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The Todd–Coxeter procedure is a systematic way of trying to find the order (and
often the structure) of a group given by generators and relations, provided the
group is finite. More generally, we can try to find the index |G : H| of a subgroup
H of finite index, even if G itself is infinite. The problem of finding the order is the
special case H = {1}. A good introductory reference is Neubüser [9] (supplemented
by [3].) The original paper of Coxeter and Todd [4] is also quite readable. For a
more detailed treatement and further references, see Holt [8, Chapter 5], in which
all algorithms are written out completely in pseudocode. Our treatment will be
somewhat less formal.

We will describe the method in terms of Schreier graphs, so we begin by recalling
what those are.

1. Schreier graphs

If σ is a permutation of a set X, you can picture σ by drawing a directed graph
with X as vertex set and with an edge from x to σ(x) for each x ∈ X. Thus
each vertex has exactly one edge coming in and one going out. Note that the graph
breaks up into connected components, one for each cycle in the cycle decomposition
of σ.

If you want to picture two or more permutations of X simultaneously, you can
use a different color (or label) for each one of them. Then each vertex has exactly
one edge of each color coming in and one going out.

If you want to picture a whole group of permutations, you don’t have to draw
them all; it’s enough to draw the pictures of a set of generators of the group. You
can then read off the action of any element of the group by writing it as a word in
the generators and their inverses and following the corresponding path in the graph.
Note that this works much better for right actions than for left actions, since you
can follow the path step by step as you read the word from left to right. We will
therefore use right actions in what follows. In addition, we will use exponential
notation for the action. Thus xg denotes x acted on by g.

2. The Todd–Coxeter procedure: Example

Suppose G is a group given by generators and relations and H is a subgroup of
finite index. The idea of the Todd–Coxeter procedure is to try to figure out what
the Schreier graph of the (right) action of G on H\G looks like. What we do is
make up names for cosets (typically 1,2,. . . ) as we go along, and draw in arrows
for the action of the generators as we discover them. The procedure stops when
the graph is complete. This means:

• Every vertex has exactly one edge of each color coming in and one going
out.
• The graph shows that all the relations are satisfied.

I will illustrate the method with the following example

G :=
〈
a, b ; a3 = b3 = (ab)2 = 1

〉
.

1



2

Let H := 〈a〉 ≤ G, and consider the action of G on X := H\G. We will use red
arrows to denote the action of a and blue arrows to denote the action of b. When the
Schreier graph is complete, every red-red-red path will have to be closed as a result
of the relation a3 = 1. Similarly, every blue-blue-blue path will have to be closed
and every red-blue-red-blue path will have to be closed. So if we see at some stage
a subgraph consisting of two consecutive arrows of the same color, then we can fill
in a third arrow to close the triangle. Similarly, if we see a subgraph consisting of
three sides of a red-blue-red-blue square, then we can fill in the fourth side. Note
that it doesn’t matter what color the fourth side is, since a cyclic permutation of a
relator is again a relator.

We now try to construct the Schreier graph.

Step 1. Record the fact that there is an element of X (called “1”) fixed by H. The
two short blue arrows are reminders that we will eventually have to have a blue
arrow coming in and a blue arrow coming out. But we don’t yet have names for
the vertices at the other ends.

1

Step 2. We now check our three relations at the vertex 1. (i) The relation a3 = 1
holds trivially (i.e., the red-red-red path starting at 1 is closed). (ii) In order to
check the relation b3 = 1, we introduce the names 2 := 1b and 3 := 2b. The relation
then tells us that we can close the blue triangle, yielding

1

23

Again we have drawn short arrows at the two new vertices as reminders of what
is missing. (iii) Finally, we check the relation abab = 1 at vertex 1, i.e., we look
for a red-blue-red-blue square starting at 1. Three sides of that square are already
present:

1 1

23

As noted above, we can fill in the square, i.e., we can deduce that 2a = 3. So our
graph now looks as follows:
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1

23

It is complete at vertex 1.

Step 3. We now move on to vertex 2 and check the three relations. (i) To check
a3 = 1, we define 4 := 3a and then close the red triangle. This yields:

1

23

4

(ii) The relation b3 = 1 already holds at vertex 2. (iii) The relation abab = 1 also
holds. So the graph is complete at vertex 2.

