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Introduction

Let I" be a discrete group. If I satisfies suitable finiteness conditions,
then one can associate to I' a rational number y(I'), called the Euler
characteristic of I, cf. [18] or §4 below. In this paper we will show how
one can obtain information about y(I") by studying the finite subgroups
of I'. Here is a summary of the results:

In §4 we define y(I') under weaker finiteness conditions than in [18]
and, at the same time, show that y(I') is an integer if I' is torsion-free.
This answers a question asked by Serre ([18], p. 101).

In §6 we give the main results of the paper, including the following:
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(1) If m is the least common multiple of the orders of the finite sub-
groups of I', then m - x(I') is an integer. This was conjectured by Serre
and was proved independently (and earlier) by Verdier [unpublished]
for arithmetic groups.

(2) Under suitable finiteness assumptions, the fractional part of
x(I') can be computed from an “equivariant Euler characteristic”
xr(S) (see §5), where S is the set of non-trivial finite subgroups of I,
regarded as an ordered set on which I" operates. Similarly, if p is a prime
number, the p-fractional part of y(I') can be computed from the set of
finite subgroups of order divisible by p. This is used in §7 to compute a
convenient estimate for the p-fractional part of y(I').

(3) Under suitable finiteness assumptions there is a formula which
expresses the difference between y(I') and the “naive” Euler characteristic
%(I') (which is always an integer —see §4) as a sum of the form )_ c(H)/|H]|,
where H ranges over the finite subgroups of I' (up to conjugacy) and
c(H) is an integer. (The probable existence of a formula of this type was
suggested by Serre.)

In §8 we give some group theoretic applications and in §9 some
arithmetic applications of these results. The arithmetic applications
concern the values at negative integers of the Dedekind zeta function {,
of a totally real number field k. They are obtained by applying the results
on y(I') to certain arithmetic groups I" and using a theorem of Harder’s
[11] which relates x(I") to the values of {,. For example, we obtain in
this way a simple formula for the odd part of the denominator of {,(—1)
(corollary of Proposition 8 of §9.3). For another example, following a
suggestion made by Serre, we use the results of §7 to prove in §9.4 a
classical theorem of Kummer’s and a recent generalization by Green-
berg [9]. Results similar to those of §9 have been obtained independently
by Gueho [10], using completely different methods.

All of our results on y(I') are obtained by passing to a normal sub-
group I of finite index and studying the action of I'/T”" on various
finite dimensional chain complexes or semi-simplicial complexes. The
necessary results on finite group actions are given in §§1 and 2; they
are based on a theorem of Swan’s concerning projective modules over
group rings. The results of §1, which are crucial to the entire paper, are
due jointly to I. Berstein and the author. Results similar to those of §2
were obtained independently by Verdier [23].

I wish to thank J-P. Serre for numerous suggestions, without which much of this work
would not have been done. I am also grateful to the referee for suggestions which helped
improve my exposition. Finally, I thank I. Berstein for permission to include in this paper
the results of our joint work (§ 1), and P.J.Kahn for his interest and encouragement.
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L. Finite Group Actions
§1. Chain Complexes of Projective Z [ G]-Modules

The results of this section represent joint work with I. Berstein.

Let C be a (non-negative) chain complex of abelian groups. If H(C)
is finitely generated, then we denote by y(C) the Euler characteristic
> (—1)irankz H;(C). In case a finite group G acts on C (so that C is a
complex of Z[G]-modules), we denote by L the alternating sum
X(—1)h;, where h; is the character associated to the Q[G]-module
H,(C)® Q. Thus L is an integer-valued function on G, and L(s) for seG
is the Lefschetz number of the action of s on C. Finally, we denote by R
the character of the regular representation of G, i.e., R(1)=|G| and
R(s)=0for s+1.

Theorem 1. Let C be a finite dimensional chain complex of pro-
jective Z[ G]-modules, where G is a finite group, and assume that H,(C)

is finitely generated. Then the complex Co=2Z ) C has finitely generated
Z[G]

homology and the virtual character L defined above is equal to y(Cg) - R.

In other words,

(@) x(C)=I|Gl- x(C¢) and
(b) L(s)=0 for s=+1.

(C is called finite dimensional if C;=0 for sufficiently large i.)
The proof of Theorem 1 will make use of the following lemma,
which is implicit in the work of Wall ([25, 26]):

Lemma. Let C be a chain complex of projective R-modules, where R
is a noetherian ring. If H,(C) is finitely generated for each i, then C is
homotopy equivalent to a complex D of finitely generated projectives.
If, in addition, there is an integer n such that H(Hom(C., M))=0 for
i>n and all finitely generated R-modules M, then we can choose D so that
D;=0 fori>n.

For the first part of the lemma, one simply constructs by induction
on k the truncations D® = (D)), ., of the desired D, together with (compat-
ible) maps f®: D® — C, such that f® induces a homology isomorphism
in dimensions less than k and a homology epimorphism in dimension k.
There is no difficulty in carrying out the inductive step, and each D, can,
in fact, be taken to be finitely generated and free. We obtain in this way a
complex D and a map f: D — C which induces a homology isomorphism
in all dimensions; D and C being dimension-wise projective, f is a
homotopy equivalence.

Suppose now that H(Hom(C., M))=0 for all i>n and all finitely
generated M. Then the same is true with C replaced by the complex D
just constructed; in other words, any homomorphism ¢: D;— M (for
16*
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i>n) which vanishes on the submodule B; of i-dimensional boundaries
of D factors through D;_;. Taking M =D,/B; and ¢ equal to the pro-
jection D;— D;/B;, we conclude that H;(D)=0 and that B;_, is a direct
summand of D;_,. It follows at once that we may replace D by its quotient
D defined by

D, i<n
D;=\D,/B, i=n
0 i>n,

which proves the second part of the lemma.

