
REMARKS ON ASSOCIATED PRIMES

All rings are commutative in what follows. Recall the following consequence of
the theory of primary decomposition: For any proper ideal I of a noetherian ring A,
there is a finite set of “associated primes” p with the following two properties:

(a) A prime p is associated to I if and only if p is the annihilator of some element
of A/I.

(b) The union of the associated primes is the set of elements of A that are 0-divisors
in A/I.

There are similar results with A/I replaced by an arbitrary finitely-generated A-
module. One can prove this by generalizing the theory of primary decomposition
to modules; everything goes through with no essential change. But, for variety,
here is a more direct approach, based on Eisenbud, Chapter 3. To get started, we
simply take property (a) as a definition.

Definition. Let M be an A-module. A prime p of A is said to be associated to M
if M contains an element whose annihilator is p or, equivalently, if there is an
embedding A/p ↪→M . The set of primes associated to M is denoted Ass(M).

Theorem. If A is noetherian and M is a finitely generated nonzero A-module,
then Ass(M) is finite and nonempty. The union of the primes in Ass(M) is the set
of elements of A that are 0-divisors in M .

This has the following consequence, which is by no means obvious a priori :

Corollary. Let A and M be as in the theorem, and let I be an ideal of A. If every
element of I is a 0-divisor in M , then there is a single nonzero element of M that
is annihilated by I.

Proof. I is contained in the union of the associated primes, so it must be contained
in one of them. �

The proof of the theorem will now be given in a series of lemmas. The first step
is to prove the existence of at least one associated prime. To this end we need only
choose a maximal annihilator (which is possible because A is noetherian):

Lemma 1. Let A be a noetherian ring and M a nonzero A-module. Let p be
maximal among the ideals that occur as annihilators of nonzero elements of M .
Then p is prime and hence is in Ass(M).

Proof. Let p be the annihilator of x ∈M . By maximality, p is also the annihilator
of every nonzero element of Ax. Suppose now that ab ∈ p (a, b ∈ A). Then abx = 0.
If bx = 0, then b ∈ p and we’re done. Otherwise, a annihilates the nonzero element
bx of Ax, so a ∈ p. �

Note that we could start with any annihilator and enlarge it to a maximal one.
This immediately yields the second assertion of the theorem. It remains to prove
that Ass(M) is finite.

Lemma 2. Let A be a noetherian ring and M a finitely-generated A-module. Then
M has a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that each layer Mi/Mi−1 (i = 1, . . . , n) is cyclic with prime annihilator, i.e.,
is isomorphic to A/pi for some prime pi.
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Proof. If M 6= 0, then Lemma 1 gives us a submodule M1 ⊆M isomorphic to A/p1

for some prime p1. If M/M1 6= 0, then we can apply the same result to M/M1 to
get M2 ⊃ M1 with M2/M1

∼= A/p2. Continuing in this way, we eventually reach
Mn = M by the ascending chain condition. �

We can now prove the finiteness of Ass(M) and thereby complete the proof of
the theorem.

Lemma 3.
(a) Given a short exact sequence 0→M ′ →M →M ′′ → 0 of A-modules,

Ass(M) ⊆ Ass(M ′) ∪Ass(M ′′).

(b) In the situation of Lemma 2,

Ass(M) ⊆ {p1, . . . , pn} .

Proof. (a) Given p ∈ Ass(M), we have an element x ∈ M with A/p ∼= Ax ⊆ M .
If the composite A/p ↪→ M → M ′′ is injective, we get p ∈ Ass(M ′′). Otherwise,
Ax ∩M ′ is nonzero and p is the annihilator of each of its nonzero elements; so
p ∈ Ass(M ′).

(b) Repeatedly apply (a), noting that Ass(A/p) = {p} if p is prime. �


