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Brief solutions to take-home prelim

1. Preliminaries on topological abelian groups

Recall that a topological (abelian) group is a group G that is also a topological
space, such that (x, y) 7→ x + y and x 7→ −x are continuous. Notice that we are
writing the group law additively because we are only considering the abelian case.
Note also that, in contrast to some treatments of topological groups, we do not
require G to be Hausdorff.

The theory is slightly simpler if we confine attention to topologies that arise from
(pseudo)norms. A pseudonorm on an abelian group G is a function x 7→ |x| from
G to the nonnegative reals, satisfying:

• |x+ y| ≤ |x|+ |y|
• |−x| = |x|
• |0| = 0

We will drop the prefix “pseudo” if, in addition,

• |x| = 0 =⇒ x = 0

A pseudonorm defines a pseudometric

d(x, y) := |x− y|

and hence a topology, making G a topological group. [A pseudometric is like
a metric, except that we allow the possibility that d(x, y) = 0 for x 6= y.] A
neighborhood base at 0 is given by the open balls {x : |x| < ε}. A topological
abelian group that arises in this way will be called (pseudo)metrizable. For brevity,
we will call a pseudometrizable topological abelian group a PTAG. The following
observation clarifies the difference between metrizability and pseudometrizability:

Proposition 1. Let G be a PTAG, and choose any pseudonorm giving its topology.
Then the following conditions are equivalent:

(i) G is Hausdorff.
(ii) {0} is closed.

(iii) The intersection of all neighborhoods of 0 is {0}.
(iv) The chosen pseudonorm is a norm.
(v) G is metrizable.

In general, G0 := {x : |x| = 0} is a closed subgroup and G/G0, with the quotient
topology, is a metrizable topological abelian group.

Sketch of proof. It is easy to check that G0 is the closure of {0} and is the in-
tersection of all neighborhoods of 0. The equivalence of (ii)–(iv) follows at once.
Clearly (i) =⇒ (ii). Conversely, if (ii)–(iv) hold, then the diagonal in G × G is
{(x, y) ∈ G×G : x− y = 0} and is a closed set; this implies (i). So we now have
the equivalence of (i)–(iv). The implications (iv) =⇒ (v) =⇒ (i) are trivial, so
(i)–(v) are equivalent. Finally, G/G0 inherits a norm from the pseudonorm on G,
and the algebraic quotient map G � G/G0 maps open balls to open balls. This
implies that it is an open map and hence a topological quotient map. �

The quotient map G→ G/G0 is called the Hausdorffification of G; it is universal
for continuous homomorphisms from G to a Hausdorff PTAG.
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We close this section with some remarks about subgroups and quotient groups.
Note first that if G is a PTAG, then every subgroup of G (with the subspace
topology) is also a PTAG. The following lemma treats quotients.

Lemma 1. Let G be a PTAG, let H be a subgroup, and let K := G/H be the
quotient group. Then K, with the quotient topology, is a PTAG.

Sketch of proof. Choose a pseudonorm giving the topology on G, let π : G� K be
the quotient map, and set

|y| := inf
π(x)=y

|x|

for y ∈ K. [Thinking of y as a coset of H in G, this is just the distance from that
coset to 0.] This is a pseudonorm on K. Note that |π(x)| ≤ |x| for x ∈ G, so π is
continuous if we topologize K via this pseudonorm. And π maps every open ball
in G centered at 0 onto the corresponding open ball in K, so π is an open map
(again when we topologize K via the pseudonorm). It follows that the pseudonorm
topology is the quotient topology. �

2. Filtrations

From now on we restrict our attention to a particular type of topology that
arises in commutative algebra. Let G be an abelian group with a filtration, i.e., a
descending chain of subgroups

G = G0 ≥ G1 ≥ G2 ≥ · · · .

For example, Z is filtered by the subgroups pnZ for a fixed prime p; this filtration
is called the p-adic filtration.

Proposition 2. There is a unique topology on G such that G is a PTAG with the
subgroups Gn as a neighborhood base at 0. The pseudonorm defining the topology
can be taken to satisfy the following strong form of the triangle inequality:

• |x+ y| ≤ max {|x|, |y|}.
A basis for the topology on G is given by the inverses images of points under the
quotient maps G� G/Gn (n ≥ 0).

Sketch of proof. A topology on a set X is completely determined if one knows, for
each x ∈ X, a neighborhood base at x. By neighborhood here I mean a set con-
taining x in its interior. And a neighborhood base at x is a family of neighborhoods
of x such that every neighborhood of x contains one of them. In the case of a
topological group, a neighborhood base at the identity yields, by translation, a
neighborhood base at any other point. The topology is therefore determined if one
knows a neighborhood base at the identity. This proves the uniqueness assertion.
For existence, define a “valuation” v : G→ Z ∪ {∞} by

v(x) := sup {n : x ∈ Gn} .

