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0 Historical introduction

The cohomology theory of groups arose from both topological and alge-
braic sources. The starting point for the topological aspect of the theory
was a 1936 paper by Hurewicz [7], in which he introduced aspherical
spaces. These are spaces X such that πn(X) = 0 for n 6= 1. (Hurewicz
had introduced higher homotopy groups just one year earlier, and he was
now trying to understand the spaces with the simplest possible higher
homotopy groups.) Hurewicz proved that such an X is determined up
to homotopy equivalence by its fundamental group π := π1(X). Thus
homotopy invariants of X can be thought of as invariants of the group π.
Examples of such invariants include homology, cohomology, and the Eu-
ler characteristic. Thus we can define

H∗(π) := H∗(X) (0.1)

if X is an aspherical space with fundamental group π, and similarly for
cohomology and the Euler characteristic. [We will replace (0.1) with an
equivalent algebraic definition in the next section.]

For example, we have H0(π) = Z for all π (so H0 is a boring invariant
of π), and H1(π) = πab := π/[π, π], the abelianization of π. This is less
boring, but still well known. The next group, H2(π) is more interesting.
As a sample calculation, note that H2(π) = Z if π is free abelian of
rank 2, since we can take X to be the torus S1 × S1.

The next step was taken by Hopf [6] in 1942. One of the results
of his paper is that H2(π) can be used to measure the failure of the
Hurewicz map to be surjective in dimension 2. More precisely, consider
an arbitrary path-connected space X (not necessarily aspherical), and set
π := π1(X). The Hurewicz map h2 : π2(X) → H2(X) is an isomorphism
if π is the trivial group (i.e., if X is simply connected). In general,
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according to Hopf, there is an exact sequence

π2(X)
h2

H2(X) H2(π) 0.

A second result of Hopf’s paper is a calculation of H2(π) if π is given as
a quotient of a free group. Suppose π = F/R, where F is a free group
and R is a normal subgroup. Then Hopf’s formula says

H2(π) ∼= (R ∩ [F, F ]) /[R,F ].

Thus H2(π) can be viewed as the group of relations among commutators,
modulo those relations that hold trivially.

Following Hopf’s paper, the subject developed rapidly in the 1940s,
due primarily to the work of Eckmann, Eilenberg–MacLane, Freuden-
thal, and Hopf. By the end of the decade there was a purely algebraic
definition of the homology and cohomology of a group. As a consequence
of the algebraic definition, one could make connections with algebra go-
ing back to the early 1900s. For example, H1 turned out to be a group
of equivalence classes of “derivations” (also called “crossed homomor-
phisms”). And H2 turned out to be similarly related to “factor sets”,
which had been studied by Schur [11], Schreier [9], and Brauer [2], while
H2 coincided with the “Schur multiplier” (also introduced in [11]). Fi-
nally, H3 had appeared in the work of Teichmüller [14]. These are the
algebraic sources referred to in the first sentence of this section. Of
course, none of this algebra had suggested that derivations, factor sets,
and so on were part of a coherent “cohomology theory”. This had to
wait for the impetus from topology.

We now proceed to the six lectures, which correspond to the six
sections that follow. They give a very brief introduction to the homology
and cohomology theory of groups, with an emphasis on infinite groups
and finiteness properties. The lectures are based on my book [3] and are
organized as follows:

1. In the first lecture we will redefine H∗(G) for an arbitrary group G,
taking the algebraic point of view (homological algebra) that had
evolved by the end of the 1940s. Although we are now thinking alge-
braically, we will always keep the topological interpretation in mind
and will use it when convenient.

2. In the second lecture we take a first look at finiteness properties of
infinite groups. These properties may be defined either algebraically
or topologically.

3. The third lecture is devoted to H∗(G,M) and H∗(G,M), homology
and cohomology with coefficients in a G-module M . These general-
ize H∗(G), which is H∗(G, Z) (with trivial G-action on the coefficient
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module Z). They are important for both algebraic and topological ap-
plications, even if one is primarily interested in the special case H∗(G).

4. With the material of Lecture 3 available, we can treat finiteness prop-
erties more seriously in Lecture 4. In particular, we will discuss ho-
mological duality. This includes Poincaré duality as a special case,
but it is much more general.

5. Lecture 5 is technical. I will attempt to give an introduction to equiv-
ariant homology theory and the associated spectral sequences.

6. The final lecture treats the special features of cohomology theory
when the group G is finite. Although we are mainly interested in
infinite groups in these lectures, anyone learning the cohomology the-
ory of groups for the first time should know the basic facts about the
finite case.

1 The homology of a group

A reference for this section is [3, Chapter II]. We will give an algebraic
approach to homology theory, based on free resolutions. These generalize
presentations of modules by generators and relations. If R is a ring and
M is an R-module with n generators, then we have an exact sequence

Rn M 0. (1.1)

Here n is a cardinal number, possibly infinite. The surjection Rn
� M

has a kernel K, whose elements represent relations among the given
generators. If K admits m generators as an R-module (so that M is
defined by n generators and m relations), then we can map Rm onto K,
thereby obtaining a continuation of (1.1) to a diagram

Rm Rn M 0

K

(1.2)

with the top row exact. The surjection Rm
� K has a kernel L ( con-

sisting of “relations among the relations”). Choosing a free module that
maps onto L and continuing ad infinitum, we obtain an exact sequence

· · · → F2 → F1 → F0 → M → 0,

where each Fi is a free R-module. Such an exact sequence is called a
free resolution of M .

We will mainly be interested in the case where R is the integral group
ring ZG of a group G and M = Z, with trivial G-action. This situation
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arises naturally in topology, as follows. Suppose X is a G-CW-complex,
by which we mean a CW-complex with a G-action that permutes the
cells. Then G acts on the cellular chain complex C∗(X), which therefore
becomes a chain complex of ZG-modules. This complex is naturally
augmented over Z, so we have a diagram

· · · → C2(X) → C1(X) → C0(X) → Z → 0 (1.3)

of ZG-modules. If G acts freely on X (i.e., all cell stabilizers are trivial),
then each module Cn(X) is a direct sum of copies of ZG, with one copy
for each G-orbit of n-cells. In particular, Cn(X) is a free ZG-module. If,
in addition, X is contractible, then (1.3) is a free resolution of Z over ZG.

We can reformulate this as follows: Introduce the quotient complex
Y := G\X. If G acts freely on X, then we can view X as a regular
covering space of Y , with G as the group of deck transformations. If X
is simply connected, then X is the universal cover of Y , and G can be
identified with π1(Y ). If, in addition, X is contractible, then elementary
homotopy theory implies that the higher homotopy groups πi(Y ) are
trivial, since these do not change when one passes to a covering space.
Thus Y is an aspherical space in the sense of Section 0. Conversely, if we
start with an aspherical CW-complex Y , then its universal cover X has
trivial homotopy groups in all dimensions and hence is contractible by
a theorem of Whitehead. So the situation we described in the previous
paragraph can be summarized as follows: If Y is an aspherical CW-
complex with fundamental group G, then its universal cover X is a
contractible, free G-CW-complex, whose cellular chain complex gives
rise to a free resolution of Z over ZG as in (1.3). There is some standard
notation and terminology associated with this situation:

Definition 1.1. Let Y be a CW-complex with fundamental group G.
We say that Y is an Eilenberg–MacLane complex of type K(G, 1) if it is
aspherical or, equivalently, if its universal cover is contractible.

In some contexts one also writes Y = BG and calls Y a classifying space
for G, but we will stick to the K(G, 1) notation here.

It is a fact, which is not difficult to prove, that every group G admits
a K(G, 1)-complex Y ; moreover, Y is unique up to homotopy equiva-
lence. (The uniqueness part is a theorem of Hurewicz that we quoted
in Section 0.) This fact has an algebraic analogue, whose proof is even
easier, which is sometimes called the fundamental lemma of homological
algebra: Given any module M (over an arbitrary ring), free resolutions
of M exist and are unique up to chain homotopy equivalence. We al-
ready proved existence above. And a proof of uniqueness can be found in
any book on homological algebra. It consists of constructing the desired
chain maps and homotopies step by step. At each step, one has to solve
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a mapping problem of the following form:

F
0

M ′ M M ′′

where F is free and the row is exact. The solid arrows represent given
maps, with the composite F → M → M ′′ equal to the zero map, and
the dotted arrow represents a map we want to construct. Note that the
image of F → M lies in the kernel of M → M ′′ and hence in the image
of M ′ → M ; so we can construct the desired map by lifting the images
of basis elements of the free module F .

Free modules are not the only modules for which such mapping prob-
lems can be solved. If P is a module such that all mapping problems
as above can be solved (with F replaced by P ), then P is said to be a
projective module. There are many equivalent characterizations of pro-
jective modules. For example, a module P is projective if and only if it
is a direct summand of a free module, i.e., there is a module Q such that
P ⊕ Q is free.

The upshot of the discussion above is that the fundamental lemma
of homological algebra is applicable to projective resolutions, not just to
free ones. This gives us more flexibility in constructing resolutions of a
module, all of which are homotopy equivalent. Even in the setting where
we can find a free resolution via topology as above, it might be more
convenient to consider projective resolutions that are not necessarily free
(and hence, in particular, do not necessarily come from topology).

We proceed now to two examples, where we do in fact use topology
to get the desired resolutions.

Example 1.2. Let G = F (S), the free group generated by a set S. Let
X be the Cayley graph of G with respect to S. It is a tree with vertex
set G, with an edge from g to gs for each g ∈ G and s ∈ S. It is a free,
contractible, G-CW-complex. There is a single G-orbit of vertices, and
there is one G-orbit of edges for each s ∈ S. Thus the quotient complex
Y is a bouquet of circles indexed by S. The resulting free resolution is

0 ZG(S) ∂
ZG

ε
Z 0, (1.4)

where ZG(S) is a free ZG-module with a basis (es)s∈S . Here ε : ZG → Z

is the canonical augmentation, given by ε(g) = 1 for all g ∈ G, and
∂ : ZG(S) → ZG is given by ∂(es) = s−1 for s ∈ S. (This is because the
circle corresponding to s lifts to the edge in X from the vertex 1 to the
vertex s.) Although we have proved the exactness of (1.4) via topology,
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it is possible to give a purely algebraic proof; see [3, Section IV.4.2,
Exercise 3].

