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Abstract

Cohomology groups Hq(X,E) are defined, where X is a topo-
logical space and E is a sheaf on X with values in Kan'®s cate-
gory of spectra., This includes, as speclal cases, the gener-
alized cohomology of X with coefficients in a spectrum and
the cohomology of X with coefficients in an abelian sheaf,

The definition uses the abstract homotopy theory of Quillen's
Homotopical Algebra applied to sultable categories of sheaves,
In order to further study the homotopy category of sheaves of
spectra, which is a non-additive analogue of the derived cate=-
gory of X, a homotopy theory more general than Quillen's is
required. This is developed at the beginning of the vaper

and should be of independent interest, It yields, for exsmple,
an elementary conceptual proof of Verdier's hypercovering
theorem, as well as an analogous theorem for the cohomology
theory developed in this paper. A spectral sequence

Hp(x,n_qE) => H”*9(x,E)

is constructed, a special case of which 1s a Leray spectral
sequence in generalized sheaf cohomology for a man Y = X,
There is an apprendix on stable homotopy theory in Kan's cate-

gory of spectra. This again makes use of abstract homotopy
theory. ‘
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INTRODUCTION

The main purpose of this paper is to define and study
cohomology groups HQ(X,E), where E is a sheaf on X with -
values in Kan's category of spectra, X being a topological'
space, If E is a sheaf of (zenerslized) Eilenberg-MacLane
spectra, then H*(X,E) reduces to the usual (hyper-) coho-
mology of X with coefficients in an abelian shesf (or com=-
plex of abelian sheaves)., On the other hand, if E is a
constant sheaf and X is a CW complex, then H*(X,E) reduces
to the generalized cohomology of X in the usual sense,

The cohomology grouns are defined by means of the theory
of derived functors developed by Quillen {QHA]., More spe-
clfically, by doing homotopy theory in suitable categories
of sheaves, 1t is vossible to nrove the existence of reso-
lutions suitable for defining derived.functors of the global
éeotion fuhctor. |

This procedure, however, whilelsufficient for the con-
struction of the cohomology groups, does not lead ﬁo a com=-
pletely satisfactory theory, since it gives no information
at all ebout the homotopy categqry associated to the cste-
“gory of g1l sheaves of spectra, which is a natural non-addi-
tive anslogue of the derived of X (i.e., the derived cate=-
gory of the category of abelian sheaves on X [H]). In order
to remedy this defect, I have developed a new treatment.of
abstract homotopy theory, involving much weaker axioms than
those of [QHA]. QThis theory is presented in Chapter I, and
should be of independent interest, An immediate corollary
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of the first theorem of Chapter I, for example, is an ele-
mentary conceptual proof of Verdier's hypercovering theorem
[sGak, exp. V, appendix; AM], as well as an analogous theo-
rem for the cohomology theory developed in this baper.

Chapter II applies the theory of Chapter I to the study
of the homotopy theory of sheaves of spectra, and in Chapter
III the cohomology groups are defiﬁed and their basic proper-
ties are derived, The most important of these properties
is a spectral sequence HP(X,n“qE) =é>Hp+q(X,E), which gener-
alizes the hypercohomology spectral sequence as well as the
Atiyah-Hirzebruch spectral sequence, It also includes as a
special case a Leray spectral sequence in generalized sheaf
cohomology for a map Y"—a»x. Perheps 1t should be mentioned
that Chapter III also contains a sketch of an alternative
approach to generalized sheaf cohoﬁology. It involves cancn=-
ical resolutions and avoids the homotopy theory of Chapters
I and II, but it leads to technical difficulties, obscures
the nature of the cohomology groups, and provides less in-
formation about the snectral sequence, It should also be
mentioned that the theory of the present paper undqubtediy
extends tq more general sheaf cohomology [A; éGAﬂ], but the
details of this have not yet been'wérked out, This includeg
for example, generalized equivariant cohomology and generalized
etale cohomology of a scheme.

An appendix‘is included, developing stable homotopy
theory in Kan's category of spmectra by means of abstract

homotopy theory. In an effort to make this paper more .
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accessible, I have referred to the existing literature on
Kan's category only for the easier results, and have made no

use of the more technical results,
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CHAPTER I
Abstract Homotopy Theory

The purpose of this chapter 1is to develop an abstract
homotopy theory analogous to that of Quillen'®s [QHA], but
with weaker axioms., Our theory will cover categories where
there are good notions of wesk equivalence and fibration,
but not necessarily cofibration. A non-trivial application
is given in Remark 1.13, and further apvnlications will appear

in Chepters II and III.



l. The axioms, the homotopy relation, and the homotony category

It is convenient to sﬁlit up abstract homotopy theory
in a category C into two varts. The first is the study of
the homotopy theoretical propertieé of a convenient full
subcategory gf of Q_(gf would consist of the fibrant objects
of C in the terminology of [QHA]). The second is the study
of the relationship between gf end C. We will begin with the
study of Qf, leading up to Theorem 1,10, and then turn to the
relationship between C, and C. Sections 2, 3, end 4 will
then further develon the homotopy theory in Qf. Even though
C plays no role in the study of gf, we will continue to use
the notation gf to avoid later confusion,

Let gf be a category with finite products and a final
object e, Assume that Le has two distinguished classes of

maps, called weak ggu1Valences'and fibrations., A mep will

be called a trivial fibration if it is both =2 weak equivalence

and a fibration. By a path space for an object B we mean

an object B! together with maps B ¢§9-BI Léglﬂ;l; B x B,
where s is a weak equivalence, (do,dl) is a fibration, and
the composite 1s the diagonal map, |

Definition 1.1. We call C. o category of fibrant ob-

Jects for a homotony theory, or simply a category of fibrant

objects, if the following axioms are satisfied,
(A) Let f and g be maps such that gf is defined. If two
of f, g, gf are yeak equivalences then so is the third., Any

isomorphism is a weak equivalence,
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(B) The composite of two fibrations is a fibration,
Any isomorphism is a fibrastion, 4

(c) Given 8 diagrem A ——> C ¢—— B with v s fibration,
the fibred product A«g B exists and the projection A E B
BI35 A 15 a fibration. If v is & trivial fibration then so
is pTy . A

(D) For any object B there exists at least one path

space BI (not necessarily functofial in B).

(E) For any object B the map B -> e is a fibration,

We assume now that gf is a category of fibrant objects,

Lemma 1.2, Any mep u can be factored u = pi where v

is a2 fibration and 1 is a weak eguivalence,

I

Proof, Given A ~39 B, we choose a path space B~ and
factor u as A Lig&gglé A § BT 43PT3, B, The fibred product

I —> B is a (trivial) fibration (see [QHA]).

‘exists because B
The map A - A'g BI is a weak equivalence becsuse it is right
inverse to PTy which is a trivial fibration because it is

a base extension of Bl —> B, Finally, A g Bl —> B is a
fibration because it factors as A g BI —> A x B =» B, where
the first 1s the base extension of BI -—>» B x B by the map
AxBYX 1.5 x B and the second map is the base exten—

gion of A — e,

Remark 1.3, Lemma 1.2 applied to the diagonal map
B—»B x B ylelds axiom (D), and in meny applications it is
no harder to prove Lemma 1.2 directly than to verify axiom

(D). Note, however, that the proof actually shows the very
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useful fact that the map 1 in L__e_a__rg;_n_é 1.2 can always be teken

to be right inverse t

o

a trivial fibration.

Lemma 1.4, Any disgrem

=Tl

in a diagram
A~ X'— E
t P
AU

with t 2 trivial fibration.

Proof. Apply Lemma 1.2 to the map A — X ’é E

Definition 1.5. Two maps f,g: A —> B will be called
I

strictly homotopic if for some path space B~ there is a map

A

lb‘

B! such that djh = f end d;h = g, We will write f SAZ

Lemmz 1.6, (1) If f str g and u is sny map, then

S v e et P

fu‘ S)\;}‘ gu, nrovided the compositions are defined.

(11) Let B -3 C be 2 mep and let BY, ¢ be path spaces.

*
Then we can find a path space B! s & trivial fibration

L} ]
B1'— Bl, and a map BY'— I, such that the following disgram

conmutes, u
Bl ¢«— B y ¢t
N/ }

B x B XXy,

(111) Let B - C he o ran and let CT be a path space.

str
If £°X° g: A — B then there is a trivial fibration t:@ A'—y A

such that uft S ugt by a homotopy A'—y cl,
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Proof. (i) is trivial., (ii) follows from Lemma 1.4
applied to the square |
| pt (dgauds )y ¢ x ¢,
For (iii), let A.—hé Bl be a homotopy from f to g and form
I'

¢
Bl' as in (11)., If we let A' = A X 81", the desired homo-

B
B
topy 1is the composite A' — BI —me»CI.

Path spaces can be pieced together as in [QHA], which
shows that strict homotopy is an equivalence relation., Ve
now define homotopy for maps from A to B by saying that
f and g are homotonic if there is a trivial fibration t

such that ft %Rf gt. This is still an equivalence relation

because the fibred product of two trivial fibrations is again
a trivial fibration, and it is easily seen (using Lemma

1.6 (111)) that homotopyAis compatible with c&mpbsition on |
both sides, so that we can form a category ngf with the same
objects as C

f
is the set of homotopy classes of maps from A to B, DNote

and with Homncf(A,B) = m(A,B), where m(A,RB)

that if ft/EE? gt for any weak equivalence t, not necessarily
" a fibration, we can deduce from Lemma 1.4 that f and g are
in fact homotopic.

Lemma 1.8, Given a diagram A -2y ¢ € B with u snd

==mm== .

arbitrory, the man A X CT X B 2E35 B is o fibrstion and

v
is & trivial fibration if u is a weak equivalence,

Proof, The map prB is a base extension of the map

A é CI —> C constructed in the proof of Lemma 1,2, The

‘result 1s now immedilate,
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Definition 1.9. Let C be any category with a disting-

uished class of maps cslled weak equivalences. Then by the

homotopy catepory of C (denoted HoC) we mean the category

obtained from C by inverting the weak equivalences (see
[GZ; H; QHA]).

Theorem 1,10, Let gf be a category of fibrant objects

for & homotopny theory. Then the méps in Hqgf admit the

exnlicit description,

[A,B}Hocf = . i}}; W(A'QB),

where the limit is taken over the category whose objects

are weak eouivalences A' — A and whose maps are commuting

trisngles In mC.. In technical terms, the class of wesk

eguivelences admits a calculus Q£ right fractions in mC

f
(see [GZ]).

Proof, According to [GZ], we must verify (a) any diagram
A %yc e B with v a weak equivalence can be imbedded in

a square in ngf

o v

Adsc
where t is a weak equivalence; and (b) giVen'A :§$ B -3 C
with v a weak equivalence and vf = vg in ngf, there is a -
weak equivalence t such that ft = gt in ngf. The proof of
(a) is contained in the statement of Lemma 1.8. For (b),

we may assume there is a strict homotopy-A.—h} CI from vf

to vg, from which we obtain a map A.ii&ni&l% B é CI é B.
Now Lemma 1.8 shows that the two projections from B E ¢t é B

to B are weak equivalences, and it follows easily that by

@



14

factoring the map B (id,sv,id)> B x ¢l % B as in Lemma 1.2

C
we will obtain a path space Bl with a trivial fibration
Bl —y B x ¢l X B, We can then toke A' = A X gl
C C B A CIK B
and t = PTy . C C

Remarks., 1.11. It follows from Remark 1,3 that to

obtain HoC. we need only invert the trivial fibrations,

f
Theorem 1,10 remains true if we replace “"weask equivalence"

by "trivial fibration", (It is worth observing, in this
connection, that using Lemmas 1,2 and 1.@ one can prove that
every map in ngf is isomorphic to a fibration, and so every
weak equivalence is isomorphic to a trivial fibration,)

1.12, In épplications we are often given a functorial
path space BI. In this case it is more natural to define
strict homotony using this path space rather than allowing’
an arbitrary path spacey and then (since this will already
be compatible with compoéition on both sides) to let homotopy
be the equivalence relation generated by strict homotopy.