Then v(x+ y) ≥ min {v(x), v(y)}; we now get the desired pseudonorm by setting

|x| := c−v(x)

for any fixed c > 1. The rest of the proof consists of routine verifications. �
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3. I-adic topologies

Let A be a (commutative) ring and I an ideal. The I-adic topology on A is the
topology induced by the filtration {In} by powers of I. This generalizes the p-adic
topology mentioned above.

Lemma 2. A with the I-adic topology is a topological ring (i.e., it is a topological
abelian group, and multiplication A×A→ A is continuous).

Sketch of proof. Imitate any proof you have ever seen that multiplication R×R→ R
is continuous. �

Similarly, any A-module M has an I-adic topology induced by the filtration
{InM}. This makes M a topological A-module (i.e., the action A ×M → M is
continuous).

To prove anything significant about I-adic topologies we will need to assume that
A is noetherian. We will do this in Section 5, after some remarks about graded
rings.

4. Digression: Graded rings

A graded ring is a ring A that comes equipped with an additive decomposition

A = A0 ⊕A1 ⊕A2 ⊕ · · ·

such that AiAj ⊆ Ai+j for all i, j ≥ 0. The elements of the subgroup An are said
to be homogeneous of degree n. Thus every a ∈ A is uniquely expressible as

a =
∑
n≥0

an

with an homogeneous of degree n and an = 0 for almost all n.

Example 1. Let A be a polynomial ring k[x1, . . . , xm]. Then A is a graded ring with
An equal to the set of homogeneous polynomials of degree n in the usual sense; in
other words, An is the k-span of the set of monomials of degree n.

Starting from this example one can create many more examples by forming
quotients by homogeneous ideals. Here an ideal I is said to be homogeneous if it
has the form I =

⊕
n≥0 In, where In is an additive subgroup of An; equivalently,

I is generated by homogeneous elements. For example, any monomial ideal in a
polynomial ring is homogeneous. If I is a homogeneous ideal, then A/I is a graded
ring with (A/I)n := An/In.

Graded rings occur naturally in many subjects. For example, the following
construction arises in algebraic geometry in connection with “blowing up”. Let A
be a ring with a filtration

A = A0 ⊇ A1 ⊇ A2 ⊇ · · ·

by ideals such that AiAj ⊆ Ai+j . [The I-adic filtration has this property for any
ideal I in A.] Then we can form the external direct sum

A∗ :=
⊕
n≥0

An

and use the given multiplication maps Ai ×Aj → Ai+j to make A∗ a graded ring.
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Lemma 3. Let A be a noetherian ring and I an ideal. Then A∗ :=
⊕

n I
n is

noetherian.

Sketch of proof. Identify A with the subring of A∗ consisting of the elements that
are homogeneous of degree 0. Then A∗ is generated, as an A-algebra, by any set of
generators of I as an ideal (where I is identified with the set of elements in A∗ that
are homogeneous of degree 1). In particular, A∗ is a finitely generated A-algebra
and hence is noetherian by Hilbert’s basis theorem (together with the fact that a
quotient of a noetherian ring is noetherian). �

If A is a graded ring, then a graded A-module is an A-module M that comes
equipped with an additive decomposition M =

⊕
n≥0Mn such that AiMj ⊆Mi+j

for all i, j ≥ 0. The “blowing-up” construction above generalizes to modules as
follows. Let A be a filtered ring and M a filtered A-module. This means, by
definition, that we are given a decreasing sequence of A-submodules Mn such that
AiMj ⊆Mi+j for all i, j ≥ 0. Then the given multiplication maps Ai×Mj →Mi+j

induce an A∗-action on

M∗ :=
⊕
n≥0

Mn,

making the latter a graded A∗-module.
Consider, for example, the I-adic filtration on a ring A. Then a filtered A-module

is simply a module M with a filtration by submodules Mn such that IMn ⊆Mn+1

for all n ≥ 0. The following lemma will be needed in Section 5.

Lemma 4. Let A have the I-adic filtration and let M be a filtered A-module as in
the previous paragraph. If M∗ is a finitely generated A∗-module, then IMn = Mn+1

for all sufficiently large n. Consequently, the I-adic topology on M coincides with
the topology induced by the filtration {Mn}.

Sketch of proof. For a fixed N ≥ 0, the A∗-submodule generated by
⊕N

n=0Mn is

M0 ⊕ · · · ⊕MN ⊕ IMN ⊕ I2MN ⊕ · · · .