Proof of Theorem 1. In view of the lemma (applied with R=Z[G]),
we may assume that each C; is finitely generated. Then L can be com-
puted on the chain complex level from the complex Q) C, and the result
follows from the following theorem of Swan’s: z

Swan’s Theorem. If G is a finite group and P is a finitely generated
projective Z[ G]-module, then QX) P is a free Q[ G]-module.
z

(See [22], Theorem 4.2, or [1], Chapter XI, Theorem 5.2.)
There is also a “mod p” version of Theorem 1:

Theorem 1. Let C be a finite dimensional chain complex of pro-
jective IF,[ G]-modules, where p is a prime number and G is a finite p-group,
and assume that H,(C) is finitely generated. Then Cg has finitely generated

homology and
2(C)=1G|- x(Cg)-

(Here x(—) is to be understood as the alternating sum of the IF-
ranks of the homology groups.)

As in the proof of Theorem 1, we may assume that each C,; is finitely
generated and we may therefore compute Euler characteristics on the
chain level. The result now follows from the fact that, since IF,[G] is a
local ring, projective IE,[ G]-modules are free (cf. [22], Corollary 4.4,
or [20], Chapter IX, §1).

Remark. There is a topological analogue of Theorem 1: If G acts
freely on a paracompact space X of finite cohomological dimension,
and if H*(X, Z) is finitely generated, then the virtual character L asso-
ciated to the action of G on H*(X, Z) is equal to x(X/G)- R. (Here co-
homology and cohomological dimension are to be interpreted in the
sense of sheaf theory, cf. [8].) A proof of this can be found in Zarelua [27].
Similarly, thereisa topological analogue of Theorem 1’, cf. [2], Chapter III.

In case the assumption on H*(X, Z) is replaced by the assumption
that H*(X, @) be finite dimensional, the topological analogue of Theo-
rem 1 is no longer valid. In fact, one can construct for any finite group G
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a 3-dimensional CW complex X which is @-acyclic (so x(X)=1) but
which admits a free G-action.

§2. Semi-Simplicial G-Complexes!

Notation. X denotes a finite dimensional semi-simplicial complex
on which a finite group G operates. (“Finite dimensional” means that
all simplices of sufficiently high dimension are degenerate.) For any
subgroup H of G we write X (resp. Xp) for the set of simplices fixed by H
(resp. the set of simplices whose isotropy group is H). We denote by Y
the orbit complex X/G and by Yy the image in Y of X. Finally, we denote
by ay the character of G induced from the “augmentation character”
of H,i.e., ag=R —byg, where R is the regular character of G and by is the
character of the Q[GJ]-module Q[G/H]. (Explicitly, bg(s) is simply
the number of fixed points of s acting on G/H.)

We need a preliminary remark on the homology of semi-simplicial
complexes. It will be convenient below to be able to talk about H,(A),
where A is a graded subset of a semi-simplicial complex K which is not a
subcomplex but which is a difference L — L of subcomplexes (which can
always be taken with L = L). This homology, which is isomorphic to
H,(L, L), is defined directly in terms of 4 as the homology of a chain
complex C,(A) with one generator for each simplex of A4; the differential,
as usual, is the alternating sum of the faces, where we set d,6=0 in
C.(A) if, in K, d;o¢ A. As usual, we can normalize C,(A4) (by dividing
out by the subgroup generated by the degenerate simplices) without
affecting the homology. (Note that A4 is closed under degeneracy oper-
ators.) This discussion applies, in particular, to the subsets Xy of X, for

Xy=X"- | x¥.

H'2H
Similarly, Yy is a difference of subcomplexes of Y.

Theorem 2. With X and G as above, assume that each fixed-point
set X¥ has finitely generated integral homology. Then Y and each Yy
have finitely generated homology and the virtual character L associated
to the action of G on H(X) is given by

L=x(Y):R— ), 1(Yy)- an,
Hed
! The interested reader can translate the results of this section into the topological context.
Instead of finite dimensional semi-simplicial complexes, one considers paracompact
spaces of finite cohomological dimension.
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where @ is a set of representatives for the conjugacy classes of non-
trivial subgroups of G which occur as isotropy groups in X. In other words,
@) x(X)=IGl- x(Y)= } (IGI—(G:H))x(Yy) and

Hed

(b) L()= Y. (Y buls) for s 1.

Hed

(As in §1, L is the alternating sum of the characters of the Q[G]-
modules H;(X, @) and R is the regular character of G.)

There is also a mod p version of Theorem 2 (for which the hypoth-
eses can be weakened) which is due to Floyd in case G=Z/pZ (cf. [6],
Chapter 111, Theorem 4.3):

Theorem 2’. Assume that G is a p-group for some prime p and that X
has finite mod p homology. Then Y and each Yy have finite mod p homology
and the formula of Theorem 2(a) holds.

(It is understood here that all Euler characteristics are to be computed
from mod p homology.)

Corollary. Let X be a finite dimensional G-complex (with G an
arbitrary finite group) and X' a G-invariant subcomplex, and assume
that X and X' have finitely generated integral homology. If d is an integer
which divides the cardinality of every orbit which occurs in X — X', then d
divides y(X)—x(X').

Assuming that the formula of Theorem 2(a) applies to both X and X,
the corollary follows from the fact that, by hypothesis, d can only fail
to divide (G:H) if X = Xy. In particular, this proves the corollary if G
is a p-group for some prime p, since Theorem 2’ applies; the general
case follows easily by passage to the Sylow subgroups of G.