In the special case where S is a singleton {t} (i.e., G is an infinite
cyclic group generated by t), we can identify ZG with the ring Z[t, t−1]
of Laurent polynomials, and (1.4) becomes

0 Z[t, t−1]
t−1

Z[t, t−1]
ε

Z 0. (1.5)

The arrow labeled t− 1 is given by multiplication by t− 1, and ε can be
described as the evaluation map f 7→ f(1) for f = f(t) ∈ Z[t, t−1]. In
this special case, it is quite easy to verify the exactness by pure algebra.

Example 1.3. Suppose X is a free G-CW-complex homeomorphic to an
odd-dimensional sphere S2k−1. Then X is of course not contractible,
but we can still use its cellular chain complex C∗ := C∗(X) to get a free
resolution of Z over ZG. Indeed, X has homology only in dimensions 0
and 2k − 1, where it is Z (with trivial G-action by the Lefschetz fixed-
point theorem). So we have an exact sequence of ZG-modules

0 → Z → C2k−1 → · · · → C1 → C0 → Z → 0 (1.6)

with each Ci free. We can now obtain the desired free resolution by
splicing together infinitely many copies of (1.6):

· · · C1 C0 C2k−1 · · · C0 Z 0

Z

(1.7)

Note that, in contrast, to our previous examples, this resolution contin-
ues forever to the left.

As a simple special case, consider G = 〈 t ; tn = 1 〉, the finite cyclic
group of order n, acting on the circle by rotation. We can triangulate
the circle by cutting it into n arcs, so that there is a single orbit of 1-cells
and a single orbit of 0-cells. It is then easy to check that (1.6) becomes

0 Z
η

ZG
t−1

ZG
ε

Z 0, (1.8)

where ε is again the canonical augmentation and

η(1) = N :=

n−1∑

i=0

ti.

(Note that N is simply the sum of all the group elements. Such an
element N exists for any finite group G and is called the norm element
of ZG.) The resulting resolution (1.7) is then

· · ·
N

ZG
t−1

ZG
N

ZG
t−1

ZG
ε

Z 0, (1.9)
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the maps being alternately multiplication by N and by t−1. As in (1.5),
it is not hard to verify exactness by pure algebra. (Note that ZG =
Z[t]/(tn − 1) and that tn − 1 = (t − 1)N in the polynomial ring Z[t].)

We are now ready to give the (algebraic) definition of the homology
of a group G. It makes use of the coinvariants functor M 7→ MG, which
is the algebraic analogue of forming the quotient by a G-action. Here M
is a G-module (i.e., a ZG-module), and

MG := M/〈gm − m | g ∈ G, m ∈ M〉,

where the angle brackets denote the subgroup generated by the given
elements. Thus MG is the largest quotient of M on which G acts trivially.
(Compare this to the set of invariants

MG := {m ∈ M | gm = m for all g ∈ G} ,

which is the largest submodule of M on which G acts trivially.)

Definition 1.4. Given a group G, choose a projective resolution P =
(Pi)i≥0 of Z over ZG and set

H∗(G) := H∗(PG).

In words, we apply the coinvariants functor to the acyclic chain com-
plex P and then take homology. The fundamental lemma of homological
algebra guarantees that H∗(G) is well-defined (independent of the choice
of P ) up to canonical isomorphism. We also immediately get

H∗(G) = H∗(Y )

if Y is a K(G, 1)-complex. Indeed, if X is the universal cover of Y , then
we can take P to be C∗(X), and then PG = C∗(Y ).

From the algebraic point of view, we can think of H∗(G) as measuring
the failure of the coinvariants functor to be exact. (If it were exact, then
PG would again be acyclic and hence would have trivial homology in
positive dimensions.) But this algebraic point of view would seem very
artificial without the motivation from topology. The latter dictated the
choice of ZG as the ring, the choice of Z as the module to resolve, and
the choice of coinvariants as the functor to apply.

Exercise 1.5. Use the resolutions in Examples 1.2 and 1.3 to calculate
H∗(G) if G is free or cyclic.

2 Finiteness properties (introduction)

There is a canonical free resolution of Z over ZG, sometimes called the
bar resolution, that one can use in principle to compute the homology



8 Brown

of any group G. It comes from a canonical K(G, 1)-complex. See [3,
Section I.5]. The bar resolution and canonical K(G, 1) are useful for
theoretical purposes, but they are very big. If one wants to actually
compute the homology, or at least discover qualitative properties of it
(such as finite generation or vanishing in high dimensions), it is desirable
to have a small resolution P or a small K(G, 1)-complex Y . Here “small”
might mean that Pn = 0 for large n (or that Y is finite dimensional).
Alternatively, it might mean that each module Pn is finitely generated
(or that Y has only finitely many cells in each dimension). Examples 1.2
and 1.3 illustrate this. We will treat these two notions of smallness in the
two subsections that follow. Our treatment is based on [3, Chapter VIII].

2.1 Dimension

There are two natural definitions of the dimension of a group, depending
on whether we think topologically or algebraically.

Definition 2.1. The geometric dimension of G, denoted gdG, is the
smallest non-negative integer n such that there exists an n-dimensional
K(G, 1)-complex. (Or, if no such n exists, then we set gd G = ∞.)

Definition 2.2. The cohomological dimension of G, denoted cdG, is
the smallest non-negative integer n such that there exists a projective
resolution P = (Pi)i≥0 of Z over ZG of length ≤ n, i.e., satisfying Pi = 0
for i > n. (Or, if no such n exists, then we set cd G = ∞.)

Remark 2.3. It is not clear at this stage why we call cd(−) “cohomo-
logical dimension” instead of, for example, “projective dimension”. The
name comes from a characterization of cd G that we will explain in Sec-
tion 4.

Since a K(G, 1)-complex Y yields a free resolution of length equal to
the dimension of Y , it is clear that

cd G ≤ gd G. (2.1)

Another simple observation is that dimension can only go down if one
passes to a subgroup. In other words, if dim(−) denotes either cohomo-
logical dimension or geometric dimension, then

dim(H) ≤ dim(G) if H ≤ G. (2.2)

For cd this follows from the fact that ZG is a free ZH-module, which
implies that a projective ZG-module is also projective as a ZH-module.
Hence any projective resolution of Z over ZG is still a projective resolu-
tion of the same length when viewed as a complex of ZH-modules. For
gd one instead argues using covering spaces. [Any K(G, 1)-complex has
a covering space that is a K(H, 1)-complex of the same dimension.]
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Examples 2.4. (a) A 0-dimensional K(G, 1) is necessarily a point, so it
exists if and only if G is the trivial group. The algebraic analogue of this
(which requires a little thought but is still easy) is that Z is a projective
ZG-module if and only if G is the trivial group. Hence

cdG = 0 ⇐⇒ gd G = 0 ⇐⇒ G = {1} .

(b) A 1-dimensional K(G, 1) is necessarily homotopy equivalent to a
bouquet of circles, so there exists one if and only if G is free. (For the
“if” part, see Example 1.2.) It is also true, but much more difficult, that
cdG = 1 only if G is free. This is a deep theorem of Stallings [12] and
Swan [13]. Hence

cd G = 1 ⇐⇒ gd G = 1 ⇐⇒ G is free and nontrivial.

(c) If G is the fundamental group of a closed surface Y other than the
sphere or projective plane, then cdG = gdG = 2. Indeed, Y is a K(G, 1)
since its universal cover is homeomorphic to R

2, so cd G ≤ gd G ≤
2; equality holds in the orientable case because H2(G) = H2(Y ) 6= 0,
implying cdG ≥ 2. In the non-orientable case one can give a similar
argument based on mod 2 homology, or one can pass to the orientable
double cover and apply (2.2).

(d) The free abelian group G = Z
n has cd G = gdG = n. This follows

as in (c) from the fact that the n-torus is a K(G, 1) and has nontrivial
homology in dimension n. More generally, if G is the fundamental group
of a closed aspherical n-manifold, then cdG = gd G = n.

(e) If G is a nontrivial finite cyclic group, then cdG = gd G = ∞ since G
has nontrivial homology in arbitrarily high dimensions (see Exercise 1.5).
In view of (2.2), it follows that cdG = gd G = ∞ for any group G with
torsion. Equivalently,

cd G < ∞ =⇒ G is torsion-free.

This can be used to prove, for instance, that knot groups are torsion-free
(since knot complements are aspherical).

(f) Torsion-free arithmetic groups have finite cohomological dimension,
which can be calculated explicitly by methods that we will explain at
the end of Section 4.

It is not known whether equality always holds in (2.1). We have seen
in (a) and (b) above that equality holds if cdG ≤ 1. It also holds if
cdG ≥ 3. In fact, for any n ≥ 3 one can show by fairly straightforward
homotopy theory that the existence of a projective resolution of length n
implies the existence of an n-dimensional K(G, 1)-complex. The argu-
ment breaks down if n = 2, however, so it is conceivable that there is
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a group G with cd G = 2 but gdG = 3. The famous Eilenberg–Ganea
problem asks whether or not this can happen. In summary, we have:

Theorem 2.5. For any group G,

cd G ≤ gd G,

with equality except possibly if cd G = 2 but gd G = 3.

In view of the close connection between cd G and gdG, we will often
simply write dim G in cases where they are known to be equal or where
it does not matter which one we use. For example, we can speak of
finite-dimensional groups and write dimG < ∞.