Step 4. At vertex 3, the relations (i) and (ii) already hold. But in checking rela-
tion (iii), we see that we have three sides of the red-blue-red-blue square:

3 2

44

We fill in the fourth side and deduce that 4b = 4. Our graph is now

1

23

4

It is complete at 3.
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Step 5. Finally, we move to vertex 4 and check that all three relations hold. The
graph is complete.

One can now conclude that |G : H| = 4 and that the graph above really de-
scribes the action of G on X. (The essential content of this is that cosets with

different labels really are distinct.) To prove this, let X̃ be the abstract 4-element
set {1, 2, 3, 4}, where the elements are viewed as labels, not as cosets. The graph

enables us to define an action of G on X̃. Indeed, it exhibits permutations asso-
ciated to the generators of G, and we’ve verified that these permutations satisfy
the defining relations of G; so we get a well-defined action. Moreover, the action is
transitive because the graph is connected, and clearly H stabilizes 1.

There is a map p : X̃ → X that takes each label to the corresponding coset, and
this map is G-equivariant because of the way we constructed the graph. (Every
edge that was drawn described the known action of a generator of G on an element

of X.) It follows that the stabilizer of 1 ∈ X̃ can’t be bigger than H and hence
that p is an isomorphism of G-sets. This proves the claim.

We now know that H has order 3 (i.e., that the generator a of G is not trivial),
since it acts nontrivially on X. Hence G has order 12. In fact, G is isomorphic
to the alternating group A4. To see this, note that the action of G on X gives
us a homomorphism G → A4, and it is easy to check that the images of a and b
generate A4. Our assertion now follows from a counting argument.

Remark. This example was simpler than some, in that all the names we introduced
(1, 2,. . . ) turned out to represent different cosets. A more common situation is that,
at various stages of the procedure, two cosets with different names are discovered
to be identical. This situation is known in the literature as a coincidence. When
we discover a coincidence, the graph we have constructed up to that point will still
map to the true Schreier graph, but the map will not be injective. We therefore
replace the graph with a quotient graph before continuing. We will give an example
of this in Section 4.

Coincidences are inevitable in general. [Think about presentations of the trivial
group, for instance.]

3. Relator tables and scanning

The process of checking that a relator is satisfied at a vertex is called scanning.
In the example above, this involved looking for red-red-red triangles, blue-blue-blue
triangles, and red-blue-red-blue squares. In more complicated examples it is often
helpful to use relator tables, one for each relator, to show the verification that the
relations are satisfied. The completed relator table for abab in our example above
is

a b a b

1 1 2 3 1
2 3 1 1 2
3 4 4 2 3
4 2 3 4 4

Each row starts and ends with the same coset, and the entries show the action of
the various generators that occur in the relator. For example, the entries of the
last row come from the equations 4a = 2, 2b = 3, and so on. The fact that the row
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starts and ends with 4 shows that 4 is fixed by abab. We say that coset 4 “scans
correctly” under abab.

To illustrate the use of relator tables, let’s redo our example from that point of
view. As in Step 1 above, we start with coset 1 satisfying 1a = 1. Scanning 1 under
each of the relators gives

a a a

1 1 1 1

b b b

1 1

a b a b

1 1 1

Only the aaa scan is complete at this point.
In order to make progress, let’s define 2 := 1b to get

a a a

1 1 1 1
2 2

b b b

1 2 1
2 2

a b a b

1 1 2 1
2 1 1 2

Note that the entries we made in the second row of the abab table were obtained by
scanning from right to left. In general, we try to scan from left to right and from
right to left until the row is filled.

Now let’s define 3 := 2b in order to fill the gap in the first row of the bbb table.
Since the next entry in that row is 1, we are able to make the deduction 3b = 1.
(This is the analogue, from the point of view of relator tables, of closing the blue
triangle in Step 2 of Section 2.) The relator tables become

a a a

1 1 1 1
2 2
3 3

b b b

1 2 3 1
2 3 1 2
3 1 2 3

a b a b

1 1 2 3 1
2 1 1 2
3 2 3

We get the 3 in the first row of the abab table by scanning from right to left. This
fills the row and gives us the deduction 2a = 3. This deduction allows us to go one
step further in scanning the second row of the aaa table, leaving a single gap that
can be filled by defining 4 := 3a. At this point it is easy to complete all scans, and
the procedure terminates as in Section 2.