By applying Lemma 1.6 (1ii) to idg, we see that if f str e
in the old sense then there is a weak equivalence t such
that ft QE; gt in the present sense, »Using this, we easily
 deduce from Theorem 1,10 the analogous theorem for the new
definition of homotopy. Note, however, that our proof seems
to make essential use of the possibility of using a flexible
path space, since otherwise the map BI —>B 5 CI é B would
probably not be ? fibration. But this problem disappears

1f we use the reformulation of the theorem suggested in

Hemark 1.11.
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1,13, Theorem 1,10 (together with Remark 1.,12) has
as an immediate corollary the hypercovering theorem of Verdier
(SGAL, exp.V, appendix; AMj. (The attempt to obtain this
corollary is, in fact, what led to the present generality of
our theory.) To deduce the hypercovering theorem, we take‘

for C. the category §(X)f of simplicial sheaves on X (i.e.,

f
simplicial objects in the category of sheaves of sets) which
stalkwise satisfy Kan's extension cordition. Weak equivalence
end fibration are defined stalkwise, and it is trivial that
all the axioms are satisfied, Now using Theorem 1,10 and
Remark 1,12, and using stasnderd and elementary properties

of Eilenberg-lMacLane complexes which extend to sheaves with

no difficulty, a direct translation of Verdier's theorem iss
For any abelisn sheaf F, HY(X,F) = [e,K{F,q)]Hoﬁ(X)f.

On the other hand, it is well-known [H], and easy to prove
vusing abstract homotopy-theory,'that the left-hand side of
this-equation is equal to [Z(e),K{F,q)]HQ§ab(X), where §ab(X)
is the category of simplicial abelian sheaves and Z(-) is

the abelianization functor, and so Verdier's theorem follows
from Lemma 1,20 (case (a)) at the end of this section,

(We have used implicitly the fact that Hqgab(x) can be
identified with a full subcategory of the derived category
of X [DP, §3, and H], and that, under this identification
Z(e) is the constant sheaf with stalk &, concentrated in
dimension O, and K(F,q) is F, concentrated in (co-) dimen-

gion =-q.) ¢

1.14, In many applications (in particular, whenever
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the éxioms of [QHA] are satisfied) the direct system in
Theorem 1.10 is essentially constant. It is not difficult
to find sufficient conditions for this, but we will be content
to consider only the following questiond If C is a category
with notions of fibration and weak equivalence, what axioms
on the fibrations and weak equivalences will guarantee that
C can be given the structure of closed model category [QHAJ,
except possibly for the existence of limits? A useful an-
swer to this is given by Proposition 1,16 below, First we
recall some terminology from [QHAT.

Definition 1.15. A map A —=> X will be said to have

the LLP(left 1ifting property) with respect to a map
E -2y B, and p will be said to have the ELP (right lifting

property) with respect to i, if for any solid arrow diagram
. Ay E

ill

—~> B,

the dotted arrow exists. We cz2ll i a cofibration if it has

the LLP with respect to all trivial fibrations.

Consider now the following axioms,

(F) Any map u can be factored u = sj where j is a
cofibration and s is a weak equivalence,

(G) Any map u can be factored u = pi, where p is a
fibration, 1 is a weak equivalencé, and i has the LLP with
respect to all fibrations.

e L e, i v ot T e S o

Proposition 1.16. Let C be a category with notions of

weak eguivalence and fibration, Assume that a retract of =

weak ecaquivalence (or fibration) is again a weak equivalence
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(or fibration). If C satisfies axioms (4), (B), (C), (F), and
(G), then C 2lso satisfies all of Quillen's axioms for a

closed model category [QHA, QRH], excent possibly for the

existence of limits., , ,
ggggg; By applying (G) to the map s in axiom (F),

we see that s can be assumed to be a trivial fibration, so

both factorization axioms are satisfied. It also follows

from (G) that every trivial cofibration i is a retract of a

map with the LLP with respect to all fibrations, so 1 also

has this property. Thus the 1lifting axioms are satisfied,

and the other axioms present no difficulty.

Remark 1.17. This proposition applies in particular to
simplicial sets, Wiﬁh weak equivalence defined by means of
the gecometric realization functor, and ylelds a simple proof

of [QHA, Chapter II, § 3, Theorem 3],

We now consider the second nroblem referred to at the
begihning of this section., Thus we assume that Cr 15 2 full
subcategory of some category C and that weak equivalences
are also defined in C and satisfy axiom (A). In practice,
fibrations will also be defined In C and C. will consist of
the objects for which (E) holds, but all we need to assume
for the following proposition is that Qf satisfies (A) through
(E).

Proposition 1,18, With the notation and assunptions of

the preceding paragraph, assume either

(1) There is a functor C fib, Cp and a natural weak
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equiva;ence'ﬁ.~i% Tib(A); or

(2) (weak form of axiom (G)) For any A in C there is

a weak egquivalence A.aéa A', where A' ig in gf and 1 has the
LLP with respect to 21l fibrations (in C.).

Then HoC. —» HoC 1s an equivalence of categories,

Proof. If (1) holds then there is an induced functor

Hog 2By Hog, quasi-inverse to HoCc—) HoC. If (2) holds

f
then the assignment A iy A" defines a functor C —7 mC. .

which induces a quesi-inverse to Hqgf—%'Hog (ef, [QHAD).

Remark 1.19. If fibrations are defined in C and still
satisfy axioms (B) and (C), and if Ce consists of those
objects for which (E) holds (the fibrant objects), then we
can deduce from 1,10, 1.11, and 1,18 the following description
of [X,B]Hbc for arbitrary X and fibrant B, provided that
elther axi:m (G) is satisfied in C o¥ condition (1) of 1.18

is satisfied?! Any map from X to B in HoC can be written

ft'l, where t is a trivial fibration and f is a map in Cj
1 .

any two maps can be written £t~ and gt“l (same t), and

they are equal if and only 1f there is a triviel fibration

t' such that ft' S¥¥ gt'. (I will prove here the hardest

part of this assertion, Assume (1) holds and let f and g

be equal in HoC. I will show that there is a trivial fibration
t such that £t S%¥ gt, Since £ib(f) = fib(g) in HoC, we

know from 1,10 that there is a triviel fibraiion ﬁ;: Z —) £fib(X)
such that £ib(f)t' SET rib(g)t'. Replacing X by X b () %o

we may therefore assume that if SE¥ ig, where B-—L? £ib(B)

is the natural map. The result now follows from the proof of 1.103
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We will end this section with a very useful lemma on

adjoint functors.

peepeivesnperdeaed

1s 2 notion of weak eauivalence, and let g'—éélg be left

oS ppey

adjoint to C —5 C'. Then each of the conditions (a),

(b), (c) below is sufficient to imply that the left derived

functor L of L and the right derived functor R of R exist

(see [QHA, I,§{4] for the definition of derived functor),

and thet L: HoC'—> HoC is left adjoint to R: HoC ~§ HoC'.

(2) L and R preserve weak equivalences (in which case

L=L, B= R)s

o—

(b) C has a full subcategory C. satisfying the

hypotheses of 1.18, R preserves weak eguivalences in

Cpy 2nd L preserves arbitrary weak equivalences (in which
case L = L);

(¢) C hes a full subecategory Cp satisfyina the

hypotheses of 1.18, C' has a full subcategory C', satis-

fying the duals of the hynotheses of 1.18, R preserves

weak eoguivalences in C., and L preserves weak equivelences

in ¢':

Proof, I will give the proof in case (c¢), assuming
that condition of (1) of 1,18 and its dual is satisfied.
The other cases are similar or easler, We define g(A) =
Leof (A) end R(B) = Rfib(B), where cof: C' — C', is the
functor and cof(A)-1+ A is the natural map of condition
(1) of the dual of 1,18, It is trivial to check that
these are derived functors, and if LR.-EQIdC and Idc.—ﬁé RL
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are the two given adjunction maps, we define & meap LEB -y B
in HoC as the composite
LRB = LeofRfibB L) LRrivB —%5 ribB Y
Dually, there is a map A.—ﬁ'ggA.in HoC', and it is easy to
see that these mavs are adjunction maps., For example,
to check that LA — LELA —» LA is the identity, we may
assume A is in Q'c end we must check that the map obtained
by going across the top and down the right side of the follow-
ing disgrem is the identity in HoC, which follows from the

commutativity of the diagram:

-1
Leofa 2e0EI § 100r2, LOOLEYr oo rrrcora BERIRLY 1oorRPI LCOrA

Ly Q§§§§§§§Lj : Lj 1{ LJ \l

-1
LA ——td y LoofA —=B3 1RLcorA —EEL 5 IRPIbLeOFA

\a o

LcofA —» fibLcofA

i-l

LcofA..

Remarks, l.21. Except for the cases 6f the above lemma
where condition (2) of 1,18 (or its dual) is assumed, no
use is made of fibrations or cofibrations.

1,22, The power of adjoint functors is particularly
striking under hynothesis (a) of the lemma, where the
lemma enables us to say‘something about the maps in HoC
(and HoC') without knowing enything about how to describe
these maps in terms of the maps in C (or C'). Ve have

already seen a non-trivial application of this in 1.13.
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2. The lcon functor and fibration segquences

Before defining the loop space, it will be convenient
to prove some lemmas about fibrations. Let gf be a
category of fibrant objects. If B is an object of Qf,
let Efib/B denote the category of fibrations over B, It
is triviel to check (using 1.2) thét, if we define fibration
and weak eguivalence 1in gfib /B by means of the forgetful
functor to C., then L.,y /B is also a category of fibrant
objects.

Lemma 2,1. If Bt —23 B _;_g_ 2 mep in Cp, then the

san  Gnmctite  Swsw  san
proegaeieiapd

bagse chenge functor Ce.,y /B —-—9 Ceip /B' preserves

fibrations and meak equivalences (and hence homotqpies).

Proof. Applying 1.3 to Cpyy /B, we see that it is

sufficient to prove that ut

preserves fibrations and
'trivial fibrations, which is clear., (One needs to observe
here that if El-u9 E, is a fibration of fibrations over B,
Y X W x
then B' % E, = (B E, ) X E E . )
-1

Lemma 2.2, If u is a weak eauivalence then u

el
===== S

induces an equivalence of categories
Ho(Cpyy, /B) —> Ho(Cpyy /B').

Proof, By 1.3, we may assume u is a trivial fibration.
-1

In this case u is right adjoint to the forgetful func-
tor C.,1/B' =) Cpyy /B, and both adjunction maps are

weak equivélences. The result now follows from 1,20,

—....-.....-«....

BX a fibration is a weak equivalence,
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Proof., This comes from a careful examination of the
proof of the preceding lemma, Explicitly, let E £ B bve
the fibration and let B! 29 B be the weak equivalence,
which we may assume to be right inverse to a trivial
fibration B 29 BY, Ve may also assume that p is the
base extension by v of a fibrationuE'-leéB', since it is
sufficient to prove the lemma with p replaced by the
base extension of p' = vp., But then the base extension
of u by p is right inverse to a trivial fibration E —} E',

so it is =2 weak equivalence,

Definition 2.4, Let B' —2) B be a map in cf, let

E' 2} B' and E D> B be ribrations, and let uo, "’1 : E' — E
be two maps covering u. We say that uo and u1 are fibre
homotonic relative to u if the corresponding maps from

"l are homotopic as maps in Cpyy /B,

E' to u
This definition can be translated as follows., Let
E/B T be a path space for p in C.;y /B. Then EO and El
are fibre homotopic relative to u if and only if there is
a dlagram in gf
E" ) E/B T

o
E' i—éﬂ—&l+n XE,

B
with t a trivial fibration., By 1.4 it sufficient for t
to be a weak equivelence, and an important special case isg
Lemma 2,5, With the notation of Definition 2.4,

_—====

assume thexe 1s a weak equivalence t guch that uot = uit.