If M∗ is a finitely generated A∗-module, then this submodule must be all of M∗

for some N ≥ 0, i.e., IkMN = MN+k for all k ≥ 0. This proves the first assertion.
For the second, we must show that every neighborhood of 0 in one topology is also
a neighborhood of 0 in the other. It suffices to consider neighborhoods in some
neighborhood base. By definition, we have Mn ⊇ InM0 = InM . So every basic
neighborhood of 0 in the topology induced by {Mn} is a neighborhood of 0 in the
I-adic topology. Conversely, consider a basic I-adic neighborhood InM ; we may
assume n ≥ N , with N as above. Then InM ⊇ InMN = MN+n, so InM is a
neighborhood of 0 in the topology induced by {Mn}. �

5. The Artin–Rees lemma

Let A be a noetherian ring and I an ideal. The following result is one version of
the Artin–Rees lemma.

Theorem 1. Let M be a finitely generated A-module and M ′ a submodule. Then
the I-adic topology on M ′ is the same as the subspace topology that M ′ inherits
from the I-adic topology on M .
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Sketch of proof. The subspace topology on M ′ is induced by the filtration {M ′n}
with M ′n := M ′ ∩ InM . In view of Lemma 4, it suffices to show that the corre-
sponding M ′∗ is a finitely generated A∗-module. Now M∗ is easily seen to be a
finitely generated A∗-module, since M is a finitely generated A-module. And M ′∗

is an A∗-submodule of M∗. So the result follows from the fact that A∗ is noetherian
(Lemma 3). �

6. Digression: The Jacobson radical and Nakayama’s lemma

Recall that the Jacobson radical of a ring A, denoted radA, is the intersection
of all maximal ideals. It is the ring-theoretic analogue of the Fitting subgroup of a
group. It is the largest ideal J such that 1−x is invertible in A for all x ∈ J . This is
proved in Dummit and Foote on p. 751, which also contains a proof of Nakayama’s
lemma. This asserts that if M is a finitely generated A-module such that JM = M
(where J = radA), then M = {0}. The following result generalizes Nakayama’s
lemma.

Proposition 3. Let I be an arbitrary ideal of A, and let M be a finitely generated
A-module such that IM = M . Then M is annihilated by 1− x for some x ∈ I.

Sketch of proof. Let S be the multiplicative set 1+I. Then any x = a/s in the ideal
S−1I of S−1A (a ∈ I, s ∈ S) satisfies 1−x = (s− a)/s, which is invertible because
the numerator is in S = 1 + I. Hence S−1I ⊆ rad(S−1A). Now the hypothesis
IM = M implies that (S−1I)(S−1M) = S−1M , so S−1M = 0 by Nakayama’s
lemma. In other words, every element of M is annihilated by some element of S.
Since M is finitely generated, it follows that M itself is annihilated by some element
of S. �

7. Krull’s theorem

We return to the setup of Section 5. Thus A is noetherian and I is an arbitrary
ideal. As a consequence of the Artin–Rees lemma, we can determine the intersection
of all I-adic neighborhoods of 0 in any finitely generated A-module. The following
result is known as Krull’s theorem.

Theorem 2. Let M be a finitely generated A-module. Then⋂
n≥0

InM = {m ∈M : (1− x)m = 0 for some x ∈ I} .

Sketch of proof. Let M ′ be the module on the left side of the equation. It is con-
tained in every I-adic neighborhood of 0 in M , so M ′ is the only neigborhood of
0 in the subspace topology. Theorem 1 now implies that IM = M . Hence M ′

is contained in the right side of the equation by Proposition 3. For the opposite
inclusion, every element m in the module on the right satisfies xm = m for some
x ∈ I; so trivially m ∈ InM for all n. �

Remark. This is false without the hypothesis that A is noetherian. For example,
let A be the ring of infinitely differentiable functions of one real variable, and let
I be the ideal consisting of functions that vanish at 0. Then the intersection of
the powers of I consists of the functions that vanish along with all their derivatives
at 0, whereas any function annihilated by 1 − f for some f ∈ I must vanish in a
neighborhood of 0.
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Corollary 1. A is I-adically Hausdorff if (a) A is an integral domain and I is
proper or (b) if I ⊆ radA.

Sketch of proof. In both cases, no element of the form 1 − x with x ∈ I can be a
zero divisor. So Theorem 2 implies that

⋂
n≥0 I

n = {0}, and hence A is Hausdorff
by Proposition 1. �

Corollary 2. If I ⊆ radA, then every finitely generated A-module is I-adically
Hausdorff, and every submodule is I-adically closed.

Sketch of proof. Every element of A of the form 1 − x with x ∈ I is invertible, so
the right side of the equation in Theorem 2 is {0}. The theorem therefore implies
that every finitely generated A-module is Hausdorff. Given such a module M and
a submodule M ′, we know that M/M ′ is Hausdorff in its I-adic topology. Since
the quotient map M � M/M ′ is I-adically continuous, it follows that M ′, which
is the inverse image of {0}, is closed. �

Remark. An important special case of the last corollary is the case where A is a
local ring and I is its maximal ideal.