2.2 The Fn and FPn conditions

Definition 2.6. We say that a group G is of type Fn (0 ≤ n < ∞) if
there is a K(G, 1)-complex with a finite n-skeleton, i.e., with only finitely
many cells in dimensions ≤ n. We say that G is of type F∞ if there is a
K(G, 1) with all of its skeleta finite, and that G is of type F if there is a
finite K(G, 1).

One can always build a K(G, 1)-complex by starting with a single
vertex, then attaching 1-cells corresponding to generators of G, then
attaching 2-cells corresponding to relators, and then attaching 3-cells,
4-cells, and so on, to kill the higher homotopy groups π2, π3,. . . . This
leads to the following interpretation of the Fn property for small n:

• Every group is of type F0.

• G is of type F1 if and only if it is finitely generated.

• G is of type F2 if and only if it is finitely presented.

The successively stronger higher finiteness properties F3, F4, . . . , F∞,
and F are more subtle and do not have simple group-theoretic interpre-
tations. Groups of type F, of course, are finite dimensional; in particular,
only torsion-free groups can have this property.

Remarks 2.7. (a) All of the examples mentioned in our discussion of
dimension are of type F∞ (provided, in the case of free groups, that we
require the group to be finitely generated). And all of the torsion-free
groups (with the same proviso) are even of type F.

(b) In view of (a), one might wonder whether all torsion-free groups of
type F∞ are in fact of type F. This is not the case. The first coun-
terexample was given by Brown and Geoghegan [4]. That example,
however, is infinite dimensional. So one can still ask whether every
finite-dimensional group of type F∞ is of type F. In other words, if
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there is a K(G, 1)-complex with only finitely many cells in each dimen-
sion, and if there is also a K(G, 1)-complex that is finite-dimensional, is
there a K(G, 1)-complex that satisfies both of these conditions simulta-
neously? This question is still open. We will understand the difficulty
better shortly, after we discuss the FPn conditions.

Definition 2.8. We say that a group G is of type FPn (0 ≤ n < ∞) if
there is a projective resolution P of Z over ZG such that Pi is finitely
generated for i ≤ n. We say that G is of type FP∞ if there is a pro-
jective resolution P of Z over ZG with Pi finitely generated for all i,
and that G is of type FP if there is a finite projective resolution, i.e., a
projective resolution such that Pi is finitely generated for all i and is 0
for sufficiently large i.

It is obvious that Fn =⇒ FPn. Moreover, one can show:

• Every group is of type FP0.

• G is of type FP1 if and only if it is finitely generated (so FP1 is
equivalent to F1).

• G is of type FP2 if and only if G ∼= G̃/N , where G̃ is finitely
presented and N is a perfect normal subgroup.

If G ∼= G̃/N as above, then G is finitely presented if and only if N is
finitely generated as a normal subgroup. Examples due to Bestvina and
Brady [1] show that this need not be the case. In other words, FP2 is
definitely weaker than F2. For higher n, however, there is no further
difference between FPn and Fn beyond finite presentability. In other
words, G is of type Fn (2 ≤ n ≤ ∞) if and only if it is finitely presented
and of type FPn. The analogous statement for property F is not known:

Question 2.9. If G is finitely presented and of type FP, is G of type F?

To understand this better, we introduce one more finiteness condi-
tion, which is algebraic in nature but is motivated by topology:

Definition 2.10. G is of type FL if there is a finite free resolution of Z

over ZG, i.e., a free resolution F such that Fi is finitely generated for
all i and is 0 for sufficiently large i.

(The “L” in “FL” stands for “libre”. Some authors write “FF”, for
“finite free” instead of “FL”.)

Now it is not difficult to show that G is of type F if and only if
it is finitely presented and of type FL. So the real question underlying
Question 2.9 is:

Question 2.11. If G is of type FP, is it of type FL?
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Remarks 2.12. (a) A group G is of type FP if and only if it is finite
dimensional and of type FP∞. (Thus algebra is easier than topology
in this setting, cf. Remark 2.7(b).) In fact, if G is of type FP∞ and
finite dimensional, then one can construct a projective resolution step
by step using finitely generated modules, and the kernel will eventually
be projective. One can therefore stop at that stage and have a finite
projective resolution.

(b) In the step-by-step construction just described, we can use finitely-
generated free modules at each stage. The kernels will all be finitely
generated, so there is no obstruction to continuing the process. But
when we reach the point where the kernel K is projective, we cannot
be sure that it will be free. It is therefore not clear that we can stop
and have a finite free resolution. In fact, one can show that there exists
a finite free resolution if and only if K is stably free. So Questions
2.9 and 2.11 would have affirmative answers if we knew that finitely-
generated projective ZG-modules are always stably free if G is torsion
free. A famous conjecture asserts that this is the indeed the case; see
Lück’s lectures in this volume.

(c) It can be shown that a group G is finitely presented and of type FP
if and only if K(G, 1) is finitely dominated (i.e., is a retract up to homo-
topy of a finite complex). This is a topological analogue of the fact that
a module is projective if and only if it is free. So the question we have
been discussing is whether a finitely-dominated K(G, 1) is homotopy
equivalent to a finite complex. Now there are in fact plenty of exam-
ples of finitely-dominated spaces that are not homotopy equivalent to
finite complexes; but no known examples have torsion-free fundamental
groups. In particular, they cannot be K(G, 1)s.

3 Homology with coefficients

This section is based on [3, Chapter III].

3.1 Definitions

We defined the homology of a group G by applying the coinvariants
functor (−)G to a projective resolution P of Z over ZG. There are other
functors we could apply.

First, fix a G-module M and consider the tensor-product functor
−⊗G M . Applying this to a projective resolution P yields a nonnegative
chain complex

· · · → P1 ⊗G M → P0 ⊗G M,
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and taking homology gives the homology of G with coefficients in M :

H∗(G,M) := H∗(P ⊗G M).

A word of explanation is in order concerning the tensor product. Nor-
mally, a tensor product N ⊗R M is defined when N is a right R-module
and M is a left R-module. It is obtained by forming the tensor product
N ⊗ M := N ⊗Z M and introducing the relations nr ⊗ m = n ⊗ rm
for n ∈ N , r ∈ R, and m ∈ M . In case R = ZG, however, we work
entirely with left modules and, in order to form the tensor product
N ⊗G M := N ⊗ZG M , we convert the left G-module N to a right
G-module by setting ng := g−1n for g ∈ G and n ∈ N . Thus N ⊗G M is
obtained from N ⊗M by introducing the relations g−1n⊗m = n⊗ gm.
If we replace n by gn, this becomes

n ⊗ m = gn ⊗ gm. (3.1)

So we can also describe the tensor product by

N ⊗G M = (N ⊗ M)G , (3.2)

where the coinvariants on the right are formed with respect to the diag-
onal G-action on N ⊗M (i.e., g(n⊗m) := gn⊗ gm). If we take M = Z,
for example, then N ⊗ Z = N , so (3.1) gives N ⊗G Z = NG. Thus

H∗(G, Z) = H∗(G),

and we see that the homology defined in Section 1 is a special case of
the homology that we are considering now.

As in that case, there is a topological interpretation, provided one
knows about homology with local coefficients. Namely, if Y is a K(G, 1)-
complex, then the G-module M may be viewed as a local coefficient
system on Y , and

H∗(G,M) = H∗(Y,M). (3.3)

If G acts trivially on M , the right side is just the ordinary homology of
Y with coefficients in the abelian group M .

Next, we consider the (contravariant) Hom functor HomG(−,M) for
a fixed G-module M . Applying this to a projective resolution P yields
a nonnegative cochain complex

HomG(P0,M) → HomG(P1,M) → · · · ,

and taking cohomology gives the cohomology of G with coefficients in M :

H∗(G,M) := H∗(HomG(P,M)).
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To better see the analogy with homology, note that, for any G-module N ,
there is a natural “diagonal” G-action on Hom(N,M) := HomZ(N,M)
by functoriality, simply because G acts on both N and M . A moment’s
thought (taking account of the contravariance of Hom in the first vari-
able), shows that this action should be defined by

(gf)(n) := gf(g−1n)

for g ∈ G, f ∈ Hom(N,M), and n ∈ N . This immediately yields the
following analogue of (3.2):

HomG(N,M) = Hom(N,M)G, (3.4)

where the invariants on the right are formed with respect to the G-action
on Hom(N,M) that we have just defined. And, as in (3.3), cohomology
with coefficients admits a topological interpretation as the cohomology
of Y = K(G, 1) with local coefficients in M .

In dimension 0, our homology and cohomology functors (viewed as
functors of the coefficient module M) are familiar ones. Indeed, the
tensor-product functor − ⊗G M is right exact, so we have an exact
sequence

P1 ⊗G M → P0 ⊗G M → Z ⊗G M → 0;

thus we can make the identification

H0(G,M) = Z ⊗G M = MG .

Similarly, the contravariant functor HomG(−,M) takes right exact se-
quences to left exact sequences, so we have an exact sequence

0 → Hom(Z,M) → Hom(P0,M) → Hom(P1,M);

thus we can make the identification

H0(G,M) = HomG(Z,M) = MG.

As we will see, the existence of nontrivial higher homology and coho-
mology functors reflects the failure of the invariants and coinvariants
functors to be exact. We will also see that homology and cohomology
with coefficients are fundamental technical tools, even if we only care
about H∗(G) = H∗(G, Z).

3.2 Examples

Example 3.1. Let G = 〈t〉 be infinite cyclic, generated by t. Recall from
Example 1.2 that we have a free resolution

0 ZG
t−1

ZG Z 0.
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Applying − ⊗G M as above (for a fixed G-module M), we obtain the
chain complex

· · · 0 0 M
t−1

M

for computing H∗(G,M). And applying HomG(−,M), we obtain the
cochain complex

M
t−1

M 0 0 · · ·

for computing H∗(G,M). (In both cases, the two copies of M are in
dimensions 0 and 1.) Thus

H0(G,M) = H1(G,M) = MG ,

and
H0(G,M) = H1(G,M) = MG,

and all higher homology and cohomology functors vanish. The vanishing
is of course to be expected, since G is a 1-dimensional group. And the
calculations above are perhaps also to be expected. Indeed, they suggest
Poincaré duality, which one would predict since the standard K(G, 1)
(the circle) is a closed 1-manifold. We will return to this in the next
section.