Then uo and ul are fibre homotoplc relative Eg e
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We can now define loop spaces,

Theorem 2.6. Assume C. is pointed (1l.e,, the final

e o 8o . i G o

object e is also an initial object). Then there is a

functor HoC. éﬁ% HoC. such thst for any object B and any

f
path space BI,IZB can be canonically with the fibre of
I

B

X

~y B * B (L1.e., © BXB BI). Furthermore,{ B has a natural

group structure,

Proof. Let 0!1)B denote the fibre of B

-8 x B,

If there exists =a map of path spaces BI 29 BI', i.e.y 8

map such that fs =s' and d'ifz di’ i = 0,1, then Lemma 2.1
shows that xéI)B —%»jél')B is a week equivalence, Further-
more, Lemma 2,5 shows that any two such maps are fibrq
homotopic relative to ideB (take t = 8), so we obtain,

in this case, a well- defined map j{I)B oy (I')B o But

1.6 (i1),- anplied to idB, shows that for any two path spaces
there is 2 third one which mans to both of them, so by what
(I)

we have Just done we can identify (0

®
two path spaces BI and BI . We can now writel B instead

B and (fl )B for any

of.{fI?B, and by a similar use of Lemmas 2,1, 1.5, end 1.6
we can show thatQB is functorial in B, Using Lemmas 2.3
"and 2,1, we see that( preserves weak equivalences, and so,

£ -Q;__;, HoCne To give(lB a

finally, we have a functor HoC
group structure, let BI and BI' be any two path spaces
and let BI+I' = 8l ﬁ BI'. Then there is an obvious map
0T «fT")g —-—»Q(I*I )B which gives us a product
QO BxQp -2 B in HoC,. The product is easily seen to be

well-defined and associative, The fact that e is an identity
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for this multiplication is immediate from the definitions

and from the fact that B* SEE&}ﬁElLa gl 3 B ana Bt iiﬂaﬁﬁal,>

BI g BI are maps of path spaces. Finally, the inverse

1t 1t
s where B is the same

QB -0 B is induced by BT 1%y B
object as BI but with do and dl reversed, To see that
this actually is a (right) inverse, we need only show

that the two maps -1

(sdg,sdg) ~ B
are fibre homotopic relative to diagespr.: BAB -~ BXxB,

This again follows from Lemma 2,5,

Sy

Proposition 2.7. Let gf be a2 pointed category of

fibrent objects and let Z ~5> B be a fibration with fibre

F, Then there is g natursl map Fx OB 25 F in HoC, yhich

defines a right action of the groupQB on F,

Proof. As in [QHA, I, ¢$3] we construct path spaces

I Bl related by a fibration EX —» E 2 BL x E, and we then

B B 7
deduce a trivial fibration EI —€>E ﬁ BI.- By base extension

E ,‘B

we get a trivial fibration F & o g F —39 Fx({B, and the
desired maﬁ is then prBt'l. It is straightforward, using
the techniques we have develoned, to verify that this is

well=defined and has the desired properties,

Observe, relative to a choice of BI, the map a is
obtained from a well-defined map E ﬁ BI ~$L5jpr2'1E in
Ho(gfib /BxB) by applying the fibre functor Ho(gfib /BxB)
—~)Hbgf. (Intultively, o 1ifts a path to E and then takes

its endpoint,) in an important special case which we will
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consider in a moment, we will be given a weak equlivalence
E-L3E' in C.,, /B end a mep B § B' ~59 B' lying over

B xB 2Xa5 B, Now f can be regarded as a map in Cp,y /BB,
and composing it with the inverse of prz"l (w) we obtain a
map in the homotony category, which we will want to prove

coincides with a. For this it is sufficlent that the diagram
! -——-—->d1 E
w
g ¥ Bl L &
be fibre homotopy commutative relative to PTs5s and we see
from 2,5 that it is sufficient that fi = w, where i =
(14, sp)s E—>E 2 BT,
. The special case referred to above 1s the following,

Let A~ B be a map 1n-_qf., which we convert to a fibration

E ='A§ Bl —> B as in the proof of 1.2, Let E' = E g Bt
4y p7y |
—=—%£3% B, let w be induced by the map of path spaces

BI Lid_,_ Sd,.,‘.) \ BI ,:‘B

we conclude that the action of OB on the fibre is induced

BL, and 1let £ = 1d, Then fi = w and

by f. (Intuitively,Q B acts by composition of paths,)
We wlll use this in the proof of the next proposition.

Provosition 2.8, With the notation of 2.7, let the
inclusion F > E be converted into a fibration as in the

proof of 1l.2. Therthe fibre of this fibration can be
ldentified (in HoC.) with(B (with the "fibre inclusion®

¢ (e -1
beins the composite 0B 482035 Fy 0B —23 F), ond the action

of QE onQB is given by the comvosite
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o B+ QE 2X%E250 5,08 B0,

Proof. .The fibre, F % gl X e, admits a trivial
fibration tollB, nemely, the base extension of gl —y
Bl ﬁ E by OB il;ﬁl% Bl ﬁ E, where i is the inclusion of

B into BI. The assertion in parentheses is immediate

from the definitions, using the trivial fibration F j E*

gflé F to identify P with the total space of the fibration,
and the assertion about the action follows from‘the remarks
preceding this proposition and from the proof of 2,6 (in
particular, the definltion of m).

ey A St 2 o e i e

an exact sequence in HoC.

* ¢ ¢ H0E~3QB —> F —> E —> B,

where exactness is interpreted as in [QHA, I, p. 3.8].

The proof is straightforward, using 1,10, Note
tﬁat the homotopy lifting property which one usuaily uses
still holds for our definition of homotopy, in view_of the
fact that ' — E % Bl is a triviel fibration. |

@ e S e T S i s
ettt el

fibrant objects and let P —> B be a fibration with fibre F,

Corollary 2.10. Let C. be 2 pointed category of

where P is weakly equivalent to e. Then F is canonically

isomorphic toQB in HoC

£o
Proof, Exactness of e ~—9QB — F —> e means that the
group{lB acts "t?ansitively aﬁd without fixed points® on |
F, so{&B — F 1s‘an isomorphism,
Remark 2,11, If we apply the discussion preceding
2,8 to the diagonal map of B, then we see easily that
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the natural action of 2Bx(Q B on(l2B induced by any path
fibration BI -~ B¥ B is given by two-sided translation
(L.e., g*(g',2") = g'"2gg")., This is useful in the fol-
lowing situation, Given two maps from A to B, we form

I

the "equalizer" K = A BEB B* and we have a fibration

sequence in HoCa
e v e K =0 B50B = K —> 4,
where, because of the above descrintion of the action of
O0BxQ B on(QB, we can identify B as the "difference' of the
two maps LA toQ B,
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3. A theorem on inverse limits

The purpose of this section is to prove, in our
abstract setting, a well~known theorem on the inverse
limit of a2 tower of fibrations., It will be convenient to
introduce, for any category of fibrant objects Qf, the

category Tow(gf) of diagrams

3
ooo___>Ai______‘>Ai'1__»ooo 9

where each Dy is 8 fibration in Sf and where A.1 = e for
sufficiently small i. A msp of towers (Ai)‘"% (Bi) will
be called a weak equivalence if each map A1~4>Bi is 2
weak equivalence in'gf; the map is called & fibration

if each mep Ai->£& X By is a fibration in ¢

1-1
Bi1

It is easy to verify that Tow(gf) is a category of fibrant

fl

objects, with these definitions. To verify the first part
of axiom (C), for examvle, given‘(Ai) -2 (Ci)ééz- (Bi)
with v a fibration, we must show that (Ai X Bi)-a (Ai)

C

i
is a fibration (which also implies that the fibred product .
is in fact an object of Tow(gf)). Now (Ai_lc‘x Bi-l? A& Ay
i-1 i-1
= A C): By = 4y g (Ci Cx Bi-l)’ and so the map
i-1 i i-1
Ai é Bi-—# (Ai-l o X Bi_l) A.X Ai is obtained from the
i i-1 i-1
fibration B, —> C X B by applying u '1, and is
i i C i-1 i

therefore a fibratioﬁf%y 2.1,

In order to obtain results on inverse limits we will

need another axion,
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(1) Eﬁery tower of fibrations in (. has an inverse

limit, and the functor
linm

preserves fibrations and trivisl fibrations (and hence
weak eaquivalences by 1.3).

Remarks, 3.1. If C. consists of the fibrant objects

T
of some category C, i.e., those objects B such that B — e
is a fibration, and if fibrations in C are characterized
by the RLP with respect to some class of maps (see 1.15),
then.(I) holds, provided, of course, that the inverse limits
exist in C.

3.2, Applying (I) to the fibration of any tower onto
any of its truncations, we see that (I) implies that

%%g Ay = Aj

1s a fibration for each j;

3.3, If (I) holds then we easily deduce from 1,10
and 1.11 that the functor C. — Hol. preserves countable
products,

 Assume now that (I) holds, let (Ai) be an object of

Tow(Cp), and consider the two maps

— 14
lAi,ﬁI)_?TFA.

We form & homotopy equalizer ofithese two maps as in

2,11, and we observe that there is an obvious map

am Ay - X,

Lemma 3.4, ,The mep 1 is a weak equivalence.

— — " ovn

Proof, Let (AiI) be a path space for (Ai)‘ Then
we may take || AiI as path space for’ﬂ‘Ai, and then it is
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immediate from the definitions that K = %im Ki’ where

A, i
i-1
notation that Ai = e for 140), and that 1 is induced

by a map of towers

Ki = All il o« o e X A 1 (assunming for simplicity of

(SP2‘°°Pi9 e ¢ o9 Spi, S) S
i . Bl 7 By
By axiom (I) it is sufficient to prove that each of these

A

maps is a weak equivalence, and this follows from the
fact that the above map is right inverse to a composite

of trivial fibrations,

IX XAI"‘"‘>AIX 'XAI___?oo
AT T 2 A, A M
O.. I I I
—>7Ai_1 )if; A A‘l --?Ai - Ai"
i-1
In order to state our theorem; we recall that a nap

K ~i9 A in an arbitrary category is called a weak eacuslizer

of two maps f, g with source A if (&) fi = gi and (b) for
any map K' ~li? A suchh that fi' =gi' there is a map j

(not necessarily unique) such that ij = i'., The construc=-
tion in 2,11 (together with 1.10) shows that any pair of
mabs in Hqgf has a weask equalizer.

Theorem 3.5. Let C. be a pointed category of fibrant

—_——msm

objects for a homotony theory, and assume Qf satisfiles

axiom (I). Then for any tower of fibrations (Ai) and

any group vslued functor T on Hogf which preserves count-

able products snd weak equalizers,there is a natural

exact seauence

~L '
0~ R &(T({z%)) — T(ét_;_g Ay) = é1_13 T(A) —> 1.
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Proof. This is obtained by (1) applying| to the
fibration sequence constructéd in 2,11 from the two mens
of TrAi to 1tself; (2) using 3.4 to identify T(K) with
TQ%EE Ai)
Bléig (see, for example, CEM]). Independence of the

s and (3) using the standard computation of

choice of path space can be proved by the techniques of

section 2.

Remark 3.6, The first theorem of this type seems
to be due to Milnor [Mi]., We recover his theorem fronm
3.5 by taking for gf the dual of the category of pointed

topological spaces,
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L, Higher -order structure

We end this chapter with a very brief indication of
how a theory of higher homotopies can be carried out in a
category of fibrant objlects Qf. Before defining higher
path spaces, we recall the following definition [GZ].
If X 1s a simpliciel set, the set of nt+l simplices of the
nth coskeleton of X,(cosknx)n+l, is by definition the

subset of Xh>< o o .x.Xn (n+2 factors) consisting of those
(xo, e o ey X l) such that d J d 1% for O0<i< j<ntl,
Observe that this definitlon makes sense for a simplicial
object in any category, provided that certain fibred products
exist, Observe also that X need not have degeneracies
for this definition to apply.