4. Coincidences: Example

We briefly mentioned coincidences at the end of Section 2. Here’s an example.
Consider the group

G :=
〈
a, b ; aba−1 = b2, bab−1 = a2

〉
and the trivial subgroup H. Thus we are trying to work out the translation action
of G on itself.

Start with a coset 1 and make successive definitions so that the first relator
(written as aba−1b−1b−1) scans completely: 2 := 1a, 3 := 2b, 4 := 3a

−1

, and

5 := 4b
−1

. We deduce that 5b
−1

= 1, and the Schreier graph so far is a pentagon.
[Draw it!] At this point coset 5 scans completely under the second relator, and we

deduce 1a
−1

= 5, allowing us to add a red edge from 5 to 1. Here are the relator
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tables, where the uppercase letters denote the inverses of the generators:

a b A B B

1 2 3 4 5 1
2 3 2
3 3
4 3 4
5 1 5 4 5

b a B A A

1 5 1 2 1
2 3 2
3 3
4 3 4
5 4 3 2 1 5

Now define 6 := 1b
−1

; this fills the gap in the first row of the second relator table
and gives us the deduction 2a = 6.

At this point we start to get coincidences as we do further scans. For example, the

second row of the first relator now scans completely, giving the deduction 5b
−1

= 3.
When we try to add the blue edge from 3 to 5 to the Schreier graph, we see that
we already have a blue edge from 1 to 5. Hence we have obtained the coincidence
3 = 1.

As we noted at the end of Section 2, we now want to replace our tentative Schreier
graph Γ by a quotient graph that reflects the coincidence. This graph should still
have the formal properties of a subgraph of a Schreier graph (at most one edge of
each color entering or leaving a vertex). So we need to work out the equivalence
relation on the vertices forced by this requirement and by the coincidence 3 = 1.

Our convention in working with equivalence relations on vertices is that we al-
ways represent an equivalence class by its smallest element. We will also find it
convenient to construct a function p : {1, . . . , 6} → {1, . . . , 6} such that p(x) is
equivalent to x for all x, and p(x) ≤ x for all x with equality if and only if x is the
representative of its equivalence class. We can think of p as an approximation to
the quotient map; we obtain the true quotient map by iterating p until it stabilizes.

To get started, set p(3) := 1 and p(x) := x if x 6= 3. At this stage our quotient
has 5 vertices, represented by 1, 2, 4, 5, 6. You might find it helpful to write “1”
next to vertex 3 as a reminder that p(3) = 1.

Now consider the edges impinging on 3 in Γ. We have a blue edge 2 −→ 3, which
should become a blue edge 2 −→ 1 in the quotient. But we already have a blue
edge entering 1, which starts at 6. So we have obtained a new coincidence 6 = 2,
which we will need to process as soon as we finish with vertex 3. At this point
we erase the edge 2 −→ 3 in our picture and we redefine p(6) := 2 (and write “2”
next to 6) to reflect that 6 is equivalent to 2. We also put 6 in a queue of cosets
that have died but still need to be processed. (We will have to deal with the edges
impinging on 6.)

Continuing with vertex 3, we have a red edge 4 −→ 3. This yields the coincidence
5 = 4, since there is already a red edge 5 −→ 1. So we erase the edge 4 −→ 3,
redefine p(5) := 4, and add 5 to the queue. At this point we can erase vertex 3 if
we want.

Now we process vertex 6, for which p(6) = 2. We change the blue edge 6 −→ 1
to a blue edge 2 −→ 1. The red edge entering 6 wants to change to a red edge
entering 2. But we already have a red edge 1 −→ 2, so there is yet another
coincidence, 2 = 1. We therefore erase the edge 2 −→ 6, redefine p(2) := 1, add 2
to the queue, and (optionally) erase vertex 6.
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Continuing in the way to process the vertices in the queue, we quickly find that
the quotient graph consists of the single vertex 1, with a red loop and a blue loop.
The Todd–Coxeter procedure has terminated, proving that G is the trivial group.

Coincidence processing is the most complicated part of the Todd–Coxeter proce-
dure. I hope the method is more-or-less clear from this example, but I will re-explain
it in Section 6 in different language.

Remark. There is a faster way to deduce that G is the trivial group via Todd–
Coxeter. Instead of taking H to be the trivial subgroup, let H := 〈a〉. The Schreier
graph collapses to the trivial graph after only a few steps. Thus G = H and is
therefore cyclic, hence abelian. But as soon as we know that G is abelian, the
defining relations immediately imply that G is trivial.

5. Further examples

If you want to try some examples on your own, here are a few where the Todd–
Coxeter method reveals the structure fairly easily:

•
〈
a, b ; ab2a−1 = b3, ba2b−1 = a3

〉
is the trivial group.

•
〈
a, b ; a3 = b2 = (ab)4 = 1

〉 ∼= S4, the symmetric group of degree 4.

•
〈
a, b ; a3 = b5 = (ab)2 = 1

〉 ∼= A5, the alternating group of degree 5.

•
〈
a, b ; a2 = b2 = (ab)2

〉 ∼= Q8, the quaternion group of order 8.

The last one is perhaps the most surprising. Note that there’s no “= 1” at the
end of the relations. So it’s not even obvious that a and b have finite order. But
somehow the relations force them to have order 4.

Finally, we briefly discuss the last example given in the original Todd–Coxeter
paper [4]. There is a known group G0 of order 576 generated by three elements
a, b, c that satisfy the relations

(1) a3 = b2 = c2 = (ab)4 = (ac)2 = (bc)3 = 1.

The goal is to prove that these are defining relations for G0. To this end we denote
by G the abstract group defined by the presentation with three generators subject to
the relations (1). Thus we have a surjection G� G0, which will be an isomorphism
if we can show that |G| ≤ 576. Let H := 〈a, b〉 ≤ G. Then H is a quotient of S4

in view of the second example above, so |H| ≤ 24. A straightforward run of the
Todd–Coxeter procedure shows that |G : H| = 24, so we conclude that

|G| = 24 · |H| ≤ 242 = 576,

as required.

6. Coset tables and coincidence processing

Most of the literature on the Todd–Coxeter procedure uses coset tables instead
of Schreier graphs. A coset table lists the cosets and displays the action of the
generators and their inverses. In other words, it lists the vertices of the Schreier
graph and displays the endpoints of all outgoing and incoming arrows. For example,
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the complete coset table for the example treated in Section 2 is

a A b B

1 1 1 2 3
2 3 4 3 1
3 4 2 1 2
4 2 3 4 4

Each row corresponds to a coset label, and each column corresponds to a generator
or its inverse. We are still using the convention that uppercase letters denote the

inverses of the generators. Row 2, for example, shows that 2a = 3, 2a
−1

= 4, 2b = 3,

and 2b
−1

= 1. This is the same information that we would read off from the Schreier
graph by looking at the arrows entering and leaving vertex 2.

We will denote by X the set of coset labels; thus X indexes the rows of the coset
table. Both X and the coset table change during the Todd–Coxeter procedure.
For brevity, I will often call the elements of X cosets. Recall that there might be
coincidences, so the actual set of cosets H\G that we are trying to enumerate may
be a quotient of the final X (assuming that the procedure terminates). Thus we
will maintain an equivalence relation on X throughout the procedure.

As in Section 4, we will always represent an equivalence class by its least element,
and we will use a function p : X → X such that p(x) is equivalent to x and p(x) ≤ x,
with equality if and only if x is the representative of its equivalence class. We call
a coset x ∈ X live if p(x) = x and dead otherwise.

The dead cosets are those that I said could optionally be erased in the example
in Section 4. The live cosets represent the equivalence classes and, if the procedure
terminates, they correspond to the actual cosets. Whenever we make definitions or
scan a coset, we deal only with live cosets. The dead cosets come into play only
when we are processing a coincidence, since we will often have a queue of dead
cosets that still need to be processed. At the end of the coincidence processing, it
is harmless to remove the dead rows from the coset table.

We will denote by Rep(x) the representative of the equivalence class of x; this
may change during coincidence processing. Recall that we can compute Rep(x) by
iterating p until it stabilizes.

We now explain how coincidence processing works, in the language of coset
tables; see Holt [8, Section 5.1.3] for more details, including a complete proof that
the algorithm does what it is supposed to do. (The proof is routine but sightly
tedious.)

Suppose we obtain a coincidence x = y, where x and y are live cosets and x < y.
The first step is to merge the equivalence classes of x and y. In this case that simply
means setting p(y) := x and putting y into an initially empty queue of dead cosets
that have to be processed. (“Processing” a dead coset will be explained below.) In
general, if we speak of merging cosets x and y that are not necessarily live, we mean
the following: Consider x′ := Rep(x) and y′ := Rep(y). We may have x′ = y′, in
which case there is nothing to do. Otherwise, redefine p(y′) := x′ if x′ < y′ or
p(x′) := y′ if x′ > y′, and add the larger of x′, y′ to the queue.