Example 3.2. Now let G = 〈 t ; tn = 1 〉, the finite cyclic group of order n.
Recall from Example 1.3 that we have a free resolution

· · ·
N

ZG
t−1

ZG
N

ZG
t−1

ZG Z 0.

As in the previous example, this yields the chain complex

· · ·
N

M
t−1

M
N

M
t−1

M

for computing homology and the cochain complex

M
t−1

M
N

M
t−1

M
N

· · ·

for computing cohomology. We therefore obtain, for i ≥ 1,

Hi(G,M) =

{
MG/N · M if i is even

ker N/(t − 1) · M if i is odd.
(3.5)

The result for homology is similar, with the roles of even and odd indices
reversed. To get a neater statement, note that the norm operator (i.e.,
multiplication by N) induces a map

N : MG → MG,

and the quotients in (3.5) are simply the cokernel and kernel of this map.
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3.3 Properties

Topology motivates thinking of homology and cohomology as functors of
a space, and hence of the group G in our setting. Algebra, on the other
hand, suggests that we think of homology and cohomology as functors
of the coefficient module M . Both points of view are useful. Here we
explore the second. Thus we fix G and let the module vary.

The first observation is that a short exact sequence of G-modules

0 → M ′ → M → M ′′ → 0

yields a long exact sequence

· · · → H1(G,M ′) → H1(G,M) → H1(G,M ′′) → H0(G,M ′)

→ H0(G,M) → H0(G,M ′′) → 0.

Thus we can think of H1 as measuring the failure of the coinvariants
functor H0 to be left exact. Similarly, H2 measures the failure of H1 to
be left exact, and so on. If dimG < ∞, we eventually reach a left-exact
functor and the remaining functors are 0.

The derivation of the long exact sequence is straightforward. One
simply tensors the given short exact sequence with a projective resolu-
tion. This yields a short exact sequence of chain complexes (because
projective modules are flat, i.e., tensoring with a projective module is
an exact functor). A standard argument therefore yields a long exact
sequence in homology.

Similar remarks apply to cohomology. This time we use the fact that
the functor HomG(−,−) is exact (and covariant) in the second variable
if we fix a projective module in the first variable. Our exact sequence of
coefficient modules therefore yields a long exact sequence

0 → H0(G,M ′) → H0(G,M) → H0(G,M ′′) → H1(G,M ′)

→ H1(G,M) → H1(G,M ′′) → · · · .

Thus H1 measures the failure of the invariants functor to be right exact,
H2 measures the failure of H1 to be right exact, and so on.

The next property is sometimes called acyclicity: If M is a projec-
tive ZG-module, then

Hn(G,M) = 0

for n > 0. This is again a consequence of the flatness of projectives.
[Tensoring a projective resolution with M preserves the exactness of the
resolution.] Readers familiar with injective modules will note that, in
the same way, injectives are acyclic for cohomology, i.e.,

Hn(G,M) = 0
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for n > 0 if M is injective [because then HomG(−,M) is an exact func-
tor].

The significance of acyclicity is that it leads to effaceability: Every
module is a quotient of a module that is acyclic for homology. Similarly,
every module can be embedded in a module that is acyclic for cohomol-
ogy. This makes it possible to use a technique known as dimension

shifting for reducing high-dimensional homology and cohomology to
low-dimensional homology and cohomology, provided one is willing to
change the coefficient module. See [3, Section III.7] for details.

The next property we wish to discuss is often called Shapiro’s lemma
(or, more accurately, the Eckmann–Shapiro lemma). In order to explain
it, we need to digress and talk about induction and coinduction, which
are special cases of extension and co-extension of scalars.

Consider an arbitrary inclusion R ⊆ S of rings. Then any S-module
may be viewed as an R-module by restriction of scalars. We wish to
go in the other direction. In other words, given an R-module, we want
to enlarge it so as to obtain an S-module. There are two ways to do
this, depending on how one interprets “enlarge”. Many readers will
have seen the first method when R and S are fields. For example, the
complexification of a real vector space is an example of the construction
that follows.

Method 1: Extension of scalars. Given an R-module M , form the
tensor product S ⊗R M . Here we view S as a right R-module in order
to make sense out of the tensor product, and we then use the left action
of S on itself to make the tensor product an S-module:

s · (s′ ⊗ m) := ss′ ⊗ m

for s, s′ ∈ S and m ∈ M . This is legitimate because the left action of S on
itself commutes with the right action of R on S that was used in forming
the tensor product. We say that S⊗R M is the S-module obtained from
M by extension of scalars from R to S. It is an “enlargement” of M in
the sense that there is a canonical R-module map

i : M → S ⊗R M

given by m 7→ 1 ⊗ m. (This is often injective in concrete examples, so
that M is embedded in S ⊗R M .) The map i is universal for R-maps
of M to an S-module, in the following sense: Given an S-module N
and an R-module map f : M → N , there is a unique S-module map
g : S ⊗R M → N such that gi = f , as illustrated in Figure 3.1. More
concisely,

HomR(M,N) = HomS(S ⊗R M,N) (3.6)

for any R-module M and S-module N . This says that extension of
scalars is left adjoint to restriction of scalars.
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M
i

f

S ⊗R M

g

N

Figure 3.1: The universal property of extension of scalars

Method 2: Co-extension of scalars. Given an R-module M , con-
sider the abelian group HomR(S,M). Here we view S as a left R-module
in order to make sense out of the Hom, and we then use the right action
of S on itself to make HomR(S,M) an S-module:

(sf)(s′) := f(s′s)

for s, s′ ∈ S and f ∈ HomR(S,M). We say that HomR(S,M) is the
S-module obtained from M by co-extension of scalars from R to S. It is
an “enlargement” of M in the sense that there is a canonical R-module
map

p : HomR(S,M) → M

given by f 7→ f(1). (This is often surjective in concrete examples, so
that M is a quotient of HomR(S,M).) The map p is universal for R-
maps of an S-module to M , in the following sense: Given an S-module
N and an R-module map f : N → M , there is a unique S-module map
g : N → HomR(S,M) such that pg = f , as illustrated in Figure 3.2.
More concisely,

HomR(N,M) = HomS(N,HomR(S,M)) (3.7)

for any R-module M and S-module N . This says that co-extension of
scalars is right adjoint to restriction of scalars.

HomR(S,M)

p

N

g

f
M

Figure 3.2: The universal property of co-extension of scalars

We will be interested in the case where R and S are group rings, say
R = ZH and S = ZG, where H ≤ G. In this case extension of scalars is
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called induction and co-extension of scalars is called coinduction. Given
a G-module M , we set

IndG
H := ZG ⊗ZH M

and

CoindG
H := HomZH(ZG,M).

We will talk mainly about induction, but everything we say has an ana-
logue for coinduction.

The first observation is that the canonical H-map i : M → IndG
H M

is injective. We may therefore identify M with its image i(M), and
M then becomes an H-invariant additive subgroup of the G-module
IndG

H M . The transform gM for g ∈ G therefore depends only on the
class of g in G/H, and one checks easily that there is an abelian group
decomposition

IndG
H M =

⊕

g∈G/H

gM. (3.8)

This property in fact characterizes induced modules. More precisely,
suppose N is a G-module which is a direct sum of additive subgroups that
are permuted transitively by the G-action. If M is one of the summands
and H is its stabilizer in G, then N is canonically isomorphic to IndG

H M .
Thus (3.8) really captures the essence of the induction construction.

Similar remarks apply to coinduction, but this time we have a direct
product decomposition such that the G-action permutes the factors. In
case H has finite index in G, there is no difference between a direct sum
decomposition and a direct product decomposition, and one concludes
that

IndG
H M ∼= CoindG

H M (3.9)

for any H-module M in this case.

We now return to our list of properties of homology and cohomology.
The Eckmann–Shapiro lemma is the following result:

Proposition 3.3. Given H ≤ G and an H-module M , there are canon-
ical isomorphisms

H∗(H,M) ∼= H∗(G, IndG
H M)

and

H∗(H,M) ∼= H∗(G,CoindG
H M).

Proof. Take a projective resolution P of Z over ZG. If we restrict oper-
ators from G to H, P is still a projective resolution of Z over ZH, and
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we have

H∗(H,M) = H∗(HomH(P,M))

= H∗(HomG(P,CoindG
H M))

= H∗(G,CoindG
H M),

where the second equality comes from the universal property of coinduc-
tion, as formulated in (3.7). For homology, we instead use properties of
tensor products:

H∗(H,M) = H∗(P ⊗H M)

= H∗(P ⊗G (ZG ⊗H M))

= H∗(G, IndG
H M).

Taking M = Z, for example, the induced module IndG
H Z can be

identified, in view of (3.8), with the permutation module Z[G/H]. So
we have

H∗(H) ∼= H∗(G, Z[G/H]).