Proof of Theorem 2. The proof is based on the decomposition of X
according to orbit type: X = U G- Xy, ()
Hedt

where @* =@ U {1}. We can now use the additivity of the Euler charac-
teristic to deduce
1X)= ) x(G-Xp), @)
Hedt
provided each G- Xy has finitely generated homology. Similarly, we
find that
Lz Z LH, (2,)
Hed™*
where Ly is the virtual character of G associated to the action of G on
H, (G- Xp)
(To justify the additivity assertion, it suffices to show that the subsets
G - Xy are the successive differences F,—F,_, in a filtration of X by
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G-invariant subcomplexes,
J=F,cFc---cE=X.

Such a filtration is easy to find: We order the subgroups H,, ..., H, in
@™ in such a way that |H;|=|H,_,|, and we set

F=)G -Xx™%)
jsi
We now verify that G - Xy has finitely generated homology and we
compute (G - Xg) and Ly. In the first place, note that G - X} is the G-set
induced from the N(H)-set X, where N(H) is the normalizer of H in G, i.e.,

G * XH: U o - XH .
aeG/N(H)
Moreover, since Xg=X?nG- Xy, Xy is a relative subcomplex of
G - Xy, in the sense that if a simplex of Xy has a face in G- Xy, then
that face is also in Xp. It follows easily that

H(G-Xpg)= @ o H,(Xp). 3)

acG/N(H)
Now H_(Xp) is clearly finitely generated, since

H, (Xp)=H, (X% () X7)
H'2H
and since each fixed-point set has finitely generated homology. (Note
that the family {X™'} is closed under intersection.) Therefore H, (G - Xj)
is indeed finitely generated and (3) implies that

x(G- Xp)=(G:N(H))- x(Xp)

and that Ly is the virtual character of G induced from the virtual character
of N(H) associated to the action of N(H) on H, (Xg).

Observe now that N(H)/H acts freely on Xy, so we may apply
Theorem 1 (§ 1) to the normalized chain complex of X5 . We deduce
that Yy has finitely generated homology, that y(Xy)=(N(H):H) - x(Yg),
and that the virtual character of the action of N(H) on H,(Xp) is
% (Ya) - Ryqany > where Ry gy g is the regular character of N(H)/H, regarded
as a character of N(H). Since the character of G induced from Ry x
is precisely by, the results of the preceding paragraph can be restated as
(G- Xg)=(G:H)- x(Yy) and Ly=y(Yy) - by, so that (2) and (2') become

2= 3 (G:H)-1(Y) @
and L= ¥ 7(Yn)-by. @)

Hed™*
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Evaluating (4) at any s= 1, we obtain the formula (b) of the theorem.
In order to obtain (a), we need to eliminate from (4) the term corresponding
to H=1. Consider the decomposition of Y induced by (1):

Y= ) Y.
Hed*
Arguing as in the derivation of (2), and using the already established
result that H, (Yy) is finitely generated, we find that H_(Y) is finitely

enerated and that
8 (V=Y x(Y). §)

Hed+
Multiplying (5) by |G| and subtracting the result from (4), we obtain (a).

Proof of Theorem 2'. The proof is identical to that of Theorem 2(a),
with two modifications: (i) All homology groups are to be understood as
having coefficients in Z/pZ, and Theorem 1’ is used instead of Theorem 1.
(ii) Since we no longer assume that each X¥ has finite (mod p) homology,
we need to observe that this follows from the hypothesis; this is a well-
known consequence of Smith theory (cf. [6], Chapter III). [It is also a
consequence of equivariant homology theory, cf. [17], Corollary 4.3.]

Remarks. 1. Verdier [23] has pointed out that in case G is cyclic,
thecharacters Rand ay (H # 1) are linearly independent, so that Theorem 2
enables one to determine x(Y) and each y(Yy), provided one knows L.

2. The chain complex analogue of the corollary to Theorems 2 and 2’
is false. More precisely, suppose C is a finite dimensional chain complex
of Z[G]-modules such that H (C) is finitely generated and each C; is
a direct sum of modules of the form Z[G/H], with (G:H) divisible by
an integer d. Then x(C) need not be divisible by d. Counter-examples
exist with G=Z/4Z, for example.

I1. Euler Characteristics of Groups
§ 3. Preliminaries: Finiteness Conditions

Let I be a group. I' is said to have finite cohomological dimension
(written cd I < o0) if the Z[I']-module Z (with trivial I'-action) admits a

resolution 0—>P—>.-—>B—>Z—0,

where each P, is a projective Z[I']-module. In case each P. can be taken
to be finitely generated (resp. finitely generated and free), we say that I"
is of type (FP) (resp. (FL)).

If I" has a subgroup I of finite index such that cdI” < oo, then we
say that I" has virtually finite cohomological dimension (writtenved I' < 00);
in this case, according to a result of Serre’s ([18], No. 1.7, Theorem 1)
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the subgroups of I' with finite cohomological dimension are precisely
the torsion-free subgroups.

Similarly, if I' has a subgroup of finite index which is of type (FP)
(resp. (FL)), then we say that I' is of type (VFP) (resp. (VFL)). In case I’
is of type (VFP), it is easy to see that every torsion-free subgroup of
finite index has type (FP). It is not known whether groups of type (VFL)
have the analogous property. '

For most of the results of the present paper, it will be sufficient to
consider the following finiteness condition, which is certainly satisfied
by all groups of type (VFP):

Definition. I' is said to have finite homological type if
(i) ved I'< oo and

(ii) every torsion-free subgroup of finite index has finitely generated
integral homology.

Example. If I is an arithmetic subgroup of G(k), where G is a linear
algebraic group over a number field k, then I' has finite homological
type, and, in fact, every torsion-free subgroup of finite index has type
(FL). Special cases of this result are given in [18] and [ 19], and the general
case follows from the Borel-Serre [4] construction of a contractible
differentiable manifold with corners on which I' acts properly, with
compact quotient. In case G is reductive, S-arithmetic subgroups of
G(k) also have the property that every torsion-free subgroup of finite
index is of type (FL). ~

For future reference we state an elementary fact, which follows
easily from the Hochschild-Serre spectral sequence:

Proposition 1. Let I' be a group and I a subgroup of finite index.
Then I has finite homological type if and only if I'" has finite homological

type.