Now let’s spell out how to process an element v in the queue. We want to
transfer all the information we have about v to information about Rep(v). When
we’re done, v should no longer appear in any live row of the coset table. Let S be
the set of generators of G and their inverses. Consider the elements s ∈ S one by
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one in some order. We don’t do anything unless vs is defined in the coset table,
say u = vs. [You may find it helpful to draw pictures with labeled edges in order

to keep track of the notation as we proceed.] Then we also have us
−1

= v in the
table. The first thing we do is delete that entry, since we don’t want v to remain in
the u-row. The reader can check that an equivalent entry will be put back in later.

In principle, we would now like to insert entries v̄s = ū and ūs
−1

= v̄ into the
table, where v̄ := Rep(v) and ū := Rep(u). But we may already have an entry for
v̄s in the table, say v̄s = w. In this case we simply merge ū and w. Or we may

already have an entry ws−1

= v̄ in the table, in which case we again merge ū and w.

The remaining possibility is that neither v̄s nor ūs
−1

has been defined; in this case

we insert the desired entries v̄s = ū and ūs
−1

= v̄ into the table.
After we finish considering each s ∈ S, we remove v from the queue and move

on to the next element, continuing until the queue is empty.

7. Summary of the Todd–Coxeter procedure

We are given a finitely presented group G and a subgroup H generated by finitely
many elements of G, explicitly given as words in the generators of G. We denote
by S the set of generators of G and their inverses. And we denote by X the set of
coset labels at any given stage of the procedure. Let X0 be the set of live cosets.

What we have presented so far, mostly by means of examples, is a nondetermin-
istic procedure, with many choices as to how to proceed at each stage:

(1) We can make a definition xs = y, where x ∈ X0, s ∈ S, and the coset table
does not currently have in entry for xs. We always take y to be the first
natural number that has not yet been used as a label, and we always add

ys
−1

= x along with xs = y. [In terms of graphs, we have added a new
vertex and a new labeled, directed edge.]

(2) We can scan a coset under a relator if it is possible to get further than the
last time the same scan was done. If the scan completes, we get a deduction.
We enter that deduction into the coset table unless it conflicts with an
existing entry. In that case we have a coincidence (which we process).

(3) We can scan coset 1 under a generator of H if it is possible to get further
than the last time the same scan was done. Again, we get a deduction if
the scan completes, and we may get a coincidence (which we process).

In practice, we usually start the procedure by “scanning and filling” coset 1 under
all generators of H. This means that we make a definition at the end of each scan
to allow the scan to proceed further, until the scan completes successfully. The
remainder of the procedure consists of steps of types (1) and (2).

A run of the Todd–Coxeter procedure (with some sequences of choices) is said
to terminate if after finitely many steps, all live rows are completely filled in, all
live cosets scan correctly under the relators, and coset 1 scans correctly under the
generators of H. In other words, none of the three steps above can be taken. If this
happens, then the argument used in the example of Section 2 shows that the live
rows of the resulting coset table really describe the action of G on H\G (which is
therefore finite).

Conversely, if |G : H| is finite, we will show that the procedure terminates,
provided we make our choices in a reasonable way.
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Theorem. Consider a run of the Todd–Coxeter procedure in which the choices are
made so that the following conditions are guaranteed to hold:

(a) For each coset label x that is introduced, either x will eventually die or else xs

will eventually be defined for all s ∈ S.
(b) Coset 1 will eventually scan correctly under every generator of H.
(c) Each coset label x that is introduced and does not die will eventually scan cor-

rectly under every relator.

If |G : H| is finite, then the procedure terminates.

Proof. It follows from (a) that every row of the coset table eventually stabilizes and
that the live rows of the resulting limiting table are completely filled in. Indeed,
once an entry appears in a row, the only way it can change is if it decreases as a
result of coincidence processing. And it cannot decrease more than finitely many
times. Let X∞ be the (possibly infinite) set of coset labels; these index the rows
of the limiting table. In view of conditions (b) and (c), the argument that we used
in Section 2 implies that the set X∞,0 of live cosets in X∞ can be identified with
H\G and is therefore finite. The rows corresponding to X∞,0 will therefore exist
in their final form after finitely many steps. The theorem will follow if we can show
that, at this stage, X0 = X∞,0. In other words, every coset that will eventually die
is already dead.