Thus the ordinary homology of a group can be computed as the homology
of any supergroup, provided we are willing to introduce coefficients. And
if H has finite index in G, then we also have

H∗(H, Z) ∼= H∗(G, Z[G/H])

in view of (3.9).
The final property we wish to state is the existence of transfer

maps. We continue to assume that we are given H ≤ G. One al-
ways has the expected covariance of homology with respect to group
homomorphisms, giving a map

H∗(H,M) → H∗(G,M)

for any G-module M . Algebraically, this comes from the canonical sur-
jection

P ⊗H M � P ⊗G M

if P is a projective resolution of Z over ZG. Topologically, it comes
from the canonical map K(H, 1) → K(G, 1). Similarly, cohomology is
contravariant with respect to the group: We have a map

H∗(G,M) → H∗(H,M)

for any G-module M . But if [G : H] < ∞, we can also define so-called
“transfer” maps that go in the opposite direction.
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Consider cohomology for example, where we seek a map

H∗(H,M) → H∗(G,M)

for any G-module M . If we use Proposition 3.3 and the isomorphism
(3.9) to identify H∗(H,M) with H∗(G, IndG

H M), the desired map has
the form

H∗(G, IndG
H M) → H∗(G,M). (3.10)

To define it, simply observe that there is a canonical G-module map

IndG
H M → M. (3.11)

Indeed, since we started with a G-module M , restricted it to H, and then
induced back up, we can use the original G-action to define a G-map

ZG ⊗ZH M → M

by r ⊗ m 7→ rm for r ∈ ZG and m ∈ M . Formally, this is just an
instance of the universal mapping property of induction. [Apply (3.6),
and consider the identity map on M , viewed as an H-map to a G-
module.] The map (3.10) that we are seeking is now obtained from (3.11)
by functoriality of cohomology with respect to the coefficient module.
Similar remarks apply to homology.

See [3, Section III.9] for other ways of explaining the existence of
the transfer map. The name “transfer” comes from the special case
H1(G) → H1(H), which is a map on abelianizations Gab → Hab that
goes back to Schur [10], who called it the transfer (“Verlagerung”). The
extension of Schur’s transfer to homology and cohomology is due to
Eckmann [5].

Finally, we remark that the ordinary functorial map

H∗(G,M) → H∗(H,M)

can also be explained in terms of the Eckmann–Shapiro lemma and maps
of coefficient modules (and similarly for homology). This does not re-
quire finite index, but, if we assume finite index for simplicity, the rele-
vant map M → ZG ⊗ZH M turns out to be given by

m 7→
∑

g∈G/H

g ⊗ g−1m.

In particular, this shows that the composite

M → IndG
H M → M

is simply multiplication by the index [G : H], so the same is true of the
composite

H∗(G,M) → H∗(H,M) → H∗(G,M). (3.12)
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Here the first map is the ordinary functorial map (sometimes called “re-
striction” in the case of cohomology), and the second map is the trans-
fer. Suppose, for example, that G is finite and H is the trivial sub-
group. Then this argument shows that multiplication by [G : H] = |G|
in positive-dimensional cohomology is the zero map, and similarly for
homology. Consequently:

Corollary 3.4. If G is finite, then Hn(G,M) and Hn(G,M) are anni-
hilated by |G| for every G-module M and all n > 0.

Remark 3.5. We noted above that the functorial map H∗(G) → H∗(H)
is sometimes called restriction; here we have suppressed the coefficient
module from the notation for simplicity. The transfer map H∗(H) →
H∗(G) may then be called corestriction. In homology, on the other
hand, it is the transfer map H∗(G) → H∗(H) that is called restriction,
while the functorial map H∗(H) → H∗(G) is called corestriction. In
both cases, then, “restriction” refers to the map H(G) → H(H), where
H(−) denotes either homology or cohomology. This uniform terminology
makes it easier to remember certain formulas. For example, restriction
followed by corestriction as in (3.12) is multiplication by the index in
both homology and cohomology.

4 Finiteness properties revisited

This is a continuation of Section 2. The reference is still [3, Chapter
VIII]. We begin with dimension.

4.1 Dimension

Recall that we defined the cohomological dimension cd G in terms of
projective resolutions. We are now in a position to explain why this is
called cohomological dimension. Namely, cdG is the largest n (if any)
for which the cohomology functor Hn(G,−) is not identically 0:

Proposition 4.1. For any group G,

cd G = sup {n | Hn(G,−) 6= 0} .

In other words, cdG ≤ m ⇐⇒ Hk(G,M) = 0 for all k > m and all
G-modules M .

Proof. Let’s temporarily write d(G) for the supremum on the right side
of the equation to be proved. Clearly d(G) ≤ cd G. For the opposite
inequality, we may assume d(G) < ∞. Set n := d(G), and consider an
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arbitrary projective resolution P of Z over ZG. Let L and K be the
images of the boundary maps Pn+1 → Pn and Pn → Pn−1:

Pn+1 Pn Pn−1

L K

I claim that K is projective and hence cd G ≤ n. We are given that
Hn+1(G,M) = 0 for every G-module M . Now an (n + 1)-cocycle of
HomG(P,M) is a homomorphism Pn+1 → M that becomes 0 when
composed with the boundary map Pn+2 → Pn+1. Thus the group of
n-cocycles can be identified with HomG(L,M). Saying that every such
cocycle is a coboundary means that every map L → M extends to a map
Pn → M . This being true for every G-module M , it follows that L is a
direct summand of Pn. Hence Pn

∼= L ⊕ K, so K is a direct summand
of a projective module and is therefore projective, as claimed.

Note that every Pn above could be taken to be free. But the proof
would still only show that K is projective. That is why we need to work
with projective resolutions in developing the theory, in spite of the fact
that in all known examples the modules can be taken to be free.

Recall from (2.2) that cdH ≤ cd G if H ≤ G. We proved this using
projective resolutions, but it also follows immediately from Propositions
3.3 and 4.1. Our next goal is to show that equality holds if [G : H] < ∞
and G is finite dimensional. (But trivial examples show that one can
have cdH < ∞ and cdG = ∞ if G has torsion.)

Proposition 4.2. If cd G < ∞, then cd H = cd G for every subgroup
H ≤ G of finite index.

The proof will use the first part of the following lemma:

Lemma 4.3. (a) If cdG < ∞, then

cdG = max {n | Hn(G,F ) 6= 0 for some free ZG-module F} .

(b) If G is of type FP, then

cdG = max {n | Hn(G, ZG) 6= 0} .

The proposition now follows immediately from the Eckmann–Shapiro
lemma, since every free ZG-module is induced from the free ZH-module
of the same rank. It remains to prove the lemma.

Proof of the lemma. (a) If cdG = n < ∞, then the functor Hn(G,−)
is right exact (see Section 3.3). Since this functor is nonzero and every
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module is a quotient of a free module, it follows that the functor is
nonzero on some free module.

(b) It is easy to check that Hn(G,−) preserves direct sums if G is of
type FP. So the nonvanishing of this functor on a direct sum of copies
of ZG implies that it is nonvanishing on ZG.

We noted above that one can have cdH 6= cd G if G has torsion.
Our next result, which is due to Serre, says that this is the only way the
equality can fail for subgroups of finite index.

Theorem 4.4. If G is torsion free, then cdH = cd G for every subgroup
H ≤ G of finite index.

Sketch of the proof. In view of Proposition 4.2, it suffices to show that
cdH < ∞ =⇒ cdG < ∞. To this end, one starts with a finite-
dimensional, free, contractible H-CW-complex X. One can then use a
topological analogue of coinduction to produce a G-CW-complex which,
as a CW-complex, is a product of [G : H] copies of X, with the G-
action permuting the factors. This complex is still finite dimensional
and contractible, and the H-action on it is still free. It follows that the
G-action has finite stabilizers and hence is free (because G is torsion
free).

We close by using Lemma 4.3(b) to give an extremely useful topo-
logical characterization of cohomological dimension for groups of type F.
Theorem 2.5, of course, gives a topological characterization for more-or-
less arbitrary groups. But we have in mind something quite different.
Suppose G is of type F, and let X be a free, contractible G-CW-complex
with G\X finite. Then H∗(G, ZG), which occurred in Lemma 4.3, has
the following interpretation:

H∗(G, ZG) = H∗
c (X, Z), (4.1)

where H∗
c denotes cohomology with compact supports (based on cellular

cochains that vanish on all but finitely many cells of X). To prove (4.1),
one need only stare at HomG(C∗(X), ZG) and observe that it can be
identified with the group of Z-valued cochains of X with compact sup-
ports. Thus Lemma 4.3(b) immediately yields:

Corollary 4.5. Let G be a group of type F, and let X be a free, con-
tractible G-CW-complex with finite quotient. Then

cd G = max {n | Hn
c (X) 6= 0} .



Cohomology of Groups 25

4.2 Duality

In the topology of manifolds, one proves duality (classically) by using
dual cell decompositions; this makes a cochain complex look like a chain
complex. From the algebraic point of view, one instead uses duality the-
ory for finitely generated projective modules to achieve the same effect.
We begin by reviewing this duality theory. It is probably familiar to
many readers for vector spaces, and the general case is no more difficult.

Let R be a ring and P a finitely-generated projective (left) R-module.
The dual of P is defined by

P ∗ := HomR(P,R).

Here R is viewed as a left R-module in forming the Hom. But there
is also a right action of R on itself that commutes with the left action,
and this makes P ∗ a right R-module. One easily checks that it is again
finitely generated and projective. Dualizing again, one gets back a left
R-module P ∗∗ and a canonical isomorphism

P ∼−→ P ∗∗

defined as in duality theory for finite-dimensional vector spaces. Duality
is useful for us because it can convert Hom to tensor product and vice
versa: If P is a finitely-generated projective and M is arbitrary, then

HomR(P,M) ∼= P ∗ ⊗R M and P ⊗R M ∼= HomR(P ∗,M). (4.2)

(To be precise here, one needs to distinguish between left modules and
right modules; I leave this as an exercise for the reader.)

Suppose now that G is a group of type FP with cdG = n, and take
a finite projective resolution

0 → Pn → · · · → P1 → P0 → Z → 0

of Z over ZG. Form the cochain complex dual to P , i.e., apply the
functor HomG(−, ZG), to get

P ∗
0 → P ∗

1 → · · · → P ∗
n .