We can now define a comnlete path space for an object
B in Cf to be a sequence of objects B = BO, e o o3 ﬁsn, e o o
together with weak equivalences s(n)' B -%)ﬁan for all n

n An‘l
and face maps di: B - B for O $ig<n, such that

(a) didg =dy,d, fori<y
() ') = 1a,

dis(n) = s(n'l) for n>0 and all 1 § and

AR+l An+l
(c) the natural maps B —> B are fibrations,
AN+l A
where we have used the suggestive notation B = (cosknB )

i _
Remarks. 4,1, If we are given BA for 1< n satis~

fying the required conditions, then it is not difficult

’ A n+l
to see that the fibred products needed to define B
Antl
exlst and that we have a map B — B . To construct

gntl
y we need only factor this map as in 1.2.
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4,2, 1If Qf is contained in a category C with finite
inductive limits and in which axiom (G) of section 1
holds, then we can construct a complete path space which
also has degeneracies, by applying axziom (G) to the map
(skggx)n+1 - (coskggz)n+l [GZ], where EZ denotes a partial
path space defined for i 4&n,

4,3, It is not difficult to apply the techniques
developed in this chapter to prove that, in some reasonable
sense, BA is unique up to homotopy, It is convenient for
this purpose to introduce an appropriate category of fibrant
simplicial objects in C., using a definition of"fibrant"
analogous to the condition in (c) above,

4,4, As an example of what can be done with BA,
we remark that, exactly as in [BX, §3], we can use B‘1
to construct a tower bf fibrations, and hence “higher-
order operations", associated to any cosimplicial object

in C..



CHAPTER IX
A Sheafification of Stable Homotopy Theory

In this chapter we define a non-additive analogue
StaHo(X) of the derived category of (the category of abelian
sheaves on) X [H]., We show how the theory of Chapter I
enables us to derive some basic properties of StaHo(X)
(e.g., the existence of precducts, additivity, fibration
sequences ), and we end the chapter by developing the ma-
chinery to be used in Chapter III to define cochomology

grouns.,



1. Local stable homotony theory

Throughout this chapter X will denote a fixed topo-
logical space and Sp will denote the category of spectra
(see Appendix), We refer to [G; B3ST] for standard termi-
nology and results about sheaves, We can speak, in par-

ticular, about sheaves with values in the category of

spectra, By definition, such a sheaf consists of a contre-

et}

variant functor E on the category of open sets of X with
valués in S», such that for eny open set U and any open
cover {Ui} of U, the sequence
(v) —> T E(U;) =3 T(E(U,N uy)

is exact, We will often write r (U,E) = E(U) and /T(E)
= fi(X,E). We will denote by Sp(X) the category of sheaves
of spectré on X.

Equivalently, we can regard E as a sequence of sheaves
of pointed sets En’ indexed by 211 the integers, wlth
face maps di: En —— En-l and ‘degeneracy maps Si: En-—7 En+1
for 01 < ®, such that the usual simplicial identities
hold (see Appendix) and such that for each n,

[2+]
E = /\ ker d
N N0 OyN e
this union and intersection being taken in the category

of sheaves, This condition can be restated as: Every
section of En over any open set U locally has only finitely
many non-trivial faces, Another reformulationsg  For every
element of En,x (the stalk of E at x) one can find a
neighborhood U of X and a section s of En over U such that

s(x) is the given element and s has only finitely many
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non-trivial faces,

The correspondence between our two definitlions is as
follows, If E is a sheaf of spectra as in our first
definition, we let En be the sheaf associated to the
presheaf U k= E(U)n. Conversely, given E as in the above
paragraph, we let E(U) be the spectrum whose n-simplices
are those sectioné of En over U with only finitely many
non-trivial faces,

‘If f3 X =2 Y, we can define direct and inverse»image
functors f. and £* . If E 1s a sheaf on X then fxE (V)
= E(f‘lv); end if F is sheaf on Y then f F is defined by
£ F n.= f*(Fn), where the f  on the right is the usual
inverse’image of sheaves of sets, As usuzl, f* is left
adjoint to f,. Finally, if E is a spectrum and U is any
open set of X, EU will denote the sheaf of spectra which
is constant with stalk E over U and whose stalk at any
point x noﬁ in U consists of the triviesl spectrum e, )

We are now ready to discuss homotopy theory in Sp(X);

Wé call a mep a weak ecuivalence if it induces stalk- .

wise weak equivalences in Sp, in the usual sense (see

Appendix)., Equivalently, if we define the homotopy sheaf

an to be the sheaf (of abelian groups ) associated to the

presheaf U f—> nq E(U), then a map is a weak equivalence

if and only if it induces an isomorphism on all homotovny

sheaves, The stable homotopy category over X, StaHo(X),

1s defined to be the homotopy category associated to Sp(X)
by Definiton 1,9 of Chapter I, |



37

In order to study StaHo(X) we will need a notion
of fibration, which we call local fibration to distinguish
1t from the notion of global fibration to be discussed
in the next section. Thus a map will be called a2 local

fibration if stalkwise it is a fibration in the sense of

Kan (see Appendix), E is called locally fibrant if E = e
is a local fibration, i.e., if it stslkwise satisfies Ken's
extension condition., We denote by Sploc f(X) the category

of locelly fibrant sheaves of spectra,

Proposition 1.1. MNith the above definitions, Spy . » (X)

is a category of fibrant objects for s homotopy theory

(Chapter I). Furthermore condition (1) of (I,1.18) is

satisfied by Sp (X) and 5p(X). Finelly, if we define

loc T
the cofibrations in Sp(X) to be the injective meps, then

Sp(X) satisfies the duals of axioms (A) throush (E) of

Chanter I,

Proof., To verify condition (1) of (I,1.18), we can
use the sheafification of the free group functor F of
(K27, i.e., we can let FE be the sheaf associated to the
presheaf U+ F(E(U)), For the first asserﬁion, the only
axiom which is not trivial to verify is (D)., This will -
follo& from the proof of Proposition 2.3 in the next section,
but we will also give here a more direct (although much
more difficult) construction. If E is a sheaf of group
spctra, we can let el (u) = Hom(I,E(U)) (see Appendix),
where it is understood that we add a disjoint basepoint

to I so that Hom is defined, Note that we need (Appendix,
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A.13 and A.,15) in order to define the maps E — Bl — E xE,
For general E, we can talke EX = (E XE) X (FE)I.
: L F(ERF(E)
Finally, ol1 of the dual axioms except the dual of (D)
are satisfied because they are satisfied stalkwise (Appendix,
A,3)., Instead of verifying the dusl of (D), we will
verify the duel of (I,1.2). Thus given E 25 B, let
1 be the iﬁclusion of E into its cone (defined by sheafi-

fying [(KWi, 6.2], and we may then factor u as E iﬂailg
pry

E' X CE > &Y,

Corollery 1.2, The fellowing are equivalent for a

I R i e

map f in StaHo(X):

(1) £ is an isomorvhism;

(2) f induces stalkwise isomorphiems in StaHo;

(3) £ induces isomorphisms on 21l homotony sheaves.

~Proof. This is immediate from the fact (I,1.10) that
any map in StaHo(X) is of the form gt'l, where g and t
are maps in Sp(X).

Corollary 1.3. The functor Sp(X) —> StaHo(X) pre-

Smreanes.

serves arbitrery sums and finite products., StaHo(X) is

an additive catepgory.

Proof. The first assertion can be proved without
much difficulty, using either (I,1.19) or the dual of
(1,1.10) (or both), together with the following facts,
which need only be checked when X is a point? (a) an
arbltrary sum or a finite product of weak equivalences
is agaln a weak équivalence; and (b) the category of

trivial cofibrations under a fixed object has arbitray

sums (this follows from the fact that, when X is a point,
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trivial cofibrations can be characterized by 1lifting
properties). I will indicate three proofs of the additi-
vity of StaHo(X). In the first proof one begins by showing
that EV Et -} Ex E' is a weak equivalence; this need only
be checked in case X is a point, where it caﬁ be proved

by a stable range argument (see [K2, proof of 5.3 for an
example of a stable range argument)., This shows that
every object of StaHo(X) has a natural commutative monoid
structure, and the existence of inverses can now be proved
exactly as in the proof [D, fafz 9.2] that every connected
H;space has a homotopy inverse, In the second and third
proofs shows more directly that every object in StaHo(X)
has a natural group structure (which must then be abelian
by the usual arzument). The second proof uses the free
group functor and the third proof usesfl(i,z.é), once one
has convinced oneself that()l is a self-equivalence of
Stalo(X) (cf'. Appendiz, A,13, A,14; or perhaps there is

en easier way to see this).

Remark 1.4, Infinite products are more difficult
to handle because they are not preserved by the stalk
functors, so, in particular, it appears doubtful that
Sploc f(X) is closed under infinite products., The exis=-
tence of certaln infinite products in StaHo(X) follows from
the results of the next section,

We end this, section by giving two more or less ex-
plicit descriptions of the maps in StaHo(X), If E is a

sheaf of spectra and G is a sheaf of group spectra, then
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1t follows from 1,3 that the mep
Homg () (E»G) —p Holg 1o () (B2 C)
is a grouv homomorphism, To describe 1ts kernel, we need

a definition, A map f from E to G is celled null-homotonic'

| N _
Af there is a degree one map E_ L5 G, 4 such that dgh = £,

dih = hdi-l for 1y 0, and Sih = hs, 4

Proposition 1.5. Let E, G be sheaves of spectra,

for 1?2 0,

with G 2 groun. Then any map from E to G in StaHo(X) can

e irme s

be written in the form ft™© with t a trivisl fibration,
1

Furthermore, ft™— = O in StaHo(X) if and only if there

1s 2 trivisl fibration t' such that ft' is null-hemotovnic,

Proof, If we let /LG = G be the stendard contrac-
tible fibre space over G [K3,62], our definition of null-
homotopy is such that f‘is null~homotopic if and only Aif
it 11fts toA G, Now if £ = O in Stazio(x), then by (I,1,19)

we know that f lifts to ol a e, at least after replacing
f by £t for some trivisl fibration t., But then (I,1.4)

applied to the square

e —>AG
¢l vj‘/e--»c;
G

shows that ft' 1ifts to A, G for some t°,
Remark 1.6, Without using Chapter I, I cannot even
prove that the group of maps which 1s asserted in 1.5 to
2 g r
be the kernel of Homsp(x)(u,G)-ﬁ [E’G]StaHo(X) is a
normal subgroun, *

Our second description of StaHo(X) relates StaHo(X)

to an unstable analogue, Thus we let S,(X) denote the



h1

category of sheaves of pointed simplicisl sets on X,
We define weék equivalence and fibration stalkwise, and
it is trivial to check that the fibrant sheaves form a
category of fibrant objects. This is even easier than
for sheaves of spectra, because we can use the ordinary
simplicial path space, Furthermore, we cen verify condition
(1) of (I, 1.18) by using Kan's Ex® functor [K1].

There is a functor Sps S.(X) —> Sp(X)which "freely
adds".to a simplicial sheaf XK the extra degeneracies,
In thé terminology of [K2], Sp(K) is the gpectrum asso-
cioted to the prespectrum X, SK, S°K, . . . . This functor
is 1eftladjoint to the functor E t=—> E(O)’ which assigne to

a sypectrum the 0-th term of the prespectrum associated to

1t [x2], By (I,1.20) we obt?%n a pair of adjoint functors

P
==s

HoS. (X) Gy Stallo (X)),
Sp
where Elol = E(O) if E is locally fibrant. We can of course
define the full prespectrum E(q) with maps Sh(q) e 4 h(qfl)’
S being the sheafification of the ordinary simplicisal '
suépension, and we have the following result,

Proposition 1.7. For any E, E' in StaHo(X) there is

- S aQ 1 ¢
a2 natural short exact segquence, 0 —> R lim [E(i),E (i-l)JHoS.(X)

—')[E’E']StaHo(X) —-){'_L_ﬁj}ri [E(i)sE'é;Q_JHOS. (%) — 0.

