai ×Aj → Ai+j to make A∗ a graded ring.

Lemma 3. Let A be a noetherian ring and I an ideal. Then A∗ :=
⊕

n I
n is

noetherian.
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Proof. *** Your proof goes here. *** �

If A is a graded ring, then a graded A-module is an A-module M that comes
equipped with an additive decomposition M =

⊕
n≥0Mn such that AiMj ⊆Mi+j

for all i, j ≥ 0. The “blowing-up” construction above generalizes to modules as
follows. Let A be a filtered ring and M a filtered A-module. This means, by
definition, that we are given a decreasing sequence of A-submodules Mn such that
AiMj ⊆Mi+j for all i, j ≥ 0. Then the given multiplication maps Ai×Mj →Mi+j

induce an A∗-action on

M∗ :=
⊕
n≥0

Mn,

making the latter a graded A∗-module.
Consider, for example, the I-adic filtration on a ring A. Then a filtered A-module

is simply a module M with a filtration by submodules Mn such that IMn ⊆Mn+1

for all n ≥ 0. The following lemma will be needed in Section 5.

Lemma 4. Let A have the I-adic filtration and let M be a filtered A-module as in
the previous paragraph. If M∗ is a finitely generated A∗-module, then IMn = Mn+1

for all sufficiently large n. Consequently, the I-adic topology on M coincides with
the topology induced by the filtration {Mn}.

Proof. *** Your proof goes here. *** �

[Hint: For a fixed N ≥ 0, what does the A∗-submodule generated by
⊕N

n=0Mn

look like?]

5. The Artin–Rees lemma

Let A be a noetherian ring and I an ideal. The following result is one version of
the Artin–Rees lemma.

Theorem 1. Let M be a finitely generated A-module and M ′ a submodule. Then
the I-adic topology on M ′ is the same as the subspace topology that M ′ inherits
from the I-adic topology on M .

Proof. *** Your proof goes here. *** �

[Hint: The two topologies on M ′ are induced by two filtrations, one finer than the
other. Use Lemma 4.]

6. Digression: The Jacobson radical and Nakayama’s lemma

Recall that the Jacobson radical of a ring A, denoted radA, is the intersection
of all maximal ideals. It is the ring-theoretic analogue of the Fitting subgroup of a
group. It is the largest ideal J such that 1−x is invertible in A for all x ∈ J . This is
proved in Dummit and Foote on p. 751, which also contains a proof of Nakayama’s
lemma. This asserts that if M is a finitely generated A-module such that JM = M
(where J = radA), then M = {0}. The following result generalizes Nakayama’s
lemma.

Proposition 3. Let I be an arbitrary ideal of A, and let M be a finitely generated
A-module such that IM = M . Then M is annihilated by 1− x for some x ∈ I.

Proof. *** Your proof goes here. *** �
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[Hint: Use localization to reduce this to Nakayama’s lemma. Namely, let S be
the multiplicative set 1 + I. Then S−1I ⊆ rad(S−1A). Now consider the S−1A-
module S−1M .]

7. Krull’s theorem

We return to the setup of Section 5. Thus A is noetherian and I is an arbitrary
ideal. As a consequence of the Artin–Rees lemma, we can determine the intersection
of all I-adic neighborhoods of 0 in any finitely generated A-module. The following
result is known as Krull’s theorem.

Theorem 2. Let M be a finitely generated A-module. Then⋂
n≥0

InM = {m ∈M : (1− x)m = 0 for some x ∈ I} .

Proof. *** Your proof goes here. *** �

[Hint: Let M ′ be the module on the left side of the equation. Apply Theorem 1
and Proposition 3.]

Remark. This is false without the hypothesis that A is noetherian. For example,
let A be the ring of infinitely differentiable functions of one real variable, and let
I be the ideal consisting of functions that vanish at 0. Then the intersection of
the powers of I consists of the functions that vanish along with all their derivatives
at 0, whereas any function annihilated by 1 − f for some f ∈ I must vanish in a
neighborhood of 0.

Corollary 1. A is I-adically Hausdorff if (a) A is an integral domain and I is
proper or (b) if I ⊆ radA.

Proof. *** Your proof goes here. *** �

Corollary 2. If I ⊆ radA, then every finitely generated A-module is I-adically
Hausdorff, and every submodule is I-adically closed.

Proof. *** Your proof goes here. *** �

Remark. An important special case of the last corollary is the case where A is a
local ring and I is its maximal ideal.

The exam is finished. You may continue to the next section for extra
credit, but do it only if you are interested; the effect on your grade will
be minimal.

8. Completions

In classical algebraic geometry (over C), one can use analytic methods by view-
ing polynomials as holomorphic functions and using power series expansions. In
abstract algebraic geometry, we can try to mimic this by using formal power series.
Passing from polynomials to formal power series is an example of completion.

Completion is also used in number theory. Suppose we are trying to solve an
equation f(x) = 0 for an unknown integer x. This may be too hard, so we try to
solve it mod p for some prime p, then mod p2, then mod p3, and so on. If we are
successful, we get “approximate” solutions xi, which may converge to a solution in
the ring of p-adic integers, which is a completion of Z. Finding such p-adic solutions
for all primes p can be the starting point for finding a solution in Z.
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8.1. Generalities. This subsection is a continuation of Section 1, and I am again
including sketches of proofs. There is nothing for you to do but read it.