Note that this is what one uses to compute H∗(G, ZG). If we re-index
by setting Qi := P ∗

n−i, then we have a chain complex

Qn → Qn−1 → · · · → Q0 ,

and (4.2) yields a canonical identification

HomG(Pi,M) = Qn−i ⊗G M
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for each i. Hence

Hi(G,M) = Hn−i(Q ⊗G M). (4.3)

It might happen that the dual complex Q is again a resolution of Z. This
happens if and only if

Hi(G, ZG) ∼=

{
Z for i = n

0 for i 6= n.
(4.4)

[A technical point: Hn(G, ZG) is naturally a right G-module via the
right action of G on ZG, which commutes with the left action that is
used in defining Hn(G, ZG). What we mean in (4.4) is that Hn(G, ZG)
is infinite cyclic with trivial G-action.] In this case (4.3) yields a result
that looks like Poincaré duality for a closed orientable manifold:

Hi(G,M) = Hn−i(G,M).

More generally, suppose Q is a resolution of Z with a possibly nontrivial
action of G. We write Z̃ for this G-module, and for any G-module M we
set M̃ := M⊗Z̃, with the diagonal G-action. Thus M̃ is the same abelian
group as M , with the G-action twisted by a homomorphism G → {±1}.
Then (4.3) becomes

Hi(G,M) = Hn−i(G, M̃),

which looks like Poincaré duality for a (possibly non-orientable) closed

manifold. The justification for this is that Q and P̃ = P ⊗ Z̃ are both
projective resolutions of Z̃, so they are homotopy equivalent. The homol-
ogy H∗(Q⊗G M) that occurs in (4.3) is therefore canonically isomorphic

to H∗((P ⊗ Z̃ ⊗ M)G) = H∗(P ⊗G M̃) = H∗(G, M̃).
Still more generally, suppose Q is a resolution of some G-module D,

not necessarily infinite cyclic. In other words, we are simply assuming
that

Hi(G, ZG) = 0 for i 6= n,

and we are setting
D := Hn(G, ZG).

Assume for simplicity that D is free as an abelian group. Then we can
argue as above to obtain

Hi(G,M) ∼= Hn−i(G,D ⊗ M), (4.5)

where D ⊗ M is the tensor product over Z, with the diagonal G-action.
This is known as Bieri–Eckmann duality, and G is said to be a dual-
ity group if it holds. The G-module D is called the dualizing module.
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Borel and Serre proved that all torsion-free arithmetic groups are duality
groups, so there is no shortage of examples.

Incidentally, there are also “inverse duality” isomorphisms under the
hypotheses above (including the assumption that D := Hn(G, ZG) is
free abelian):

Hi(G,M) ∼= Hn−i(G,Hom(D,M)),

where the Hom is taken over Z and has the diagonal G-action. To see
this, note that there is a homotopy equivalence Q ' P ⊗ D (which is
already needed in the proof of (4.5)), whence

P ⊗G M = HomG(P ∗,M)

= HomG(Q,M)

' HomG(P ⊗ D,M)

= HomG(P,Hom(D,M)).

4.3 Topological interpretation

Suppose G is a group of type F. As usual, let X be a free, contractible
G-CW-complex with finite quotient. Then the hypothesis (4.4) that led
to duality above can be written, in view of (4.1), as

Hi
c(X) =

{
0 i 6= n

D i = n

with D free abelian. Here the G-action on the dualizing module D is
induced by the G-action on X. Suppose, for example, that X is an m-
manifold, possibly with nonempty boundary ∂X. [Necessarily m ≥ n =
cdG.] Then we can use Poincaré–Lefschetz duality to compute Hi

c(X).
This yields

Hi
c(X) ∼= Hm−i(X, ∂X) ∼= H̃m−i−1(∂X), (4.6)

where the second isomorphism comes from the contractibility of X, and
H̃ denotes reduced homology. Suppose further that ∂X has the ho-
motopy type of a bouquet of k-spheres for some k. (This holds with
k = −1 if ∂X = ∅.) We then conclude from (4.6) that Hi

c(X) = 0 for
i 6= m−k−1 and is free abelian when i = m−k−1. Thus G is a duality
group of dimension n = m − k − 1.

It is precisely in this way that Borel and Serre proved duality for
torsion-free arithmetic groups (and calculated the cohomological dimen-
sion).



28 Brown

5 Equivariant homology

This section gives a very brief introduction to a technical subject that is
treated in more detail in [3, Chapter VII]. Soulé’s lectures in this volume
give some interesting applications.

5.1 Introduction to spectral sequences

The only spectral sequences we will consider here are those that arise
from double complexes. A double complex is a commutative diagram of
abelian groups as in Figure 5.1 (extending forever in all four directions)
in which every row and every column is a chain complex. Thus ∂′2 = 0,
∂′′2 = 0, and ∂′′∂′ = ∂′∂′′. In practice, double complexes are often
concentrated in the first quadrant, i.e., Cpq = 0 unless p, q ≥ 0.

∂′′ ∂′′

Cp−1,q
∂′

∂′′

Cpq
∂′

∂′′

∂′

Cp−1,q−1
∂′

∂′′

Cp,q−1
∂′

∂′′

∂′

Figure 5.1: A double complex

A simple example of a double complex is provided by the tensor
product of two chain complexes. Thus if D and E are chain complexes,
then there is a double complex with Cpq = Dp ⊗ Eq. The horizontal
boundary operator ∂′ is induced by the boundary operator in D, and
the vertical boundary operator ∂′′ is induced by the boundary operator
in E.

There are three ways to think about a double complex:

(a) Each (vertical) column Cp,∗ for fixed p is a chain complex, and the
horizontal arrows are chain maps such that the composite of two
consecutive ones is 0. Thus we have a “chain complex in the category
of chain complexes”.

(b) Each (horizontal) row C∗,q for fixed q is a chain complex, and the
vertical arrows are chain maps such that the composite of two con-
secutive ones is 0. This is a second way of viewing C as a chain
complex in the category of chain complexes.
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(c) We can simplify the whole double complex to an ordinary chain
complex TC (the total complex ) by setting

(TC)n :=
⊕

p+q=n

Cpq .

It has a boundary operator ∂, whose restriction to the summand Cpq

is given by ∂ = ∂′ + (−1)p∂′′ as in the familiar case of the tensor
product of two chain complexes.

The theory that we wish to sketch here relates all three of these view-
points.

The basic fact is that there is a machine called a spectral sequence for
computing H∗(TC) by successive approximation. The spectral sequence
is an infinite sequence of bigraded abelian groups

E0
pq, E1

pq, E2
pq, . . . .

Under mild hypotheses (which are satisfied in the first-quadrant case),
the sequence Er

pq stabilizes for each fixed p, q as r → ∞. Let E∞
pq denote

Er
pq for large r. It turns out to be the “pth layer” of Hp+q(TC), in the

following sense.
There is an increasing filtration of TC by subcomplexes FpTC, where

FpTC is given in dimension n by

(FpTC)n :=
⊕

i≤p

Ci,n−i .

Thus we draw a vertical line at the horizontal position p, and everything
to the left of it is in FpTC. As the line moves to the right, we get bigger
and bigger subcomplexes. There is an induced filtration on homology,
given by

FpH∗(TC) := Im {H∗(FpTC) → H∗(TC)} .

Thus FpHn(TC) consists of homology classes represented by cycles in⊕
i≤p Ci,n−i. We call the subquotient

FpHn(TC)/Fp−1Hn(TC)

of Hn(TC) its pth layer. Thus our claim at the end of the previous
paragraph is that

E∞
pq

∼= FpHp+q(TC)/Fp−1Hp+q(TC).

Informally, then, one has to combine the groups E∞
pq along a diagonal

line p + q = n to compute Hn(TC).
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The final ingredient of the spectral sequence is that there is a proce-
dure for passing from each approximation Er to the next one by taking
homology. More precisely, there is a boundary operator dr on Er, in-
duced by the boundary operator on TC, such that Er+1 = H(Er, dr).
This is easy to explain for r = 0 and 1. For r = 0, we have E0

pq = Cpq

and d0 = ∂′′. Thus (E0, d0) is simply the collection of columns of C,
each viewed as a chain complex as in (a) above, and hence E1 is the ver-
tical homology. Next, d1 is the map induced on the vertical homology
by ∂′, viewed as a chain map as in (a). So E2 can be described as the
horizontal homology of the vertical homology. The differential d2 is more
subtle, and all I will say about it is that it maps E2

pq to E2
p−2,q+1. So

one can visualize it as going 2 steps to the left and 1 step up (decreasing
the total degree p + q by 1, as do d0 and d1). In general, dr goes r steps
to the left and r − 1 steps up.

Note that one can transpose the double complex C to get a new dou-
ble complex C ′ with C ′

pq = Cqp. The total complex TC ′ is canonically
isomorphic to TC, so we obtain a second spectral sequence for computing
H∗(TC) with the roles of ∂′ and ∂′′ reversed.

In summary, there are two spectral sequences converging to H∗(TC),
based on the two viewpoints (a) and (b). [Warning: The statement that
the two spectral sequences both converge to H∗(TC) is somewhat mis-
leading, since there are two different filtrations on H∗(TC) and hence
two different families of “layers” that occur as E∞.] We have intro-
duced these spectral sequences because they are useful in connection
with equivariant homology, to which we turn next.

5.2 Equivariant homology

Equivariant homology is the same as what Lück calls “Borel homology”
in his lectures in this volume, but I will describe an algebraic approach.
For simplicity I will stick to homology, but everything I say has an ana-
logue for cohomology.

Definition 5.1. If X is a G-CW-complex and M is a G-module, then
we set

HG
∗ (X,M) := H∗(P ⊗G C(X,M)),

where P is a projective resolution of Z over ZG and C(X,M) is the
cellular chain complex of X with coefficients in M (with diagonal G-
action). We call HG

∗ (X,M) the equivariant homology of (G,X) with
coefficients in M .