§ 4. Definition and Multiplicative Properties of y(I')
If I is a group such that H,(I; Q) has finite rank over @, we set

1) =X.(—1)'dime H(I; Q).

Theorem 3. Let I" be a group of finite cohomological dimension and
let I be a normal subgroup of finite index with H,(I"", Z) finitely generated.
Then

=1y -3I).

Moreover, the virtual character associated to the action of I'/I"" on H,(I")
is equal to %(I') - R.
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Let (P) be a projective resolution of Z over Z[I'] with P,=0 for large
i, and let C be the complex of Z[I'/I""]-modules defined by

Ctz(R)T’=Z®P1

VAV

Then H,(I'")=H,(C) and H,(I')=H,(Cg), where G=I'/T"’; the theorem
is now immediate from Theorem 1 (§ 1).

Recall from [18], No. 1.8, that the Euler characteristic y(I') is defined
for groups I of type (VFL), and is characterized by the following two
properties:

(i) If I'" is a subgroup of T of finite index, then
A =TIy ().
(i) If I is of type (FL) then
x(I') =Z(“ 1)irankzm E,
where (F,) is a finite free resolution of Z over Z[I].
(Note that we also have y(I')=%(I') in the situation of (ii).)

I claim now that we can extend the definition of x(I') to groups I
of finite homological type in such a way that property (i) continues to
hold, as well as:

(1) If I is torsion-free then y(I')=%(I).

In fact, if I is a group of finite homological type and I is a torsion-
free subgroup of finite index, then we set
()
(r:-r’’

x()=

and it follows from Theorem 3 that this is independent of the choice
of I''. It is clear that (i) and (ii') hold and that this definition agrees with
that of [18] in case I' is of type (VFL). In particular, we have obtained an
affirmative answer to Serre’s question ([18], p. 101) as to whether y(I') is
integral if T is torsion-free and of type (VFL).

We turn now to a related question asked in [18], p. 101 Let I" be
a group of type (FP) and suppose that I" operates on a finite dimensional
vector space V over a field K, which, for simplicity, we assume to be of
characteristic zero. If I'" is a normal subgroup of finite index, then I'/I"’
acts on H'(I', V) and we may form the alternating sum of characters,
which we denote L, . (The (FP) property guarantees that H*(I'"', V) is
finite dimensional.) Serre asks whether LV is a multiple of the regular
character R of I'/T”, and again the answer is yes:
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Theorem 4. With the above hypotheses and notation,
Ly=x(I)-dimg(V)- R.

Let (P,) be a finite projective resolution of Z over Z[I]; then L,
can be computed on the chain complex level from the complex
Hom.(P., V) of K[I'/T"]-modules. The theorem now follows from
Theorem 7 of Appendix A, provided we verify that I is finitely generated.
Now the property (FP) implies that the augmentation ideal I of Z[I']
is a finitely generated left ideal; consequently, it is generated by finitely
many elements of the form s—1 (sel’), and I claim that the elements s
which arise in this way generate I’ In fact, let I be the subgroup which
they generate, and let xeI'/I; be the coset of the identity. Then I, fixes x,
hence I annihilates x in the Z[I']-module Z[I/I;]; but this implies
that I' fixes x, so I'=1I and the claim is verified.

Corollary 1. Let I" be a group of type (FP) and let V be a K[ I']-module

as above. Then Y(— 1) dimg H'(I; V)= x(I') - dimg (V).

(This is the case I'=TI" of Theorem 4.)

Corollary 2. Let | ST "' 1
be a short exact sequence of groups. If I'' and I'"" are of type (VFP)and I'
is virtually torsion-free, then I is of type (VFP) and

x(D)=xI") - x(I'").

We may assume that I' is torsion-free, in which case I’ is of type (FP);
we may also assume that I'” is of type (FP). Using an argument similar
to (but slightly more complicated than) that of [18], No. 1.3, proof of
Proposition 6, one can then show that I' is of type (FP), and the Euler
characteristic formula follows from the Hochschild-Serre spectral

sednEnes . HY(I", B, Q)= H? (1, @),
together with Corollary 1.

§ 5. Equivariant Euler Characteristics

Let I' be a group which operates on a simplicial complex K, and
assume (a) that K has only finitely many simplices modulo the action
of I, and (b) that the isotropy group I, of every simplex ¢ of K has finite
homological type. We can then choose a (finite) set 2 of representatives

for the simplices of K modulo I; and we set

xr(K)= > (=)™ y(I3).

el
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We call y,(K) the equivariant Euler characteristic of the I'-complex K.
[ This concept is introduced implicitly by Serre ([18], Proposition 14(b)),
where it is shown that y(K)=x(I) if K is acyclic.] In case K has a sub-
complex K’ invariant under I, we define the relative equivariant Euler
characteristic y(K, K') by a similar sum, where X is now taken to be
a set of representatives for the simplices of K — K’ modulo I'; note that

xr(K, K')= xr(K)— xr(K).

We will be interested in the case where K arises from an action of I"
on a partially ordered set S, i.e, K is the complex K(S) whose vertices
are the elements of S and whose n-simplices are the linearly ordered
subsets of S of cardinality n+ 1. We set

xr(8)=xr(K(S)),
provided the latter is defined. Similarly, if S’ is a I'-invariant subset of S,
we set , ,

Throughout the remainder of this section, we will assume that S
is a partially ordered I'-set satisfying the following three finiteness
conditions:

(i) Every element of S has only finitely many predecessors.