Proof, It is immediate from the definitions that
~1 nl i"\
E = £ =
1im S Sp(E(i)) and that h(i) (s h)(o), where S is
the functor which raises dimensions by one, The dual of

(I, 3.5) then gives us an exsct sequence,
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0 ““’RIEE [SuiS’p(Eci))’ Q E gpamox) 7 (5B Igtano(x)

N ~1 ¥ N - X
—_ %&g [s Sp(E(i)),E 3StaHo(X)'"9 0, and the result now

follows from the observation that [SuiSp(E(i))’E']StaHo(X)

. 1 - 1 _
= [p(E(y) )5 B dgpamo(x) = [E(1)s (575") (0) Inos, (x) =
[E(i)’E';%;]HoS.(X), and the observation that “Q'E‘)iil

i}

= E? (1-1) (which is simply a matter of checking defini-

puiromidmampormpuniod

tions, using the fwstandard simplicial definitionsoflza.>

Remark 1,8, The above wroof remains valid if Etoys
E(i)’ « ¢ o 18 replaced by any prespectrum whose associated

spectrun is E,
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2., Global stable homotopy theory

A map E — B of sheaves of spectra will be called

a global fibration if for each inclusion U<V of open

sets of X, the map
O (v,e)— C(u,g)_  x  ("(V,B)
" (u,B)
is a fibration of spectra, We call E globally fibrant

Af the map E —~> e is a global fibration, and we denote
by nglob f(X) the category of globally fibrant sheaves
df spectra, Our interest in globally fibrant sheaves
comes from the fact that they allow us to pass from local
homotopy theoretical information to global information.'
The main exemple of.this is Theorem 2,4 below,

Remarks, 2,1. The globally fibrant sheaves are a
homotopy theoretical anslogue of the flasgue sheaves of [G].
2.2, The global fibrations are the maps with the

RLP (I, 1.15) with respect to all maps of the form

)
AV/‘U AUC--') Av..

(See Appendix and the beginning of section 1 for notation.)

Pronosition 2,3, The category of globally fibrant

sheaves of spectra, wlth the notions of weak eguivalence

and global fibration, is a category of fibrasnt objects

in the sense of Chapter I. Furthermore, axiom (G) of

Chanter I holds in Sp(X) relative to the notion of global
fibration. |

Proof. The only axiom that needs to be verified is



Ll

axiom (G) (which, of course, implies axiom (D)). In view
of 2,2, this can be done by a transfinite analogue of the
"small object argument® [QHA, II, p. 3.47. The point here
is that if N ig a cardinal such that any open cover of
any open set of X has a subcover of cardinality < ﬂ(,
and if @ is the first infinite ordinal bigger than /U,
then the functors r‘(U,—) preserve well-ordered direct
limits indexed by o, so that the objects AU’ e o o are
small relative to a,

In order to state our main result we need one more

definitlon, A sheaf of spectra E is said to be trivial

in dimensions grester thon N if for each open set U and

any two distinct n-simplices u,v of [ (U,E) for n>H,
d,u # d,v for at least one i, We say that E is bounded
below if it is trivial in dimensions greater than N for

some N,

I

Theorem 2.4, The plobel section functor [* ¢ Sp(X)

—> Sp preserves weak eouivalences of shesves which are

globally fibrant and bounded below.

Proof. Let E—E' be such a weak equivalence, and
let F be the "homotopy fibre", i.e., F = E >: A E', where
L E' is the standard contractible fibre spafe over E' [X3],
It is easy to check that F is 2lso globally fibrant end
bounded below, and so we are‘reduced to the case &' = e,
Thus we assune that E is globally fibrant and bounded |
below and that 1, (E) ='O, and we will show by descending

induction on q that nql’(U,E) = O for all open U, This
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is cértainly true for larée g because E is bounded below
and [ (U,E) satisfies the extension condition (see the
description of the homotopy groups in the Appendix).A
Assuming it now for a+l, we will prove it for g. Let s

be a spherical section of Eq over U, By Zorn's lemma

we can find a section t of Eq+1 defined over some open
Uy< U, where (t,UO) is maximal for the vroverty d,t = s,

d,t =-e for 1>0, If Uy=1U then [s] = o in m,(* (U,E)

and we are done, If not, let x be any point of U not in
Uge Sinqe Wq(E) = 0, there is a section t' over some
neighborhood Ul of ¥ such that dot' = s and dit' = e for

i» O, .Since T4l (UO/1U1,E) =0 by the induction hypothesis,
the sections t]UO/\Ui and t° UO/\U1 are homotopic as sim-
plices of [T(QO/\Ui,E),i,e., there is a section u of

Eq+2 over Ub/\Ui such that dou = t, dlu = t', and diu = e
for 1>1, (To see this, let A be the spectrum generated

by a simplez o of dimension qu with relations dio = e

for 1>1., Since 4 is equivazlent in StaHo to satl (Appeﬁdix),
the obvious map A ->lq(uof\Ui,E) is null-homotopic and
therefore extends to 4 , b =4 veing a cofibration. )

Now let /\ be the subspectrum of A generated by 4.0,

1
We have a square

A -2 1 ,E)

{

u u 2
| A By | (Upn Uy ,E),
From the definitién of fibration (see Appendix) we see

that there

1s an extenslion of the homotopy u to a homotopy U over Ul’
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with dlﬁ = t', Then ddﬁ agrees with t on UOK)U s dodoﬁ
= g, and diddﬁ = e for 1> 0, so t can be extended to UOLIUi,

contradicting its maximality. This completes the proof,

Remarks. 2.5. The above proof is a homotopy theo-
retic analogue of the proof of [G,II,3.1.3]. It is more
complicated than that in [G] because we must take a
"homotopy difference® of t and t' instead of an actual
difference, This complication disappears if we work
with sheaves of group spectra; in which case the proof in
[G] applies without change., (One should observe here that
a. sheaf of groun spectra is globally fibrant if end only
if its normalization (defined as for simplicial groups)
is dimensionwise flasque,)

2,6, In the case of sheaves of gbellan group spectrs
the‘boundedness assumption can be removed if we assume that
X haé finite cohomological dimensiqn. I do not know of
eny way of removing the hypothesis in the non-abelian case,

2.,7. We cen also define a homotopy theoretic analogue -
of the soft (mou) sheaves of [G], and the snalogue of 2.4

~remains true, provided X is paracompact;

We will end this chapter with some further results on
bounded below globally fibrant sheaves, which will be useful
in Chepter III, We first define the Postnikov decomposition
of a spectrun, ;f E is a spectrum and N is any integer,

there is a spectrum Ek-w N which is trivial in dimen-
9 .

slons greater than N and there is a map E — E[ 00 ,N]
- ’
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which is universsl for maps of E into a spectrum trivial in
dinmensions gfeater than N, (If E satisfies Kan's extension

condition, E[_‘a,N] is usually called the Nth Postinikov

approxination to E,) We obtain E[“ ] from E by identi-

© I
fying two simplices of E with the same N-dimensional faces,
If E now denotes a sheaf of spectra, then E[“d,,N] will

denote the sheaf associated to the vresheaf U > E(U)[_OQ,N3.

Provosition 2.8, Let GrSp'(X) be the category of

prsovidroebividpusnrdinicgmnaduesr it ipte ey

sheaves of group snectra which are trivial in dimensious

greater. then N, Then GrSph(X), together with the notions

of mlobal fibration and weak equivelence (and cofibration

as _defined in (I,1.15)) is a clocsed model category in the

sense of [QHA].

Proof. The czistence of limits in GrSp’(X) presents
no difficulties., Projective limits are computed as in
Sp(X) and inductive limits are computed by first qomputing
them in the category of sheaves of group spectra and then
applying (= ,NT° From 2,3 and the fact that the inclusion
GrSpY (%) €> Sp(X) has a left adjoint, we see that fibrations
in GrSpN(X) can be characterized by a 1lifting property and
that axiom (G) of Chapter I can be verified by the trans-
finite small object argument as in the proof of 2,3.

(One neceds to use here the fact that the Postnikov functor
hags the right homotopy theoretic interpretation on the
catégory of locally fibrant sheaves, and, in particular,
on sheaves of group spectra,) If we use the criterion of

(I,1.16), the proof will be quplete once we construct



48

the second factorization, This can again be done by the
transfinite small object argument, since it is clear from
the following lemma that trivial fibrations in GrSpk(X)
are characterized by a 1lifting property analogous to that
of 2.3.

Lemma 2.,9. Let E—» B be a trivisl global fibration

S e e m

prpriafuisgeionbond

in Sp(X) uyhose fibre F is bounded below, Then for each

inclusion of ownen sets U<V, the man

~(v,g) — [(U,E) x (M (v,B)
("(u,B)
L
is a2 triviel fibration of spectra,

Proof, The fibre of the sbove map is the same as the
fibre of ["(V,F) =—> (*(U,F), which is aspherical since

both of these spectra sre asphericsl by 2.4,

Remark 2,10, The enalogue of 2,8 for spectra
without group structure is false, even if X is a point.
If it were true, then we could deduce (using lifting cri-
teria and adjoint functors) that [=o ,N] preserved triviai
cofibrations and hence weak equivalences, But this 1is false,
4s we see by applying if % a weak equivalence S —» S', where
S is the sphere spectrum and S' satisfies Kan's extension

condition,



CHAPTER III
Generalized Sheaf Cohomology

Throughout this chapter X will continue to be an ar-
bitrary topologicel space, Sﬁ(X) the category of sheaves
of spectra on X%, and Stalio(X) the associated homotopy cate-
hgory. Ve will define and study cohomology groups Hq(X,E)
for E en object of StaHo(X), provided that eilther ﬂnE = 0
for sufficiently large n or X has finite cohomological
dimension. Section 1 contsains several eguivalent definitions
of the éohomology groups, Thus we can define H%X,E) as
m_q RIM(E), where B[ can be described elther as a derived
functor'[QHA,I,§4] of the global section functor or as
the right -adjoint of £ % Stalo —3 StaHo (X), where f maps
X to a point. [We should mention here that the existence
of this right adjoint can be proved using Brown's repre-
sentability theorem [B], but I have not been able to
generalize this method to work for more general maps f,]
The cohomology groups can also be defined by.Hq(X,E) =
| [S;Cq’E]StaHo (x)» @nd the equivelence of the two definitions
leads to an analogue of Verdier's hypercovering theorem;
and, finally, they can be defined usinhg a canonical reso-
lution,

Section 2 develops the spectral seguence referred to

in the Introduct%on to this naper, and section 3 intro-

duces multiplicative structure into the spectral sequence,
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1., Definitions of the cohomology groups

Ve define a full subcategory of Sp(X) (resp., StaHo(X)),
to be denoted Spt(X) (resp., StaHo (X)), by the condition
an = 0 for q sufficiently large, It 1is clear from the
deseription of the maps in StaHo(X) given by (I,1.10) that
StaHoT(X) is obbtained frém Sp'(X) by inverting the weak
equivalences,

Theorem 1.1. Let [z Sp (X) —> 5p be the global

section funector., Then the right derived functor [QHA,I,?&]

R[": SteHo  (X) — Stalo exists; if E is globelly fibrant

and bounded below then R/'E can be identified with IE,

Finally, R[” commutes with (L and preserves fibration

sequences coming from local fibrations (I, section 23

II, section 1).
Proof, The existence of R/[" on HoGrSpN(X) is clear
from (II, 2.8, 2.,4) and from (I, 1.20) (see also QHA, I, §i4),

T
ol

Now if Sp ' (X) i1s the full sub.category of Sp(X) defined by

an = 0 for q» N, then we have a functor [-,b’N]°F:
SpN(X)-9 GrSpN(X), where F is the free group functor

and (-0 ,N] is the Postnikov functor, and there is a
natural weak equivslence E—» F(E)[_AO’N]’ from which it
follows easily that R[: HOSpN(X) —> StaHo exists and

can be computed by choosing a weak equivalence E —» BEY,
where E' is in GrSp:;l(Fx), and applying [ to E', In view
of (II, 2.4), the: same description holds if E' is only
required to be globally fibrant and bounded below, but not

necessarily a group., It 1s now clear that we can let



51

N approach ¢ 2nd deduce the existence of R[ ¢ Stalo™ (X)

~> StaHo, The last assertion of the theorem is clear from
[QHA], together with the fact that we cén.oonvert a2 Tibro-
tion to a global fibration without changing the weak homo=-

topy type of the fibre,

Definition 1.2, If E is in StaHo+(X), we define

the generalized sheef cohomology groups by Hq(X,E) =

n_qRF'E. If X has finite cohomological dimension end
E is arbitrary in StaHo(X), we define H(X,E) = HI(X, Bl _os 1)
for large N (see 1.4 below), where the double underliniﬁéwum“”
indicetes as usual that E must first be replaced by a
locally fibrent E' if nedessary.