Heuristically, equivariant homology is a mixture of homology of groups
and homology of spaces. For us, the main point is that it is a tool for
getting information about H∗(G) from any action (not necessarily free)
on any space (not necessarily contractible).
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Examples 5.2. (a) If X is a point, then HG
∗ (X,M) = H∗(G,M). More

generally, this holds if X is contractible. Thus equivariant homology is
the same as the homology of the group if the space is trivial. [Sketch of
proof: There is a weak equivalence C(X,M) → M , where M is viewed
as a chain complex concentrated in dimension 0, and a weak equivalence
is a map that induces an isomorphism in homology. Tensoring over
G with the complex of projectives P , we obtain a weak equivalence
P ⊗G C(X,M) → P ⊗G M .]

(b) At the other extreme, if G is the trivial group, then HG
∗ (X,M) =

H∗(X,M).

(c) If G acts freely on X, and Y := G\X, then

HG
∗ (X,M) = H∗(Y,M);

here M on the right side is viewed as a π1(Y )-module (and hence a local
coefficient system on Y ) via the canonical map π1(Y ) → G provided
by the theory of covering spaces. [Sketch of proof: If P is a projective
resolution of Z over ZG, then there is a weak equivalence P ⊗M → M .
Tensoring over G with the complex of free ZG-modules C(X), we obtain
a weak equivalence P ⊗G C(X,M) → C(X) ⊗G M = C(Y,M).]

If X is contractible and the G-action is free, then (a) and (c) give
back the familiar fact that H∗(G) = H∗(K(G, 1)).

Note that HG
∗ (X,M) is, by definition, the homology of the total com-

plex associated to the double complex Pp ⊗G Cq(X,M) or, alternatively,
the double complex Pq⊗G Cp(X,M). The theory sketched in Section 5.1
therefore gives us two spectral sequences for computing HG

∗ (X). The E2

term in each case is the horizontal homology of the vertical homology.
Let’s start with the second spectral sequence, where the double complex
is viewed as Pq ⊗G Cp(X,M). The vertical homology is obtained by
fixing p and taking the homology with respect to q; thus

E1
pq = Hq(G,Cp(X,M)). (5.1)

To analyze this further, recall that Cp(X) is the direct sum of infinite
cyclic groups Zσ, one for each p-cell σ, where the two generators of
Zσ correspond to the two possible orientations of σ. Tensoring with
M (over Z) and grouping the summands into G-orbits, we recognize
Cp(X,M) as a direct sum of induced modules:

Cp(X,M) =
⊕

σ

IndG
Gσ

Mσ . (5.2)

Here σ ranges over a set of representatives for the G-orbits of p-cells, Gσ

is the stabilizer of σ, and Mσ := Zσ ⊗ M with the diagonal G-action.
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Thus Mσ is M , with the action restricted to Gσ and twisted by the
“orientation homomorphism” Gσ → {±1}. [Each element of Gσ either
preserves the orientation of σ or reverses it.] Combining (5.1) and (5.2),
and using the Eckmann–Shapiro lemma, we obtain

E1
pq =

⊕

σ

Hq(Gσ,Mσ)

where, again, σ ranges over representatives for the p-cells of X mod G.
It is customary to summarize what we have done so far by writing

E1
pq =

⊕

σ

Hq(Gσ,Mσ) =⇒ HG
p+q(X;M). (5.3)

This is a short-hand way of saying that we have constructed a spectral
sequence with the given E1 term, which converges to HG

∗ (X;M) (i.e.,
E∞

pq is the pth layer of HG
p+q(X;M) with respect to some filtration on

the latter).

Remark 5.3. Intuitively, E1
pq in (5.3) is the group of p-chains of Y :=

G\X with coefficients in the “system of coefficients” σ 7→ {Hq(Gσ,Mσ)}.
This suggests that

E2
pq = Hp(Y, {Hq(Gσ,Mσ)}). (5.4)

We will not attempt to formulate this precisely.

In case G acts freely on X, all the stabilizers are trivial. The spectral
sequence is then concentrated on the horizontal line q = 0, and E2 =
E∞. One easily recovers the result of Example 5.2(c) in this case. For a
more interesting application, suppose that the action is not necessarily
free but that X is contractible. Then the equivariant homology can
be identified with H∗(G,M), so the spectral sequence converges to the
latter. Thus (5.3) becomes

E1
pq =

⊕

σ

Hq(Gσ,Mσ) =⇒ Hp+q(G,M)

in this case. See Soulé’s lectures in this volume for some illustrations of
how this spectral sequence can be used to obtain concrete results.

We turn now to the other spectral sequence, arising from the double
complex Pp ⊗G Cq(X,M). This time if we take the vertical homology
(fixing p and taking the homology with respect to q), we get E1

pq =
Pp ⊗G Hq(X,M) by the flatness of Pp. Taking homology with respect
to p now gives Hp(G,Hq(X,M)). Thus our spectral sequence has the
form

E2
pq = Hp(G,Hq(X)) =⇒ HG

p+q(X)
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where, to simplify the notation, I have suppressed the coefficient mod-
ule M . If X is contractible, this gives back the result of Example 5.2(a).
For a more interesting application, suppose that X is not necessar-
ily contractible but that the G-action is free. Then we know that
HG

∗ (X) = H∗(G\X), so the spectral sequence becomes

E2
pq = Hp(G,Hq(X)) =⇒ Hp+q(G\X). (5.5)

This is called the Cartan–Leray spectral sequence.

As a special case of (5.5) we can derive a spectral sequence associated
to a group extension. Suppose we have a normal subgroup N C G and
we set Q := G/N . Start with a free, contractible G-CW-complex X.
Then we can form the quotient XG := G\X in two steps, in which we
first divide out by the N -action to get a Q-CW-complex XN , and then
go mod Q:

XG = (XN )Q .

Now XN is a K(N, 1)-complex and a free Q-complex, and the quotient
(XN )Q = XG is a K(G, 1)-complex. The Cartan–Leray spectral se-
quence for the Q-complex XN therefore becomes

E2
pq = Hp(Q,Hq(N)) =⇒ Hp+q(G). (5.6)

This is the Hochschild–Serre spectral sequence.

Remarks 5.4. (a) The description of the E2 term in (5.6) suggests that
there is an action of Q on H∗(N). To see where this comes from, observe
that the conjugation action of G on N induces an action of G on H∗(N).
One can show that the action of N on its own homology is trivial, so we
get an action of Q = G/N on H∗(N).

(b) Even if the suppressed coefficient module M is Z (with trivial G-
action), the action of Q on H∗(N) is generally nontrivial. Thus, once
again, homology with coefficients arises naturally when one tries to com-
pute ordinary integral homology.

6 The cohomology theory of finite groups

In this final lecture we point out some special features of the homology
and cohomology theory of finite groups. Even if one is primarily inter-
ested in infinite groups, the homology of finite groups will arise whenever
one tries to apply the spectral sequence (5.3) to a proper action (where
the stabilizers Gσ are finite). A reference for this section is [3, Chap-
ter VI]. Assume from now on that G is a finite group.
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6.1 Functoriality

When there is no need to distinguish between homology and cohomology,
we will often write H(G,M) to denote the homology or cohomology of
a group G with coefficients in M . For brevity, we may even suppress
M from the notation and simply write H(G). Recall that, for arbitrary
groups, we often have restriction and corestriction maps between H(G)
and H(H) if H is a subgroup of G; see Remark 3.5. The qualifier “often”
refers to the fact that we have to assume H has finite index in G in
order to have a restriction map in homology and a corestriction map in
cohomology. All of this simplifies if G is finite, since every subgroup has
finite index. Thus we always have maps in both directions, and formal
differences between homology and cohomology disappear.

A similar (and related) phenomenon is that there is no need to dis-
tinguish between induced modules and coinduced modules; see (3.9).
Thus we can give a unified statement of the Eckmann–Shapiro lemma
(Proposition 3.3):

H(H,M) ∼= H(G, IndG
H M),

with no distinction between homology and cohomology.

6.2 Local computation of homology and cohomology

We continue to write H(G) for homology or cohomology with an ar-
bitrary coefficient module. Our starting point is Corollary 3.4, which
states that H(G) is annihilated by |G| in positive dimensions. (This is
of course false for H0 and H0.) We therefore have a decomposition

H(G) =
⊕

p

H(G)(p) (6.1)

in positive dimensions, where p ranges over the primes dividing |G|, and
(−)(p) denotes the p-primary component. This simple observation can
be quite useful in practice, since it allows one to localize the computation
of H(G) by focusing on one prime at a time. For example, one might be
trying to compute H(G) with the aid of a seemingly complicated spectral
sequence. If one is lucky, the complications will disappear (or at least
become more manageable) after localizing at one prime at a time.

To take (6.1) one step further, we show that the p-primary component
H(G)(p) can be described in terms of the p-subgroups of G. There are
two versions of the result. For the first, fix a prime p, and choose a
Sylow p-subgroup S ≤ G. Then H(S) consists entirely of p-torsion by
Corollary 3.4. The result that we will state below says, roughly speaking,
that H(G) can be identified with the subgroup of H(S) invariant under
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conjugation. This is easy to state precisely if S is normal in G. Recall
from Remark 5.4(a) that, if S C G, there is an action of G [and even of
G/S] on H(S). So we can certainly talk about the invariants under this
action. In general, we have to work a little harder.

Given g ∈ G, conjugation by g induces an isomorphism between H(S)
and H(gSg−1), which we denote by z 7→ gz for z ∈ H(S). Now it does
not make sense to ask whether gz = z unless g normalizes S. But we
can ask whether gz and z restrict to the same class in H(S ∩ gSg−1). If
z has the property that this is true for all g ∈ G, then we will say that
z is invariant under conjugation. We can now state:

Theorem 6.1. If S is a Sylow p-subgroup of G, then the restriction map
H(G) → H(S) is injective in positive dimensions. Its image is the set
of elements of H(S) invariant under conjugation.

The second version of the result is more concise. It simply says that
the canonical map

H(G)(p) → lim
P

H(P )

is an isomorphism in positive dimensions, where the limit (or inverse
limit) is taken over the category whose objects are the p-subgroups P of
G and whose morphisms are the maps P1 → P2 induced by conjugation
by elements of G. It is straightforward to prove that this version of the
result is equivalent to the one in Theorem 6.1.