(ii) The orbit set S/I is finite.

(iii) The isotropy group I of any element s of S has finite homological
type.

The following lemma shows that y(S) is defined under these hypoth-
eses:

Lemma. (a) K(S) has only finitely many simplices modulo the action
of I

(b) For each simplex o of K(S), the isotropy group I, has finite homo-
logical type.

By (i1) we may choose a finite set F of representatives for the elements
of S modulo I; and we note that every simplex of K(S) is equivalent to
one whose largest vertex is in F; but there are only finitely many such
simplices by (i), whence (a). Assertion (b) follows from (iii) together with
the observation that, by (i), I, has finite index in I, where s is the largest
vertex of o.

Here are some elementary properties of the equivariant Euler
characteristic:

Proposition 2. (i) If I'" is a subgroup of I of finite index, then
xr(S)=(:I") xr(S).
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(ii) The equivariant Euler characteristic is compatible with induction.
In other words, if S has a subset T invariant under the action of a subgroup

N of I, and if S=[[a-T
acI'/N

(as an ordered set ), then yy(T) is defined and
xr(8)=xn(T).

(iii) If S has a largest or smallest element then

xr(8)=x(I).

@iv) If I has a finite normal subgroup H which acts trivially on S,
then xr g(S) is defined and is equal to |H| - xr(S).

A proof of (i) is contained in the proof of Proposition 14(b) of No. 1.8
of [18]. Property (ii) is immediate from the definition. Property (iii)
follows from the fact that, in the sum defining y(S), all the terms cancel
in pairs except for the term y(I") (which corresponds to the extreme
element of S, regarded as a vertex of K(S)). Finally, for (iv) it suffices to
show that for each simplex o of K(S), I./H has finite homological type and

xU5/H)=|H| - y(I5).

Both facts follow easily from the observation that any torsion-free
subgroup of I, of finite index is isomorphic to its image in I,/H. (Note:
One needs to use Proposition 1 of §3.)

It will be convenient to have a formula which expresses y(S) as a
sum indexed by the elements of S/I". For any seS, we define subsets S(s)
and S’'(s) of S by

S(s)={teS: t=s},

S'(s)={teS: t>s}.
Note that I; acts on S(s) and S'(s).

Proposition 3. For each seS, the finiteness conditions (i), (ii), (iii) are
satisfied for the action of I, on S(s), and

xr(S)="Y xr,(S(s), S'(s)),

sed
where @ is a set of representatives for S modulo I'.

Condition (i) holds trivially, and (ii) and (iii) follow from the above
lemma, applied to the action of I' on the set of 1-simplices of K(S).
To prove the formula, we choose for each s a set Z(s) of representatives
of K(S(s))—K(S'(s)) modulo I; then we can take = | ) Z(s) as a set of

se®
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representatives for K(S) modulo I', and the formula follows at once from
the definitions.

Finally, we give a homological interpretation of the equivariant
Euler characteristic. Let (S, S") be a pair of ordered I'-sets such that
xr(S, 8’) is defined, and let C(S, S’) be the complex of (ordered) simplicial
chains of the pair (K(S), K(S").

Proposition 4. Suppose C is a chain complex of projective Z[I']-
modules which is weakly equivalent® to C(S,S’). Assume either that T
is torsion-free or that I' is virtually torsion-free and C is finite dimensional.
Then the complex Cr=Z () C of abelian groups has finitely generated
homology and zir)

xr(S, 8)=yx(Cy).

In case I' is virtually torsion-free and C is finite dimensional, let I’
be a torsion-free normal subgroup of finite index. Then Theorem 1 of
§1 implies that C, will have finitely generated homology if C,. does and
that y(Cp)=(":I")x(Cr). Comparing this with Proposition 2(i), we see
that we may replace I’ by I, i.e., we may assume I’ is torsion-free. Further-
more, we may replace C by any other complex satisfying the hypotheses,
since any two such complexes are homotopy equivalent. In particular,
we may assume that C is the total tensor product P)C(S, S’), where

z

P=(P) is a projective resolution of Z over Z[I']. Then C;=P&) C(S, §')
Zir

(r
and hence the spectral sequences of the double complex P.() C.(S, S’)
zir)
converge to H,(Cr). One of these spectral sequences has E} =
H (I, C,(S,8)). If X, is a set of representatives for the p-simplices of
K(S)— K(S") modulo I', then

Cy(S,8)= @ ZLI'/L],

gely

so we have
E,,= ® H,IL,,Z).

oelp

Since each I}, is torsion-free and of finite homological type, the proposition
follows immediately.

Remark. The spectral sequence used in the proof is, essentially,
the spectral sequence given by Quillen in [17], I, (1.11).

2 Two chain complexes are called weakly equivalent if there is a third complex which maps
to both of them by maps inducing homology isomorphisms. (In the present case, since C
is assumed to be a complex of projectives, this implies that there is actually a map C — C(S, §")
inducing an isomorphism in homology.)
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§6. The Finite Subgroups of I’

Let I' be a group of finite homological type and let S be a set of non-
trivial finite subgroups. We assume that S is invariant under conjugation,
so that S is an ordered I'-set (ordered by inclusion). Assume further
that the following three conditions are satisfied:

(i) S contains only finitely many conjugacy classes of subgroups.

(i) For each HeS the normalizer N(H) of H inT has finite homological
type.

(Note that (i) and (ii) imply that x(S) is defined.)

(iii) If two members H, H' of S generate a finite subgroup of I', then
they have an upper bound in S.

Under these conditions we have:

Theorem 5. Let m be the least common multiple of the orders of the
finite subgroups of T which do not contain any member of S as a subgroup.
Then m - (x(I') — xr(S)) is an integer.