Remarks, 1.3, If we sssume that there is an integer

p such that X locally has ‘ : cohomologicel dimension

(‘\

& Py then it appears that we can prove the cxistence of

el

RC ! StaHo(X) —> StaHo by taking a resolution E —>
6onstructed either by resolving the postnilkov tower of

E end taking the inverse limit or by applying the total
spectrum construction (Appendix, definition preceding A.11.)
to Godément's standard resolution of E (i.¢., the resolu-
tion obtained from the triple i*ix, where 1 is the natural
map fron Xdis to X, Xdis being the underlying set of X

with the discrete topology). The assumption on X seems

to be necessary in order to prove that the map E —> E?

is a weak eauivalence, Unfértunately, I have not been able
to find a reasoﬁéble description of a class of sheaves

for which RCE = [ME. 1In particular, I do not know if

the globaily fibrant sheaves have this property. Note



52

that the standard resolution can be used to define the
cohomology groups in a way. that avoids the homotopy theory
of Chapters I and II, but it is clearly more desirable
to be able to choose resolutions more flexibly, as in the
abelian case (cf., [G, II, §«71).

1.4, If K° is a (co-) chain complex of abelian sheaves,
then K°* can be regarded as the normalization of a sheaf
of abelian spectra E (cf, [DP, 4 3] for the unstable analogue).
It is clear from the proof of Theorem 1.1 that H(X,E) as
defined above agrees with the usual (hyper-) cohomology
group Hq(X,K°). In particular, if K° consists of an abe-
lien sheaf F concentrated in (co-) dimension -n, then E
is precisely the stable Eilenberg-MaclLane sheaf K(F,n)
(i.e., the sheaf U FK(F(U),n)), so we see that H}(X,K(F,n))
= #9*%(x,F), This, together with Lemma 2,4 of the next
section, shows that if X has finite cohomologicel dimen-
csion p and E is arbitrary, then HY(X,E) = Hq(X,E[_w ,N])
for N» p-q, '

1.5, Theorem 1.1 remalins valid if N is replaced by
de (sections with support in Q) where  is a family
of closed subsets of X closed under finite union., In fact,
we need only check that (II,2,.7) remains valid if M is
replaced by PQ s and this follows easily from the proof
of (II,2.7). (In the notation of that proof, if s has
support in Z then we may aséume that UO‘J U - Z and that
t=eonU-~32,)

1.6. Theorem 1,1 also remains valid if we replace [ |

by fy, where I X —> Y. We write Hlfy (E) = n_ Rr, (E),
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This is an sbelian sheaf on Y and is the sheaf associated
to the presheaf V> HI(£"1V,E), It follows from (I,1,20)
and from the proof of 1,1 that Rfy is right adjoint to
% Stadot(¥) —staHo’ (X).

Proposition 1.7. If E is in StaHo’ (X) or if X gabisfies
the condition of Remark 1.3  2nd.E is grbltrary, then

14 (X,E) T [Siq, E]StaHo(X)’ where Siq is the constant

sheaf whose stalk is the sphere spectrum of dimension =-q

(see Appendix).,

Proof. We will assume first that E is in StaHo' (X),
aﬁd we may in fact assume that E is GrSpN(X). Then Hq(X,E)
= (874, R Elgy o, = [F(S"q)[ o 81 R  Elpogrsp =
TP e 107 B mocrsp™ (%) = 5% 18] s4am0(x)s hETE
the first isomorphism is a definition and all the others
follow from (I,1.20), The other case follows from this,
once we verify that [83%,E] = [53%,E_,, 7)) for large N
under the appropriate finiteness hypotheses, For this
we réplace the Postnikov tower of E by a tower of global
fibrations whose Nth term is in GrSpN(X) and we then
prove the desired result by doing homotopy theory (using
I1, 2,8, for example), Details will be omitted.

Corollery 1.8, Under the same hypotheses, H(X,E)

= [e’Eigl]HoS(X)’ where S(X) is the category of simplicial

sheaves on X, e is the final object, 2nd E

“(g) 8 28 in the

discussion preceding (II 1.7).

Proof. Sinée the stable sphere is obtained from the
unstable sphere by applying the functor Sp introduced in
Chapter II to the unstable sphere, it is clear that
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(5% Blgpano(x) = (5% E(q) mos. (x) = L& E(q)MH0s(x), so

- o o s o e
=== ===

the corollary is simply a restatement of the proposition.
Remark 1.9. This corollary implies the analogue for
generalized cohomology of Verdier's hypercovering theorenm
(ef, I,1.13), ie.e4y, 54 (X,E) g/éig n(K,E(gl), where K ranges
over the hypercoverings of X and m denotes simplicial
homotopy classes of maps, if the hypotheses of 1.8 hold.
Remark 1,10, If E is @ snectium we can define singu-

lar cohomology groups g2 (X,E) = [3(X), E(q)

sing ]Ho, where

SKX) is the Ellenberg complex and Ho is th;~;omotopy
category of simplicial sets, If X is paracompact and
homologlically locally connected then it can be shown that
Héin (x,8) £ 53(X, E Vs u being the cpnstant sheaf with
stalk E, We will only sketch the proof since it is in
any case clear from the results of the next two sections

that H°* (X, E, ) shares with H® (X,E) 211 the usual co-

sing
homological properties, The proof is based on consideras=~
tion of the sheaf associated to the presheaf Ut—>
Hom(S(U)",E) (see Appendixz; the + indlcates that a disjoint
basepoint has been added so that Hom is définéd). Using
this sheaf one obtains a map Hginz(X,E)-—é»Hq(X,Ex),

which will be an isomorphism for all E if it is an iso-
morphism for E = K(m,n) by 2.4 below, end this is a known

result [BST; cf, also G, Ex, 3.9.11.
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2. Lonz exact sequences and the fundamental snectral sequence

Proposition 2.1. (i) If OE" - E' — E —»E" is

i peeeriiieree oo vtetpd

a fibration sequence in StaHo(X), then the seauence

o oo —rd™h(x,mY) — B(X,E7) —> B2 (X,E) = B (X,E") —>
is exact, provided that all of the cohomolozy grouns are

defined, A
(11) If U is an open set of X and E is an object of

StaHo(X) then there is 2 long exact sequence

Ceoe e by, E) - 13 (%,U3E) —>BE(X,E) — BH(U,E)—> ¢
provided a2ll the grouns are defined, where the relative

groun is by definitlion the cohomelogy of X with supnorts

in X-U (see 1.5).

(1i11) If U,V are open sets of X, X = UUV, znd E

sn object of StaHo(X), then there is a long exact

I

‘seguence

oo o Y yav,E) — 84(x,E) — 54(U,E) @ 24(V,E) —>

HU(UNV,E) —»* * *
provided that 2ll the groups are defined,

Proof. (1) is clear if all the sheaves are bounded

b . - 3 o poll

elow, " In the general case, we imbed E[-aw,n]._? [-% ,n]
in a fibration sequence with fibre Fn. We may assume that

t D
E (=00 ,n] - E[-O°,nj factors through Fn, and it is not
difficult to see (using 1.4) that if n is sufficiently
large (for fixed q), Hq(X,E'[_m,’n]) = Hq(X,Fn), so the
exactness follow§ from the result for the bounded case.

(11) is the homotopy sequence of the fibration [ (X,E)

—_ r'(U,E), where we -have assumed (as we may) that E is
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globally fibrant and bounded below. (1i1) is the homotopy
sequence of a fibration [ (U,E)x (" (V,E) —» [T (UNV,E),
where we assume E to be a globélly fibrant and bounded
below sheaf of group spectra, and where the above fibraﬁion
is the composite
M (U,E)x M (V,E) => (Y(UNT,E) x (MUNV,E) —>

[ (unv,E) x (N (uNV,E) E)--]-:'-3'~>f‘(U/\°\r,E),
the second mep being the automorphism (of the underlying
set spectrum) given by (x,¥) —r (%, Xy'l).

‘ggggggg. 2.2, If X is paracompact then using (II,2.7)
we can 6btain lonz exact sequences analogous to (ii) and
(1i1) involving closed subsets of X,

2.3, Using the stable Bousfield-Kan spectral sequence
(Appendix, A,12) we can generalize (iii) to a2 spectral

sequence for an open cover (or hypercovering) of X,

We turn now to the construction of a spectral sequence
which is a non-additive generalization of the hyperhomology
spectral sequence and which is a sheal theoretic generali-

zation of the Atiyah-Hirzebruch spectral sequence,

e by e

Lemma 2,4, Let E be a sheaf of spectra and suppose

that for some n,m E =0 for q # n. Then E is canonically

isomorvhic in StaHo(X) to the Hilenberg-lMaclLsene sheaf

K(nnE,n).

Proof, Since the functor X* F~>E defined in Remark
1.4 is right adjoint to the normalized chain complex func-
tor E~>C,(E), a map from E to K(nnE,n) in StaHo(X) is

the same as a map from C,(E) to nhE in the homotony category
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of chain complexes of abelian sheaves, where nnE is regarded
as o complex concentrated in dimension n, (Note that we
have used (I, 1.20) again,) Now the group of such maps

can be computed by replacing C,(E) by a complex which is
zero in dimensions less than n and replecing nnE by a
conmplex of injectives which is zero in dimensions bigger
than n and then computing homotopy classes of chain maps,

It is trivial to check that this group is Hom(HnC.(E), nnE),
and to complete the proof we need only find an lsomorphism
HnC.(E) ;'nnE. Por this, we consider the "Hurewicz mapn"

E —> ZE, ZE being the (reduced) free abelian sheaf geners-
ted by.E (so that C,(E) is the normelization of ZE), and
observe ﬁhat by the ordinary Eurewicz theorem applied
stalkwise, this map induces an isomorphism on m_ . The

n
result now follous from the fact that HnC.(E) = nﬁZE,

Th e e e Sy

Theorem 2,5, ZFor any sheaef of spectra E there is 2

first and fourth gvadrant svectral seauence of cohomologiesl

type mith ED® = EP(X,m_ E), If X has finite cohomologicel

dimension or if ﬂqE = 0 for o sufficiently largze, then

the spectral segquence converges to Hp+q(X,E).

Froof. We will assume E is locally fibrant., It
follows from Lemma 2,4 that we have fibrations K(ﬂnE,n)
< E[_& ,n]-—+ E[-ua,n-l]' These glve rise to long exsct
sequences in cohomology which fit together to form an
exact couple end hence a spectral sequence., The identi-
fication of the Ez term follows from 1,4 and the conver-

gence agsertion is trivial.
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Corollary 2.6 {(Leray spectral sequence). Let fz ¥ —> X

e en S s S o ovnes e bl

and let E be an object of SteHo'(Y)., Then there is 2

spectral sequence

- s +
2% = 1P (80, 8) == #PTH,E),

The seme is true for arbitrery E in Stalo(Y) provided

eupnwerce

that X, ¥, and £ have finite cohomological dimension

(L.e., for large o RqQ,F = O for all abelisn sheaves on Y),

o

where we define quiE = qu* Er.