The proof of the theorem is based on formal properties of the restric-
tion and corestriction maps between H(G) and H(S). Recall first that
the composite

H(G) → H(S) → H(G)

(restriction followed by corestriction) is simply multiplication by the in-
dex [G : S], which is relatively prime to p. This composite therefore
induces an automorphism of the p-primary component H(G)(p); in par-
ticular, the restriction map is injective on this component. Next, one
checks that the image of the monomorphism H(G)(p) ↪→ H(S) is con-
tained in the conjugation invariants in H(S). Finally, to prove that the
image is the set of all invariants, one considers the other composite:

H(S) → H(G)(p) → H(S)

(corestriction followed by restriction). This composite is not as easy to
describe as the other one, but there is in fact a formula for it involving
conjugation, and the formula allows one to conclude that the composite,
when restricted to the invariants, is again multiplication by [G : S] and
hence an automorphism. Theorem 6.1 follows at once.
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6.3 Complete cohomology (Tate)

We have seen in Sections 6.1 and 6.2 that, for finite groups, homology
and cohomology have similar properties and can be treated simultane-
ously. Carrying this idea to the extreme, one finds that there is a unified
cohomology theory that combines all of the homology and cohomology
functors (after H0 and H0 are modified so that they behave like the
others). The resulting theory, called complete cohomology or Tate coho-

mology, involves a doubly-infinite family of functors Ĥn (n ∈ Z), which
are related to the usual functors as follows:

· · · H2 H1 H0 H0 H1 H2 · · ·

· · · Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 Ĥ1 Ĥ2 · · ·

The modifications of H0 and H0 that produce Ĥ−1 and Ĥ0 are easy
to explain. Recall that, for any G-module M , there is a norm operator
N : M → M given by m 7→

∑
g∈G gm for m ∈ M . It is obvious that

the image of this operator is contained in MG = H0(G,M). And it
is equally easy to check that the norm operator induces a map on the
quotient MG = H0(G,M) of M . Thus we have a map

N : H0(G,M) → H0(G,M),

which already arose naturally in Example 3.2. The functors Ĥ−1 and Ĥ0

are simply the kernel and cokernel of N . Taking M = Z, for example,
we have H0(G, Z) = H0(G, Z) = Z, and N is multiplication by m := |G|.

So Ĥ−1(G, Z) = 0, and

Ĥ0(G, Z) = Zm , (6.2)

where the right side is the group of integers mod m.

As a first illustration of the usefulness of the complete theory, let’s
return to Example 3.2, where G is a finite cyclic group. The calculation
of homology and cohomology in that example can be restated as follows:
Ĥn is periodic of period 2; it is the kernel of N if n is odd and the
cokernel of N if n is even.

6.4 Construction of the complete theory

The definition of the functors Ĥ∗ above does not explain why they fit
together to form a cohomology theory. We will therefore give an alternate
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definition based on the notion of complete resolution. The starting point
is the fact that Z admits a “backwards” projective resolution

0 → Z → Q0 → Q1 → · · · . (6.3)

One can prove this by relative homological algebra [3, Section VI.2] or
by duality theory (in the spirit of Section 4.2). The duality proof goes
as follows.

Start with an ordinary resolution

· · · → P1 → P0 → Z → 0

by finitely generated projective ZG-modules, and dualize, i.e., set Qi :=
HomG(Pi, ZG). To see that this yields an exact sequence as in (6.3),
observe that the cochain complex Q computes H∗(G, ZG); the latter
is the same as the cohomology of the trivial group with Z coefficients
(Eckmann–Shapiro), so it is Z in dimension 0 and it vanishes elsewhere.
[Note that we have used the finiteness of G in this argument: The coeffi-
cient module ZG is an induced module, hence also a coinduced module.]

We now splice together an ordinary projective resolution of Z with a
backwards resolution of Z to obtain an exact sequence of projectives

· · · → P1 → P0 → Q0 → Q1 → · · · ,

where the map P0 → Q0 is the composite

P0 � Z ↪→ Q0.

Setting Pi := Q−1−i for i < 0, we obtain a complete resolution in the
sense of the following definition:

Definition 6.2. A complete resolution for the finite group G is an acyclic
chain complex of projectives

· · · → P1 → P0 → P−1 → P−2 → · · ·

such that the map P0 → P−1 factors as a composite P0 � Z ↪→ P−1.
Here, as usual, Z is assumed to have trivial G-action.

We have seen that complete resolutions exist. Here is a situation in
which they arise naturally.

Example 6.3. Suppose G acts freely on a CW-complex X homeomorphic
to the sphere S2k−1 as in Example 1.3. Recall that one can construct
an ordinary resolution by splicing together infinitely many copies of the
chain complex C∗ := C∗(X). Similarly, one can construct a complete
resolution, which is periodic of period 2k, by splicing together a doubly-
infinite collection of copies of C∗:

· · · → C0 → C2k−1 → · · · → C0 → C2k−1 → · · · → C0 → C2k−1 → · · ·
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One can show that complete resolutions are unique up to homotopy.
We use them to give the “right” definition of complete cohomology:

Definition 6.4. For any G-module M ,

Ĥ∗(G,M) := H∗(HomG(P,M)),

where P is a complete resolution.

It is not hard to check that this definition is consistent with the
ad hoc definition given in Section 6.3. The advantage of the present
approach is that one can develop all the usual cohomological properties
(long exact sequences, restriction and corestriction, cup products, etc.)
Here is a nice illustration of cup products: For any integer i, there is a
cup product

Ĥi(G, Z) ⊗ Ĥ−i(G, Z) → Ĥ0(G, Z) = Zm, (6.4)

where m := |G|; see (6.2). Now the groups Ĥ∗(G,M) are always anni-
hilated by m as in Corollary 3.4, i.e., they are Zm-modules. Moreover,
there is a good duality theory for finitely generated Zm-modules. [The
dual is given by Hom(−, Zm). Passage to the dual is an exact contravari-
ant functor. A finitely-generated Zm-module is always non-canonically
isomorphic to its dual and canonically isomorphic to its double dual.]

Proposition 6.5. The cup product in (6.4) is a duality pairing. In other
words, the induced map

Ĥi(G, Z) → Hom(Ĥ−i(G, Z), Zm)

is an isomorphism.

We omit the proof but simply remark that elementary arguments
(involving the universal coefficient theorem) can be used to prove the

abstract duality of Ĥi(G, Z) and Ĥ−i(G, Z), based on the definitions of
these cohomology groups in Section 6.3. The significance of the propo-
sition, then, is the fact that duality is given by cup product; this takes
some work to prove.

6.5 Groups with periodic cohomology

Groups that act freely on a (2k − 1)-sphere have a periodic complete
resolution of period 2k by Example 6.3, hence

Ĥn(G,M) ∼= Ĥn+2k(G,M)

for all G-modules M and all integers n. The complete cohomology theory
allows one to formulate this kind of periodicity in several equivalent ways:
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Proposition 6.6. The following conditions on the finite group G are
equivalent.

(i) For some d 6= 0 there is an element u ∈ Ĥd(G, Z) that is invertible

in the ring Ĥ∗(G, Z).

(ii) For some d 6= 0 there is an element u ∈ Ĥd(G, Z) such that mul-

tiplication by u gives an isomorphism Ĥn(G,M) ∼−→ Ĥn+d(G,M)
for all n ∈ Z and all G-modules M .

(iii) There are integers n and d, with d 6= 0, such that Ĥn(G,M) ∼=
Ĥn+d(G,M) for all G-modules M .

(iv) There is an integer d 6= 0 such that Ĥd(G, Z) ∼= Zm (m := |G|).

(v) There is an integer d 6= 0 such that Ĥd(G, Z) contains an element
of order m := |G|.

Sketch of the proof. It is obvious that (i) =⇒ (ii) =⇒ (iii) and that
(iv) =⇒ (v). To prove (iii) =⇒ (iv), first use dimension-shifting to
show that there are isomorphisms as in (iii) for all integers n; now take
M = Z and n = 0. Finally, the implication (v) =⇒ (i), which is perhaps
the most surprising one a priori, follows from Proposition 6.5.

Combining Proposition 6.6 with the local calculation of cohomology
(Section 6.2) and doing a little group theory, one can prove:

Theorem 6.7. The following conditions are equivalent.

(i) G has periodic cohomology.

(ii) Every abelian subgroup of G is cyclic.

(iii) For every prime p, every elementary abelian p-subgroup of G has
rank at most 1.

(iv) The Sylow subgroups of G are cyclic or generalized quaternion
groups.

The condition that G have periodic cohomology is very restrictive,
and the groups with this property have been completely classified. A less
restrictive (but still quite useful) condition is periodicity of the p-primary

component Ĥ∗(G)(p) for a fixed prime p. More briefly, we say that G
has p-periodic cohomology. There are various characterizations of this
property analogous to the results stated above. For example, G has p-
periodic cohomology (for a given prime p) if and only if every elementary
abelian p-subgroup of G has rank at most 1. Roughly speaking, then,
the p-primary part of the cohomology of G is very simple if and only if
the structure of the p-subgroups of G is very simple.
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We close by stating a beautiful and far-reaching generalization of the
last assertion, due to Quillen [8]. In order to motivate it, suppose that
G has p-periodic cohomology for some prime p dividing |G|. Then the
ordinary mod p cohomology ring H∗(G, Fp) is finitely generated over a
polynomial subring Fp[u] and hence has Krull dimension 1. Quillen’s
generalization asserts, among other things, the following:

Theorem 6.8. For any finite group G and prime p, the Krull dimension
of H∗(G, Fp) is the maximal rank of an elementary abelian p-subgroup
of G.

Thus the complexity of H∗(G, Fp) correlates precisely with the com-
plexity of the p-subgroups of G.
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