Taking S =0, we obtain:

Corollary 1. If I' is a group of finite homological type and m is the least
common multiple of the orders of the finite subgroups of I', then m - y(I')
is an integer. Equivalently, if q is a prime power which divides the de-
nominator of y(I'), then I' has a subgroup of order q.

We remark that Corollary 1 makes precise a result of Serre’s ([18],
No. 1.8, Proposition 13), which says that m" . y(I")eZ for some integer n,
or, equivalently, that I has p-torsion for every prime p which divides
the denominator of y(I').

Considering now the other extreme, where S is the set of all non-
trivial finite subgroups, we obtain:

Corollary 2. If T is a group of finite homological type such that
conditions (i) and (ii) hold for the set S of all non-trivial finite subgroups
of T, then y(I')— xr(S) is an integer.

Thus x(I') and x(S) have the same “fractional part”.

Finally, we apply Theorem 5 to the set S, of all finite subgroups of
order divisible by a prime p:

Corollary 3. If I is a group of finite homological type such that
conditions (i) and (ii) hold for the set S, then x(I')— x(S,) is p-integral.

Thus the “p-fractional part” of y(I') (ie., that part of the partial
fractions decomposition of y(I') with denominator a power of p) is the
same as the p-fractional part of y,(S,).
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Remark. Conditions (i) and (ii) hold for any S if I' is as in the example
of §3. In fact, (i) follows from the Borel-Serre [4] action with compact
quotient, or, in the arithmetic case, from results of Borel and Harish-
Chandra, cf. [3], p. 14; and (ii) follows from the fact that if I is a group
of one of the two types mentioned in the example of §3, then each N(H)
is of the same type. (The point is that if G is a reductive group over k
then the centralizer of any finite subgroup of G(k) is again reductive.)

The proof of Theorem 5 is based on a construction due to Serre
([18], No. 1.7):

Lemma. Let I' be a group of virtually finite cohomological dimension.
Then there exists an acyclic finite dimensional semi-simplicial complex Z
on which I' operates, such that the following two conditions are satisfied :

(i) The isotropy group of every simplex is finite.
(ii) For every finite subgroup H of I, the fixed-point subcomplex Z¥
is acyclic.

We briefly recall the construction. Let I” be a subgroup of finite
index such that cdI” < oo, and let W be an acyclic finite dimensional
semi-simplicial complex on which I acts freely. The I'-complex Z is
then obtained from the I'-complex W by a “multiplicative induction”
(see [18], No. 1.7, or [17], 11, §16). Property (i) is proven in [18], and
property (ii) follows from the fact that Z, as an H-complex, is simply
the cartesian product of (I':I"’) copies of W, with H acting by permuting
the factors according to the (free) action of H on I'/T”; thus Z¥ is iso-
morphic to the product of (I":I'")/|H| copies of W, hence is acyclic.

Proof of Theorem 5. Let Z be as in the lemma and let Z'= U zZH,;
HeS
Z' is a I'-invariant subcomplex of Z. Let I be a torsion-free normal

subgroup of I' of finite index, let X=Z/I" and X'=Z'/T"", and consider
the action of G=I"/I"" on the pair (X, X'). One checks easily that if ceZ
and ¢ is its image in X, then the isotropy group G; is the image in G of I.
In particular, if 6¢ X', then G; has order a divisor of m, hence the orbit
of & has cardinality divisible by d=|G|/m. Using the corollary of Theo-
rems 2 and 2’ (§2), we conclude that

m- (x(X)—x(X))/IG]

is an integer, provided X and X' have finitely generated homology.
Now H,(X)=H,(I"), so H,(X) is indeed finitely generated and y(X)=
x(I'"). Thus x(X)/|G|=x(I'), and we will complete the proof by showing
that X' has finitely generated homology and that y(X')/|G|= x(S).

Let C=C(Z’) be the chain complex of Z'. Since Z’ is the union of the
acyclic complexes Z¥ (HeS), it is well-known (see Appendix B) that C is
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weakly equivalent to C(S). (This is where the condition (iii) on S is used.)
Note that the equivalence is compatible with the action of I'. Since
C(X')=Cy, and since C is a complex of free Z[I""]-modules, Proposi-
tion 4 of §5 implies that H (X") is finitely generated and that y(X')=
xr-(S); in view of Proposition 2 (i) of § 5, this is precisely the desired result.

We end this section by examining the situation of Corollary 2 in
more detail. Using Proposition 3 of §5, we can rewrite the conclusion
of that corollary as follows:

()= HZG)XN(H) (S(H), S'(H))+integer,
where @ is a set of representatives for the conjugacy classes of non-
trivial finite subgroups of I' and S(H) (resp. S'(H)) is the set of finite
subgroups containing (resp. properly containing) H. Our next result
makes this formula more precise.
We need some notation. If H is a finite subgroup of I', then H acts
trivially on S(H), and we set

Ry = Xnw)/H (S (H),S'(H ))

Note that the term yyq,(S(H), S'(H)) which occurs in the above sum
is equal to ng/|H| by Proposition 2 (iv) of §5. Let I'" be a torsion-free
normal subgroup of I' of finite index; then we can identify H with a
subgroup of I'/I"’", and we denote by ay the character of I'/I"" induced
from the augmentation character of H, cf. §2. Finally, let L be the virtual
character of I'/I"" associated to the action of I'/T" on H,(I").

Theorem 6. Let I" be as in Corollary 2 of Theorem 5 and let I'' be a
torsion-free normal subgroup of finite index. Then, with the above notation,
the rational number ny is an integer for each H and

L=)~((F) ‘R_ Z I’lHaH.
He®
In particular,

. 1
A0 =20) = 3 m (1= 7)

The second formula follows from the first by evaluating both sides
at 1 and dividing by (I":I""). To prove the first formula, we will again
consider the action of G=I'/I" on X=Z/I" with Z as in the lemma.
The virtual character L which we are trying to compute is the virtual
character of G associated to the action of G on H,(X), and we will com-
pute this by means of Theorem 2 of §2.