0 ,1] for larse n (see 1,6),
Proof, If E is in StaHo+(Y), this is tThe spectral

sequence of Theorem 2.5 applied to H&_E. The genersliza-

tion under finiteness hypotheses 1s obtained by an obvious

passage to the limit,

Remark 2,7. The spectral segquence of Theoren 2.5
can also be obtailned as the Bousfiecld-Kan spectral segquence
(Appendiz, A,12) of the cosimplicisl spectrum obtained
by aﬁplying [' to the Godement resolution of E (see 1.3).
This method, while more direct in ﬁhe sense that no sheafi-
fied homotopy theory is used(if we use the total spectrum
construction to define the cohomology groups), yields
~no information as to how to compute the differentials,
Whéreas from the method we have used, the differentials

can be "read off" from the k-invariants of E,
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3, lMultiplicative structure

In order to define a smash product in Stabo(X),
we will introduce the category Bisp(X) of sheaves of
bilspectra (see Appendix), It is obvious that everything
we have done for sheaves of spectra could have been done
equally well for sheaves of bispectrs, and using the adjoint
functors between svectra and bispectra.[Kw1] we easily
see that we can identify HoBisp(X) with StaHo(X)., In
particular, if we sheafify the external smash product
‘defined in the Appendix, we obtain a functor Sp(X) XSp(X)
— Bisp(X) which induces StaHo (X)X StaHo(X) ——> StaHo(X).
(The external smash product is given explicitly by letting
E/\E' be the sheaf of bispectra asscciated to the presheafl
U > E(UYAE'(U).) The standard pairing an(U)éaan'(U)
—">“ﬁ+a E(U)A E*(U) (4ppendix, A.9) yields, upon passage
to aésociated sheaves, 2 pairing

(3.1) an®1‘rOE' > 1T

ptq EAEY,

| If B, E'y EY are in StaHo+(X) and we are given a2 map
EAE'* —> E" in StaHo(X), then I claim there is a natural
map

(12)(RP@A@PEQ~»RPEK

In fact, we may assume that E and E' are globally fibrant
and bounded below, in which case the map is given by
smash product of sections in the obvious sense, Using
the pairing of (Appendix, A.,9) again, we obtain from
3.2 cup products

(3.3) EP(x,2)QE(X,E') =5 #P¥A(x,B").
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(This definition extends to arbitrary E, E', and E" if
X has finite cohomological dimension, using Lemma 3,5 (ii)
below, ) | |

Erample 3.4, Let F and G be abellan sheaves and
let E, Ef, and E" be K(F,n), K(Gm), XK(F®G,n+m), It
follows from the proof of Lemma 2,4, together with (Appendix,
A,7, A,9), that there is a unique pairing EAEt —> E"
such that (3.1) induces the identity of F® G the resulting
cup product H°(X, E)@EMNX,E') —> PPM(X EY) agrees with
the usual cup product HP R (x,F) @A™ (x,6) — gPHIM (v pec)
uhder the identifications of 1.4,

We now stﬁdy products in the spectral sequence, Ve
first need to observe that the ezact couprle defined in the
proof of Theorem 2.5 is actually part of a spectral system
(1.,e., an H{p,q) system ag in [CE, Chapter XV}). Thus if

we define, for E a locally fibrant sheaf of spectra or bispec-

tra E - i bre Py B : ;

ra [p, od] the fibre of E —> [-00,p-1]" and if we

define, for == < Dsas >, Fp 41 = Brp,e01) (-0 ,q7?

then the spectral system is given by H(p,a) = H' (X8 . 47)s
,q=

where, of course, E = e, The maps H(p,q) —> H(p',q")
(pyp-1] *

for (p',a')< (p,q), which we will denote by A, come from
th H :

e natural maps E[p q-1] ):E[p',q'-lj’ the maps 6
H(p,q) => ti(q,r) are the conmnecting homomorphisms in the
long exact cohomology sequences associated to the fibrations
E Co B

(q,r-1] n[p,g-l] — E[p,q~1]' Note that the exact
couple of the proof of Theorem 2,5 consists of the exact

sequences * ° * - H(g-l,q) —> H(-% ,q) —> H(~ %®,q-1)
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—> H(g-1,q) =—> * ° °, but the groups H{(-%,q) will play
no role in our construction of pairings,

Lemma 3.5. Let E, E' be sgheaves of spectrs, let

p and a be (finite) intepers, and assume O rsce , Then

E A < (EAE?® .
(1) By, 1A B g, 007 T EAE ) pug, o
(11) The inclusions of (1) indvce, by pessage to the

Ouotientv, maps E[p’p‘{"r] A E! [q,q‘*’r'l — (E AB? )[P+Q,P+Q+I']'

Proof., This is simply a matter of checking the
definitions,

If we are given a pairing E A E' —3 EY, {the palring

(3.1) induces (via cup product) a2 pairing

t [ ] ' '
(5.6) ng ® E'zp Q' s ge PYPT atq

[av]

of the spectral sequences of E, B', znd E¥,

Theoren 3.7. Let E, E', E" be sheaves of spectra,

o S e S e

and let ©,, E'., E". be the spectral sequences of Theorem

2.5. Then piven aony mop E A B! E" in StaHo(X), the

pairing (3.6) extends to a pairing of spectral seguences

E.®E', —> 2" vhich on Eo is compotible with the cup -

vroduct H® (z{,E) @ H°(X,E') —> H*(X,E") (provided that

either X hes finlte cohomological dimension or all the

sheaves ere in StaHo+(X))

Proof., Let H, H', H" be the three spectral systems,
Lemma 3.5 gives us cup products H(p,p+r) & H'(q.,q-*r)
—> E" (v+q,ptgt+r), which will induce a pairing of spectral
sequences brovidcd we verify commutativity of the follow-

ing (cf, [Do,IIA])s
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H(p,ptr) © H(q,q47) —————=3 H*(ptq,ptqtr)

c@A +L A®5 | 5
H(p+r,ptr+l) © H'(q,q+1) _
-+ —> HY (pta+r,phg+r+l )
H(p,p*l) @ H* (qtr,q+r+l) .

(Note that according to the sign convention A @6 (u@u')
= («1)PA(u) ®@6(ut) if u is a cochomology class of dimension

P.) This follows from Lemma 3.8 below applied to the

fibrations
> —
E[p+r,p+r] Efp,p+r] E[p,p+r~13
Be E? —> EY
th+r,q+r3 > la,a+r] la,q+r-1]
: 1 ] e 1
E[p+q+r,p+q+r]@*htp+q,p+q+r] > ptq ,,pratr-17°

Note that we have used the dual of (I,1.1C) applied to
sheaves of bispectra in order to assume that we have a man
EA E' ~— E* in Bisn(X).

T 1, 2.0 g me <ry w0 RIS 2
Lemne 3.8, Let P &= E ~=> B and F ) > B

be local fibrations of locally fibrent,bounded below

’ s b 11
N 1 k) T)
sheaves of spectre, let F'<&—> Y > B be a locel fibration

of locally fibrent, bounded below sheaves of bisnectra,

c A e O
and assume given mapns EA E' —= E¥, B A B! -L; B,

FA B' =9 F", and B A F' —%3 F" such that p"a = B°pAD',

j_"Y°(FA pﬁ = o.o(i /\E'>, and i"u"(P ATV = Q{E /\i'>. Letting

6 denote the connecting homomorphism in all three coho-

molopmy exact seguences, we have (using the cuv products

cbtained from the four gmiven maps)

s(uvut) = s(u)vu' + (-1)Puves(u')

in H*(X,F"), where ue H’(X,B) and u'e€ H* (X,B'),
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Proof., We will assume first that all sheaves are

globslly fibrant snd a2ll fibrations are global fibrations;
Ain element of HY(X,B) 1ls represented by a2 section s of the
spherical -» sinmplices of B, and an element of HQ(X,B')

is represented by 2 section s' of the spherical -q sim-
plices of B*, Let t be a 1lifting of s to E such that

dit = ¢ for i) O 2nd let t' be a2 similar lifting of st,
Then 6[s] = [dot], vhere dot is regarded as a section of
F, z2nd o6[s'] = [dot'] {see Appendix, A.5). On the other
hand, by definition, [g] v [s'] =-£_D[s"}, where s" is

the image in B of sas® and €__ is és in (Appendiz, A.7).
The image t" in E" of tAt' is ; lifting éf s® to EY,

and its non-triviel faces are d_(p+1)t“ = y(dOtA g') and
dunt“ = u(s/\dvt'). Therafore (Appendix, A.5), 8{[sTv [s'])
E_00s"T = & _ (=107 a0 6]+ (-1)Pla_ t"])

€ (1P e qelslvis'] + & (-1)P & [s]vols']
6lsTv [s'] + (-1)P[s]v 6ls'1.

A

We willl now reduce the genersl case to the special
case juét considered by showing that we can map the given
sheaves to sheaves as in the above péragraph in a way
'compatible with all the given data and such that the
maps are weak equivalences, By applying the free group
functor and then an avpropriate Postnikov functor to p
we can imbed 1t by a wesak eguivalence into a map in GrSpN(X)
for some KN, whic@ we can then imbed in a global fibration ©
of globally fibrant sheaves by (II, 2.8) and [QHA].

Similarly, we imbed p' by a weak equivalence into ET.
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Next we can replace B" by B"® U ' BABY and we can there-
BAB

fore assume that B factors as B AB’ —> BABY ~E§ BY,

The rest of the given maps can be summarized by a diagram

where % = (BAF*) VY (EAE'Y Y  (FAB') and the
E AR FAE®

unlabelled horizontal and vertical maps are, respectively,
(i"u,0,i%) and (e,pAD',e)., If we verify thet 2 — 7
is a stalkwise trivial cofibratioﬁ, then we can replace
E¥ by E' = Z %’E“ and then convert the resulting map
Eﬁ-?}T’into e Tibration. and this will complete the
reduction, Now one sees by inspection that the mep 2 —> 7
is injective, and to prove it is a wezk eguivalence we
obsefve that we have a cécartesian square

(2AFr) Y W%Eﬁ)~?(3 F')A (F BY)

F AF?
) [

EAE* > Z

and similarly for 5, where the vertical arrows are injective,
But it follows from [KWl1l,5.5] that these squarés give .
rise to llayer-Vietoris seguences in homotopy, which re-

duces us to proving a weak equivalence of the snectra in

the upper left-hand corner, and this again follows from

the llayer-Vietoris sequence,



APPENDIX
Kan's Category of Spectra

In this appendix we will show how one can do stable
homotopy theory in Ken's category of spectra using the
abstract homotopy theory of [QHA]. This is vital for the
present paper, because the treatment found in the liter-
ature [K2; KW2,appendixz; BD] does not generalize to sheaves
easily (if it gemeralizes at all), and furﬁhermore, the
present treatment is much simpler cven when we are not
concernéd with sheaves, We wlll use freely standard results
and définitions from simplicisl homotopy theory [GZ;L;i;
see a1$6 QHA and (I,1.17) of this paper], but we will
refer to the literature on spectra only for relatively
easy results., We begin by recalling some definitions
from [K2], in a slightly different (but equivalent) form.

By a gspectrum we mean a sequencelof sets En with
basepoint e, indexed by 211 the integers n, together With'
face operators 4. : En-9 En—l and degeneracy. operators

1

84 By = B 4, for 0 KL <, such that (a) the usual
simplicial identities hold (didj,n dj-ldi for i< j, etec,)
and (b) each simpvlex of & has only finitely meny faces

different from e, The same definition defines bispectrum,

except that the face and degeneracy operators are now
‘defined for all %ntegers i. ﬁntil we deal with smash
products below, we will not mention bispectra, but it is
to be understood that a1l definitioné and results given

for snectra apvly equally well to bispectra,
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fremples, A.dl., For each pair of integers n,k with
k>1, there is a spectrum generated by an n simplex X,
gsubject to the relations dix = ¢ for 12k, Ve will generi-
cally denote such a2 spectrum by A-, we will let L& be the
subspectrum generated by the faces dix, and we will denote
by &. any subspectrum of Z& generated by all faces dix
except one,

A,2. The same definition as in A,1 but with kx = 0
defines the n-sphere s™,

A map of spectra will be celled = fibretion if it
has the ELP (I,1.15) with respect to all inclusions N\ 4.