Let G be a PTAG. A Cauchy sequence in G is a sequence (xn) such that every
neighborhood of 0 contains xm−xn for sufficiently large m,n. This is the same as a
Cauchy sequence in the usual sense with respect to some (any) pseudonorm defining
the topology on G. We say that G is complete if it is Hausdorff and every Cauchy
sequence converges. [We insist on G being Hausdorff here so that a convergent
sequence has a unique limit.] A completion of G is a continuous homomorphism

ι : G→ Ĝ such that Ĝ is complete and ι is universal for continuous homomorphisms
from G to a complete metrizable topological abelian group.

Standard arguments show that the completion, if it exists, is unique up to canon-
ical isomorphism, so we will often say “the” completion, once we have proved that
completions always exist.

Lemma 5. Let ι : G → Ĝ be a continuous homomorphism with Ĝ complete. As-
sume that ker ι = G0, where the latter is the intersection of all neighborhoods of 0
as in Proposition 1. Assume further that ι(G) is dense in Ĝ and that ι induces an
isomorphism G/G0

∼−→ ι(G) of topological groups. Then ι is a completion.

Sketch of proof. Let f : G → L be a continuous homomorphism with L complete.
Since L is Hausdorff, there is an induced continuous homomorphism f̄ : G/G0 →
L. Then f̄ is uniformly continuous and hence takes Cauchy sequences to Cauchy
sequences. Identifying G/G0 with a dense subgroup of Ĝ, we may now apply the

following lemma to conclude that f̄ extends to a continuous map Ĝ→ L and that
the extension is a group homomorphism. �

Lemma 6. Let X and Y be metric spaces, let A be a dense subset of X, and let
f : A → Y be a continuous map with the following property: For every sequence
(an) in A that converges in X, the image sequence f(an) converges in Y . Then f
extends (uniquely) to a continuous map F : X → Y .

Sketch of proof. For any x ∈ X, choose a sequence (an) in A that converges to x.
By assumption, f(an) → y for some y ∈ Y . The limit is independent of the
choice of sequence, since any two such sequences are subsequences of a third. We
can therefore set F (x) := y. To prove continuity, consider any x0 ∈ X and let
y0 := F (x0). If F is not continuous at x0, then there is an ε > 0 such that every
neighborhood U of x0 contains a point x with d(F (x), y0) > ε. It follows from the
definition of F that we can take x to be in A. But this means that we can find a
sequence an → x0 with an ∈ A, such that f(an) 9 y0, contradicting the definition
of F . �

We can now prove the existence of completions.

Proposition 4. Every PTAG has a completion.

Sketch of proof. Let G′ be the Hausdorffification of G, and let Ĝ be the metric
space completion of G′ (relative to some norm defining the topology on G′). The
addition map G′ × G′ → G′ is a homomorphism because G′ is abelian, so it is
uniformly continuous. It therefore extends to a continuous map (called addition)

Ĝ × Ĝ → Ĝ by Lemma 6. Similarly, the inversion map G′ → G′ extends to a
continuous map Ĝ → Ĝ. The group axioms are satisfied by Ĝ because they hold
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on the dense subgroup G′. The composite G� G′ ↪→ Ĝ is now a completion of G
by Lemma 5. �

Proposition 5. Let G be a PTAG, let H be a closed subgroup, and set K := G/H.
If G is complete, then H and K are also complete.

Sketch of proof. The result for H is clear. Turning now to K, note first that it is
Hausdorff by Proposition 1 since H is closed. Let (yn) be a Cauchy sequence in K.
Passing to a subsequence if necessary, we may assume that |yn − yn+1| < 2−n for
all n. Now lift yn to xn ∈ G with the same property. [Assuming inductively that
xn has been defined, set xn+1 = xn + z, where π(z) = yn+1 − yn and |z| < 2−n.]
Then (xn) is a Cauchy sequence in G, so it converges; hence the image sequence
(yn) converges in K. �

Finally, we prove that completion is an exact functor:

Proposition 6. Let G be a PTAG, and let H be a subgroup. Let ι : G→ Ĝ be the
completion of G, and let Ĥ be the closure of ι(H) in Ĝ. Then Ĥ is the completion

of H, and Ĝ/Ĥ is the completion of G/H. More precisely, there is a commutative
diagram

H G G/H

Ĥ Ĝ Ĝ/Ĥ

where the horizontal arrows are the canonical maps and the vertical arrows are
completions.