We must check that H,(XP) is finitely generated for every subgroup
D of G. Letting &y, be a (finite) set of representatives for the I'"-conjugacy

17 Inventiones math., Vol.27
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classes of finite subgroups of I' lying over D, and letting f: Z — X be the
projection, one verifies easily that
XP= [ f(z%) and f(z¥)=Z"/N'(H),
Hedp
where N'(H)=N(H)I". (For the purpose of verifying these equations,
one can replace I' by the inverse image of D in I'; then H is the isotropy
group of each ze Z¥, and the assertions are obvious.) It follows that
H*(XD)= @ H*(N,(H))’

Hedp
which is indeed finitely generated in view of the hypotheses on I.
Thus Theorem 2 applies and yields the formula

L=y(Y)-R— }, x(Yp)ap,
De¥Y
where Y=X/G=Z/I" and Y is a set of representatives for the conjugacy
classes of non-trivial subgroups D of G. Let @, be the subset of & con-
sisting of those members of @ whose image in G is conjugate to D. Then
one sees easily that
y YD= I_I YH,

H€¢D

where Yy is the image in Y of Z, the latter being the set of simplices in Z
whose isotropy group is H. Moreover, each Yy is a relative subcomplex

Yy,
o T %0 (Yo=Y 2(Yo).

HG(DD

Since &= [ [ ®p, the above formula for L becomes

De¥Y
L=x(Y)-R—- > x(Yg)ag,

Hed

and we will complete the proof by showing that y(Y)=%(I") and y(Yy) =ng.

The first equality follows at once from the fact that, since the chain
complex C(Z, Q) is a projective resolution of Q over Q[I'], H, (Y, Q)=
H,(I', Q). For the second equality, note that Zy is the difference of two
unions of acyclic complexes:

Zu= | z%- | Zz~.
H’'eS(H) H'eS'(H)

We conclude as in the proof of Theorem 5 that the normalized chain
complex C(Zy) is equivalent to C(S(H), S'(H)). Now C(Zy) is a finite
dimensional complex of free Z[N(H)/H]-modules and C(Yy)=
C(Zy)nwmym > 0 Proposition 4 of §5 implies that

. X(YH)=XN(H)/H(S(H)a S’(H))ana
as required.
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Corollary. If every non-trivial finite subgroup of I is contained in a
unique maximal finite subgroup, then

~ 1
(D=1~ Y, (1—0) 1Ny,
Hed’ |H]
where @' is a set of representatives for the conjugacy classes of maximal

finite subgroups of T.

Note first that S(H) (for any H) has a smallest element, so we can
write (by Proposition 2 (iii) of §5)

nH=x(N(H)/H) _XN(H)/H(S,(H))-

In particular, ngp=y(N(H)/H) if H is maximal. If, on the other hand,
H is not maximal (and non-trivial), then the hypothesis implies that
S’(H) has a largest element, so ny=0 and the corollary follows imme-
diately.

This applies for example, if I' is a Fuchsian group (finitely generated
discrete subgroup of SL,(R)/{+1}). In this case, moreover, N(H)=H
for H maximal, so we obtain

1
(D=3~ T (1-7).
1= 2
which is a classical formula. (See, for example, [21], Theorem 2.20, for
the case of Fuchsian groups of the first kind.)

Remark. In case it is assumed that each N(H) has type (VFP), it is
possible to generalize Theorem 6 to a formula for the virtual character
L, associated to a representation of I' as in Theorem 4 of §4. The

formula is N )
Ly=%(I)-dimg(V)-R— Z Rpdy v,
He®

here ay y is the character of the representation of I'/T" induced from the
representation Iy ® V of H, where I is the augmentation ideal of K[ H].

§ 7. The p-Fractional Part of y(I")

Throughout this section p will be a fixed prime number and I" will
be a group satisfying the hypotheses of Corollary 3 of Theorem 5 (§ 6).
The purpose of this section is to give an approximation to the p-fractional
part of x(I'), or, equivalently, to the p-fractional part of y (S), where we
now denote by S the set of finite subgroups of I' of order divisible by p.
We begin with a special case.

Suppose I has the property that every HeS has a unique subgroup
of order p. (Every H €S might be cyclic, for example.) Then, as an ordered
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set, S=[ [ S(P), where P ranges over the subgroups of I' of order p and
S(P) is the set of finite subgroups of I' containing P We can then compute
xr(S) by means of parts (i) and (iii) of Proposition 2 of §5; letting @
be a set of representatives for the conjugacy classes of subgroups of
order p of I, we obtain:

1r(8)= Y, xnp(S(P)= ). x(N(P)).
Ped Ped
Thus the p-fractional part of y(I') is the same, in this special case, as
that of Y x(N(P)).

Ped
In the general case, we will show that this is still approximately true.

More precisely, let g be a positive power of p such that g- y(N(H)) is

p-integral for each He S ; for example, in view of Corollary 1 of Theorem 5

of § 6, we can take g to be the maximal order of a p-subgroup of I' (except
in the trivial case where I' has no p-torsion). Then we have:

Proposition 5. With q as above, q - x(I') is p-integral and
q-x(N=q- Y, x(N(P)) (mod p).

