REMARKS ON ASSOCIATED PRIMES

All rings are commutative in what follows. Recall the following consequence of the theory of primary decomposition: For any proper ideal I of a noetherian ring A, there is a finite set of "associated primes" \mathfrak{p} with the following two properties:

- (a) A prime \mathfrak{p} is associated to I if and only if \mathfrak{p} is the annihilator of some element of A/I.
- (b) The union of the associated primes is the set of elements of A that are 0-divisors in A/I.

There are similar results with A/I replaced by an arbitrary finitely-generated A-module. One can prove this by generalizing the theory of primary decomposition to modules; everything goes through with no essential change. But, for variety, here is a more direct approach, based on Eisenbud, Chapter 3. To get started, we simply take property (a) as a definition.

Definition. Let M be an A-module. A prime \mathfrak{p} of A is said to be *associated* to M if M contains an element whose annihilator is \mathfrak{p} or, equivalently, if there is an embedding $A/\mathfrak{p} \hookrightarrow M$. The set of primes associated to M is denoted Ass(M).

Theorem. If A is noetherian and M is a finitely generated nonzero A-module, then Ass(M) is finite and nonempty. The union of the primes in Ass(M) is the set of elements of A that are 0-divisors in M.

This has the following consequence, which is by no means obvious a priori:

Corollary. Let A and M be as in the theorem, and let I be an ideal of A. If every element of I is a 0-divisor in M, then there is a single nonzero element of M that is annihilated by I.

Proof. I is contained in the union of the associated primes, so it must be contained in one of them. \Box

The proof of the theorem will now be given in a series of lemmas. The first step is to prove the existence of at least one associated prime. To this end we need only choose a maximal annihilator (which is possible because A is noetherian):

Lemma 1. Let A be a noetherian ring and M a nonzero A-module. Let \mathfrak{p} be maximal among the ideals that occur as annihilators of nonzero elements of M. Then \mathfrak{p} is prime and hence is in Ass(M).

Proof. Let \mathfrak{p} be the annihilator of $x \in M$. By maximality, \mathfrak{p} is also the annihilator of every nonzero element of Ax. Suppose now that $ab \in \mathfrak{p}$ $(a, b \in A)$. Then abx = 0. If bx = 0, then $b \in \mathfrak{p}$ and we're done. Otherwise, a annihilates the nonzero element bx of Ax, so $a \in \mathfrak{p}$.

Note that we could start with any annihilator and enlarge it to a maximal one. This immediately yields the second assertion of the theorem. It remains to prove that Ass(M) is finite.

Lemma 2. Let A be a noetherian ring and M a finitely-generated A-module. Then M has a finite filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that each layer M_i/M_{i-1} (i = 1, ..., n) is cyclic with prime annihilator, i.e., is isomorphic to A/\mathfrak{p}_i for some prime \mathfrak{p}_i .

Proof. If $M \neq 0$, then Lemma 1 gives us a submodule $M_1 \subseteq M$ isomorphic to A/\mathfrak{p}_1 for some prime \mathfrak{p}_1 . If $M/M_1 \neq 0$, then we can apply the same result to M/M_1 to get $M_2 \supset M_1$ with $M_2/M_1 \cong A/\mathfrak{p}_2$. Continuing in this way, we eventually reach $M_n = M$ by the ascending chain condition.

We can now prove the finiteness of $\mathrm{Ass}(M)$ and thereby complete the proof of the theorem.

Lemma 3.

(a) Given a short exact sequence $0 \to M' \to M \to M'' \to 0$ of A-modules,

 $\operatorname{Ass}(M) \subseteq \operatorname{Ass}(M') \cup \operatorname{Ass}(M'').$

(b) In the situation of Lemma 2,

$$\operatorname{Ass}(M) \subseteq \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$$

Proof. (a) Given $\mathfrak{p} \in \operatorname{Ass}(M)$, we have an element $x \in M$ with $A/\mathfrak{p} \cong Ax \subseteq M$. If the composite $A/\mathfrak{p} \hookrightarrow M \to M''$ is injective, we get $\mathfrak{p} \in \operatorname{Ass}(M'')$. Otherwise, $Ax \cap M'$ is nonzero and \mathfrak{p} is the annihilator of each of its nonzero elements; so $\mathfrak{p} \in \operatorname{Ass}(M')$.

(b) Repeatedly apply (a), noting that $Ass(A/p) = \{p\}$ if p is prime.