Suppose this is false, and let x be the first element of X0 rX∞,0. I claim that x
must occur in some row coresponding to an element of X∞,0, contradicting the fact
that those rows have stabilized. This was certainly the case when x first appeared,
since it was defined as ys for some live y < x and some s ∈ S. Now y may have
later died, but then x would have been entered into some earlier live row as a result
of coincidence processing. Repeating this argument, we see that x still occurs in
a live row preceding the x-row. The label of this row is necessarily in X∞,0 by
definition of x, proving the claim. �

8. Strategies

There are many possible strategies one can use in order to make sure that the hy-
potheses of the theorem are satisfied. These are discussed in detail in the references
cited at the beginning of this handout. Here are three of them.

The strategy that we followed in Section 2 is often called the HLT method
(after Haselgrove, Leech, and Trotter), or the relator-based method. We start by
scanning coset 1 under the generators of H, making definitions, if necessary, to
force the scan to complete. In the terminology introduced in the previous section,
we scan and fill coset 1. We now proceed to consider the live cosets x ≥ 1 in
numerical order, scanning and filling under all the relators. Coset x might die as a
result of coincidence processing after one of the scans, in which case we omit any
further scans (and optionally erase row x), and we move on to the next live coset.
Otherwise, we make further definitions to fill the x-row before continuing.

There is a variant of HLT, called HLT plus lookahead, which can be useful if we
want to keep the coset table from getting too big and exhausting our computer’s
memory. Suppose we are working at coset x and the number of live cosets has
exceeded some pre-determined threshold, possibly determined by the computer’s
available memory. Instead of scanning and filling, we pause and look ahead at later
cosets in the hope of discovering coincidences. To this end, we scan (without filling)
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all live cosets under all the relators. We then remove the dead rows, and we resume
the HLT procedure at coset x if we have succeeded in recovering some space.

A third method in common use is the Felsch method or the coset table–based
method. Instead of forcing scans to complete, we focus instead on filling the table.
We still proceed from coset to coset, but we don’t necessarily scan the current x
under all the relators. [We do, however, start by scanning and filling 1 under all
generators of H.] Instead, we make new definitions to fill in the x-row, and after
each definition we scan all cosets (without filling) that could possibly be affected
by the definition we’ve just made.

9. Software

Many computer algebra systems, including GAP [7] and Magma [1], incorpo-
rate the Todd–Coxeter procedure. GAP has, in addition to its built-in procedure,
two special-purpose packages, called ACE [6] (“Advanced Coset Enumerator”) and
ITC [5] (“Interactive Todd–Coxeter”). The latter has a graphical interface and lets
you control the process step by step, experimenting with different strategies. GAP
and Magma are both installed on the Math Department computer system and can
also be installed on your personal computers. GAP is free but not especially easy
to install. Magma requires a license; see Steve Gaarder for details.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra
system. I. The user language”. In: J. Symbolic Comput. 24 (1997). Computa-
tional algebra and number theory (London, 1993), pp. 235–265. url: http:
//dx.doi.org/10.1006/jsco.1996.0125.

[2] C. M. Campbell and E. F. Robertson, eds. Groups—St. Andrews 1981. Revised.
Vol. 71. London Mathematical Society Lecture Note Series. Selected papers
from the International Conference held at the University of St. Andrews, St.
Andrews, July 25–August 8, 1981. Cambridge: Cambridge University Press,
2007, pp. xiv+374. url: http://dx.doi.org/10.1017/CBO9780511661884.

[3] Colin M. Campbell, George Havas, and Edmund F. Robertson. “Addendum
to: “An elementary introduction to coset table methods in computational
group theory””. In: [2], pp. 361–364. url: http://dx.doi.org/10.1017/
CBO9780511661884.028.

[4] H. S. M. Coxeter and J. A. Todd. “A practical method for enumerating cosets
of a finite abstract group”. In: Proc. Edinb. Math. Soc. (2) 5 (1936), pp. 26–34.
url: http://dx.doi.org/10.1017/S0013091500008221.

[5] Volkmar Felsch, Ludger Hippe, and Joachim Neubüser. ITC – a GAP package,
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