Sketch of proof. Choose a pseudonorm giving the topology on G. Then Ĝ has a
norm such that ι is an isometry (i.e., it is distance preserving) by the proof of

Proposition 4. Then ι maps H isometrically onto a dense subgroup of Ĥ, which
is complete, so the latter can be identified with the completion of H by the same
proof. Let j : G/H → Ĝ/Ĥ be the continuous homomorphism induced by ι. The

image is dense, and Ĝ/Ĥ is complete by Proposition 5. So we will be done if we
can show that j is an isometry when we give the quotients the pseudonorms defined
in the proof of Lemma 1. Given y = π(x) in G/H, we have

|j(y)| = inf
ĥ∈Ĥ
|ι(x) + ĥ|

= inf
h∈H
|ι(x) + ι(h)|

= inf
h∈H
|x+ h|

= |y|,

as required. �

8.2. The completion of a filtered group. Let G be a PTAG whose topology
comes from a filtration {Gn} as in Section 2

The last sentence of Proposition 2 suggests that we consider the tower of groups

· · ·� G/G2 � G/G1 � G/G0.
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We have a compatible family of maps G→ G/Gn, and hence a map

ι : G→ Ĝ := lim←−
n

G/Gn

from G to the inverse limit of the tower. [If you are not familiar with inverse limits,

you can find the definition in Dummit and Foote.] We topologize Ĝ by viewing it as
a subspace of the direct product

∏
nG/Gn, where each G/Gn is given the discrete

topology.

Proposition 7. (1) The topology on Ĝ is induced by the filtration by the subgroups

Ĝn := ker
{
Ĝ� G/Gn

}
.

(2) ι : G→ Ĝ is the completion of G.

(3) Ĝn is the closure of ι(Gn) and is the completion of Gn.

(4) The canonical map G/Gn → Ĝ/Ĝn is an isomorphism for each n.

(5) An infinite series in Ĝ converges if and only if its terms tend to 0.

Proof. *** Your proof goes here. *** �

8.3. I-adic completions. Let A be a ring endowed with the I-adic filtration for
some ideal I. The completion Â then admits a unique structure of topological ring
such that ι : A→ Â is a continuous homomorphism.

Example 2. If A is the polynomial ring k[x] (k a field) and I = (x), then Â is the
ring k[[x]] of formal power series.

Example 3. If A = Z with the p-adic filtration, then Â is called the ring of p-
adic integers. Its elements are uniquely expressible as convergent infinite series∑
n≥0 anp

n with 0 ≤ an < p.

Similarly, we can form the I-adic completion M̂ of any A-module M ; it is a
topological Â-module. Any module homomorphism f : M → N is continuous when
both modules are given the I-adic topology, and there is an induced continuous

homomorphism f̂ : M̂ → N̂ such that the diagram

M N

M̂ N̂

f

f̂

commutes.

Proposition 8. (1) If f : M → N is surjective, then so is f̂ : M̂ → N̂ .

(2) (M1 ⊕M2)̂= M̂1 ⊕ M̂2. More precisely,

ι1 ⊕ ι2 : M1 ⊕M2 → M̂1 ⊕ M̂2

is a completion.
(3) If M is finitely generated, then M̂ = ÂM , where the right hand side is an

abbreviation for Â · ι(M). [Hint: First check this for M = A, then deduce it
for M free of finite rank, then deduce it for arbitrary finitely generated M .]
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(4) The A-module inclusion In ↪→ A induces a monomorphism În ↪→ Â on I-adic
completions.

Proof. *** Your proof goes here. *** �

Remark. In view of (4), we will identify În with its image in Â. Suppose now that

I is finitely generated. Then this image is ÂIn by (3), and we have

ÂIn = (ÂI)n = În.

It follows that the topology on Â is the Î-adic topology. Similarly (still assuming

I is finitely generated), the topology on M̂ is the Î-adic topology for any finitely

generated A-module M . Indeed, M̂ has a neighborhood base at 0 given by the
ideals

(InM)̂= Â(InM) = (ÂIn)M = ÎnM.

Remark. We still have În ⊆ În even if I is not finitely generated; this simply says
that elements of În can be approximated by elements of In. So the content of the
first part of Remark 8.3 is that În is closed in Â if I is finitely generated.

Proposition 9. Î is contained in the Jacobson radical rad Â.

Proof. *** Your proof goes here. *** �

[Hint: Geometric series.]

Corollary 3. If I is a maximal ideal in A, then Â is a local ring with maximal
ideal Î.

Proof. *** Your proof goes here. *** �

8.4. The noetherian case. We finish with some consequences of the Artin–Rees
lemma. Assume that A is noetherian.

Proposition 10. I-adic completion is an exact functor on the category of finitely
generated A-modules, i.e., a short exact sequence

M ′ ↪→M �M ′′

yields a short exact sequence

M̂ ′ ↪→ M̂ � M̂ ′′.

Proof. *** Your proof goes here. *** �

Corollary 4. For any finitely generated A-module M , the canonical map

Â⊗AM → M̂

is an isomorphism.

Proof. *** Your proof goes here. *** �

Corollary 5. Â is a flat A-module.

Proof. *** Your proof goes here. *** �
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8.5. What’s next? I will stop here because it would take much too long to prove
the next interesting result. To whet your appetite, here is what I would do next,
stated in geometric language. Let x be a smooth point of an n-dimensional algebraic
variety X, and let A be the local ring of X at x. Then the completion of A with
respect to its maximal ideal is isomorphic to the ring of formal power series in n
variables.