Ve will say that E satisfiles Kan's extension condition

if B mﬁ e is a fibration,
Homotony groups of snectra are defined in [K2], and

a map is called a week eculvalence if it induces an iso-

morphism on a2ll homotony grouns, We remark that by applying
(I,1.20) to the adjoint functors between simplicial sets

and spectra (see discussion preceding II,1.7) we eaéily

see thatlﬂqE = [SQ’EJStaHo’ where StaHo is the homotopy
category (I,1.9) of spectra, If E satisfies the extension
condition then it is easy to use A.3 below to make this
explicit, Thus an element of an is an equivalence class
[x], where x is a sphericel g simplex of E (i,e., d;x = e
for all i), and where [x] = [x'] if and only if there is

o q+l simplex h such that doh = X, dlh = z', and 4d;h = e

i
for 1> 1, (This description can also be deduced from the

corresponding description in the case of simplicial sets, )
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Proposition A.3., VWith the above definitions of

fibration and weak equivalence, and with the cofibrations

‘defined to be the injective mans, the category of spectira

forns a closed model catecory in the sense of [QHAJ,

Proof., We will use the criterion of (I,1.16). By
definition, the fibrations are characterized by the RLP
with respect to all /\ A, end it is easy to see (using
the correspending result for simplicial sets) that the
triviel fibrations are characterized by the BLP with respect
to all Aiiaﬁl, The factorizations required by (I,1.16)
can thus be constructed by the small object argument as in
[QHA,IT, p.3.47. We need only verify that a mep obtained
by cobase extension from a sum of maps of the form /\ < A
is a weak equivalence, For thisg we cbserve thaet the snec-
tra £§can be’obfained, ﬁp to dimensioﬁ‘shift, by epplying
the functor Sp (II,discussion preceding 1.7) to the pointed
sinplicial set obtained from an ordinary simnlex by col-
lapsing 1ts last face to a point., We obtain,ﬂ by a.similar
process, and the desired result can now be deduced from
the fact that the category of vointed simplicial sets
‘satisfies the axioms[QHA,II,§3; see also (I,1.17)of this
paper] together with the fact [K2] that every spectrum
comes from a prespectrum and every map from a map of
prespectra, finally, to see that every inclusion is
a cofibration in the sense of (I,1.15), we factor an in-
clusion E' ¢ E tas B C*9AE'LfSp(E(O)) > By S-lsp(E(l))‘_7

* * * - E, vhere the notation is as in (II, discussion
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preceding 1.7), and we observe that each of these inclusions
(up to dimension shift) is a cobase extension of a map

obtained by applyirsSp to a cofibration of simplicizal sets,

Remarlt A4, It is convenient to observe at this tine
thatAA is cesnonically isomorphic in Stalo to a sphere,

We can deduce this from the corresponding fact about
simplicial sets, as in the above proof, or we can simply
compute that A has the same homology és a sphere, Note
that we have a canonicsl cycle Ei(-l)idix generating
the non-zero homology group,

We recall now from the homotony theory of simplicial
sets (or from [QH*,I,§3]) the exnlicit descrivtion of the
boundary homomorphisn ﬂnB —2%>ﬂn_1F, wheré P&y E=—>B
is a fibration., We observe that A/A is a sphere and we
revresent an element [&] of nﬁB by a map & /4 = B,
which we 1ift to a map A L3 E. Then t‘ AtA —F
represents 29[33. This descriptioh, together with a
suitable version of the homotovy addition theorem {(which
is proved by applying the Hurewlcz theorem to the wedge
'of spheres obtained from é\by collapsing all didjx to e),
yields the following.

A5. Let Fe»E ~» B be a fibretion, let s be a

sphericel simnlex in B, and let © be 2 lifting of s to

4]

E such that oll faces dit are sphericsl, Then

< [s1 = 2(-1)'[a,t)

in o, F,
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We consider now the smash product of swpectra, Our
definition is an adaptation of the definition in [KWL],
If E and E' are spectra, we define their (externsl) snash
product to be the bispectrum E AE' with a p+q simplex
% AX' for each p simplex x of E and g simplex x' of EY,
subject to the identification eAx' = e = xAe, with faces

defined by

a, (xAx?) = {dn«-i-lx Ax' for =< i< p
x/\di_px' for pLi< oo,
and degeneracies defined similarly,

Remarks, A.6, The smash product functor preserves
weak equivalences in both varisbles and induces a functor
StaHo. X StaBo —> HoZisp which can be converted to an
internai smash product in Stalo using the equivalence of
Stalo and FoBisp established in [KuWl],

A,7. Letting C(E) be the unnormslized chain complex
,of E, i.e., the (reduced) free abelian groun generated by
E, with differential d = Z(fl)idi, there is an isomorphisnm

(A.8) €(Z) ®C(E') —> C(E A E') '
defined by x@x* > Ep zZAx' (p= degree of x), where

gp is defined for 21l integers p by EO =1, & = (-1)p-1£

P p=-1

A,9, There is a pairing T}'_OE ® m EY — ™ EANE?

q +q
defined by [(s] ® [s'] &= CD [sAas®], s and s' being
spherical and £p being as in A,7. The sign is used so
that the pairing will be compatible, under the Hurewicz

map, with the pa}ring of homology classes induced by
(AO8).
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We end this appendix with some technical results

which are not necessary for this paper, but which are
necessary for alternative treaﬁments which have been indi-
cated for veriocus parts of this paper. If K is a pointed
simplicial set and E is a spectrum, we can define a spectrun
K A E by formulas similar to those defining the smash
product of two spectra. The functor X A - has a right
adjoint Hom(¥,~), which is what we are interested in here,
and which can be defined explicitly as follows., For each

integer p 20, Hom( )(KP,E) is a2 graded set

peinted sets
with operators di and Sy (coming from those in E) satis-
fying the simplicizl identities, If we let X° be the
subobject consisting of those elements with only finitely
rany non-trivial faces, then X is a spectrum, and the
faces and degeneracies in X induce coface znd codegeneracy
operators 51 and Ui in X = {XP} s making X a cosimpliciél

spectrum, i.e., 2 coslimplicial object in the category of

sneetra, We now define the function spectrum Hom(X,E)

as the totol spectrum T(X) where, by definition, an n

simplex of T(X) is a sequence (xg € pr+ﬁ) such that

+n
D N p~-1 o) _ pHl
(a) d,x pn = éix -1 and s,x pin = 9% P+l ? for
0<1i< p, where for p = 0 we set X-i“l =e; and (b) (xP

has only finitely many non-trivial faces, these being

p+n)

defined by

o 5
pin’ = (G4 X4

Replacing "a" by “s" in (A,10), we obtain a definition

(£.10) dy (xP

of degeneracies in T(X), which then becomes a spectrum,
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(Wote that an n simplex of Hom(K,E) is Just a map of degree

n from ¥ to E satisfying a certain natural condition, )
Remarks.  Alll. There is an unstabvle anslogue of

the zbove construction of the total spectrum, which was

also discovered (independently) by Bousfield and Kan [BX,§37.

It assigns a total simplicial set to a cogimplicial object

in the category of simplicisl sets. The situation is much

better in the stable case, since in the unstable case 1t

is virtually imnossible to explicitly describe the n sim-

plices of T(X) for n> O,

. A,12, There is an obvious way to write T(X) as the
inverse Limit of a tower, the maps of which are fibrations
if X is "fibrent" in a suitable sense (involving e condition
on the codegeneracies anslogous t©o the condition c¢n the
faces of the simpliclal objects considered in Chapter I,
section 4 of this paper). The homotopy exact couple of
this‘tower yvields a spectral sequence whose E1 term is the
normalization of the cosimplicial graded abelian group
o n,Xp. (This spectrsl sequence, or rather the unstable
version of it, 1is due to Bousfield and Kan, who study it
in a series of papers to appear.) Thus the total spectrunm
should be thought of 2as a non-additive generalization
of the totel complex assoclated to a double complex of
abelian”groups. _

A, 13. There is , ﬁnfortunately, one technicsl com-
plioafion that mékes the function spéctrum léss pleasant

to work with than it would otherwise be. This arises from
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the fact that ggg(so,ﬁ) is not egqusl to E, It does, however,
heve (in a natural way) the'séme~weak honotory type as E,
provided that E satisfles Ken's extension condition., This
follows from Lemma A,15 below, which zlso has s an immedi-
ate corollary the fact that suspension and loop in StaHo

can be identified with dimension shifting fumctdrs. (One

necds to observe here that ggg(SO,E) differs by a dimension

N

shift from L& as defined in [K3], and coincides with E of A,15,)

A, 14, Tor the sake of completeness, here is en out-
line of a better proof that loop is a dimension shift, It
involves technigues which are also useful for other pur-
poses, Consider the prespectrum associated to ClE, O
being defined as in [K3]., It is sufficiént to prove that
this differs from the prespectrum of E by a shift in ine-
dexing. Now an inspccticn of the defiﬁitions shows that
this.would be true if the two simplicial definitions of j 93
(i.e., the adjoints of left and right join with s°) were
the same, They are not the same, but we can make the
above é;gument work if we use a2 model for homotopy theory
which has a better join functor. An example of such s
"model is the category of "simplicial sets with permuta-
tions¥, i.e., the category of contravariant functors on
the category of unordered simplices (or non-empty finite
sebs) with values in the category of sets. This categorﬁ
has a commutative, associative joln modelled on the join

of unordered (geometric) simplicial complexes, and defined

explicitly uesing shuffles, We define fibration and weak
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equivelence by means of the forgetful functor to simpliciel
sets, and it is easy to show, using (I,1.16), that we cen
do -homotopy theory in this category and thet the homotopy
theory coincides with the ordinary homotopy theory of

(qHA, II,$3].

Lemma A15. Let E be 2 groun spectrum, There is a

natural men of pointed sets E w_¢ B such that fd, = di+1f
for 170, dyf = e, and fsi = 85,497 fox 170, Iarthermore

T induces sn isomorphism E — E, where £ is the spectrum

with E = ker dy C E_and d = dy 49 |B 8y = si+1\3, Ir

E is abelien then £ 1is 2 groun homomorphism,

Egggi. To motivate the proof we will first assume
% is abelisn, Then there is an’ lsomorphlisnm of'the normns-
lized chaoin complexes of F and T which tekes x to (=1)% (57
8@ o x) if p = degree x. This extends uniquely [DP,§ 3]

to o mop £ having the reguired properties. We can describe

f recursively as follows, ALgsume we krnow £ on 21l simnlwces

¥y such that diy = 0 for i )Lwl, end let x satisfy dix = 0
for 1®n, Then dnx and x Sy 1dny are killed by di for
1> n-l,so0 f(dnx) ond f(x - Sn~1dnx) are known and we have
f(x) = f(x - Spa1 ) * s I(d AX) =Tz - ne18pX) *

snf(dnx). The attempt to meke this work in the non-abelisn
case leads to the following., Let go(x) = x and let &y
be defined recursively by
giﬁl(x) = Si(x)'sigi(d1X)-1 ifiis even
5,5, (4,%) 7 ey, (2) 1 1 1s odd.
We then define f(x) = gi(x) for largse i if degree x 1s evr
i

ji(x)-l'for large i if degree x isc-.
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One can check that £ has the right properties with respect
to face and degeneracy operators, and it is gquite trivial
to look at the homotopy groups and see that £ is a wesk
equivalence, To sece that it is esctually an isonmorphism,
one can solve explicitly for the inverse, Unforbunately
there does not seem to be 2 simple recursive definition

of the inverse enalogous to the definition of f; Details

will be omitted.
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