Ped
(The congruence implies that the term of the form a/q (0<a<p)
in the partial fractions decomposition of y(I') is the same as the cor-
responding term in the decomposition of Y x(N(P)).)
Ped

Remark. It is sometimes convenient to rewrite the above sum:

S dNP)=——— ¥ #(CE),

Pe® acd’
where @’ is a set of representatives for the conjugacy classes of elements
of I' of order p and C(x) is the centralizier of a in I’ The equality of the
two sums follows from the following lemma, applied with 4" equal to
the set of elements of I' of order p and A equal to the set of subgroups
of I' of order p:

Lemma. Let A and A’ be sets on which I operates, and let @ (resp. ')
beé a set of representatives for A (resp. A') modulo I If f: A/ — A is a
map of I-sets such that f~(a) is finite for each ac A, then

Y x(L)= Y card(f (@) - x(L),

ac®d’ ac®

provided @ is finite and each x(I,) is defined.

We may choose @' to be related to & as follows: For each ae®,
let I, be a set of representatives for the elements of f~'(a) modulo I;
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we then take &' = ( ) I,. Thus

acP
YoxL)=> > xI);

a'ed’ aed a’'el,

the lemma is now obtained by writing
L) =g 15) x(1)

card(f~a)= ). (I;:L).

a'elg

and noting that

Proof of Proposition 5. The proof consists of measuring the failure of
S to equal [ | S(P). More precisely, we form the ordered set §'= 1] s®),
which has an obvious action of I, and we consider the obvious map
f: 8’— 8 of ordered I-sets. This mduces a simplicial map K(S')— K(S),
and we denote by m(o) (for o a simplex of K(S)) the number of simplices
of K(S’) whose image in K(S) is 0. Note that each such simplex has the
same dimension as o. We may therefore use the above lemma to compute
that y(S") is equal to

2 (=1 m(e) (L),

el

where X is a set of representatives for the simplices of K(S) modulo I

Now if H is the smallest vertex of a simplex ¢ of K(S), then m(o) is

simply the number of subgroups of H of order p, hence m(s)=1 (mod p),

cf. [7], Chapter IX, § 121, Theorem II. Consequently, since each q - y(I;)
is p-integral, the above expression for y(S’) yields
q-xr(S)=q- xr(S) (mod p).

On the other hand, we computed earlier (in studying the special case

S=5)th
) that X(8)= 3 #(N(P));

Ped

substituting this into the above congruence (and using Corollary 3 of
Theorem 5), we obtain the proposition.

I11. Applications
§ 8. Group Theoretic Applications
(a) Embeddings of Torsion-Free Groups

Proposition 6. Let I' be a torsion-free group of finite homological type,
and suppose that I is a subgroup of finite index of a group I"'.
(@) If I'' is torsion-free then (I'" : T') divides y(I').

18 Inventiones math., Vol. 27
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(1) If I is normal in I and (I'' : I') is a prime power which is relatively
prime to y(I'), then the extension

1->I->I"->I"/I'>1
splits.

Note first that I has finite homological type by Proposition 1 of § 3, so
x(I'") is defined. Then (i) follows from the fact that y(I"') is an integer if
I'" is torsion free, cf. §4. For (ii), note that the hypothesis implies that
the denominator of y(I") is equal to (I'":I'), so I'" has a subgroup of
order (I'":T") by Corollary 1 of Theorem 5 of §6; I' being torsion-free,
this implies that the extension splits.

Remarks. 1. Suppose I' is a torsion-free group of finite homological
type such that y(I')=+0. It is reasonable to ask, in view of (i) above,
whether I' can be embedded with index |x(I')] in a torsion-free group I".
Serre has given several examples to show that the answer is no, in general.
In fact, such a I'" would have y(I"")= + 1, but Serre has shown that any
torsion-free group commensurable with SL,(Z[%]), for example, has
Euler characteristic divisible by 3 (and non-zero).

2. As an interesting example of (ii), take I' =F,, the free group on n
generators. Then y(I')=1—n, so any extension of a p-group by I' must
split, unless p divides n—1. In case n=2 this can be checked directly
by using the fact that the group Aut(F,)/F, of outer automorphisms of
F, is isomorphic to GL,(Z) (cf. [15], § 3.5, Corollary N4); one computes
the p-subgroups of GL,(Z) and checks that they all lift to Aut(F,). For
n>2, however, I know of no proof other than the one given here.

(b) Torsion in Arithmetic Groups 3

If I is an arithmetic group to which Harder’s formula applies ([11] —
see also [18], No. 3.7), then one can compute y(I") and thereby obtain
from Corollary 1 of Theorem 5 a lower bound on the amount of torsion
in I For example, if I" is the group E,(Z) of Z-points of a split group
scheme over Z of type E, then Harder’s formula yields

- 691 - 43867
)= = 39 52 73 11.13-19°

so we deduce that I" has subgroups of order 22, 3°, etc.

§ 9. Arithmetic Applications
Throughout §9, k will denote a totally real number field with ring
ofintegers ¢, and {, will denote the Dedekind zeta function associated to k.

3 This application was pointed out to me by Serre when he conjectured Corollary 1 of
Theorem 5.
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9.1. A Formula for {,(—1)*. The formula referred to in the title is the
following:

1 1 1
G- D=5 UL~ (5 -77): *

where H ranges over the maximal finite subgroups of SL,(0), up to
conjugacy.

The formula (x) follows from the Corollary of Theorem 6 of §6,
applied to the group I'=SL,(0)/{+1}, whose Euler characteristic is
2{(—1) by Harder’s theorem [11] (see also [18], No. 3.7, Example (iv)).
In order to obtain (*) from that corollary, we need only show that every
non-trivial finite subgroup of I' is contained in a unique maximal finite
subgroup, and that each maximal finite subgroup is equal to its own
normalizer. Both of these facts follow from:

Lemma. If H is a non-trivial finite subgroup of SL,(0) distinct from
{41}, then the centralizer C(H) of H in SL,(0) is finite and is the unique
maximal finite subgroup of SL,(0) containing H ; furthermore, C(H)= N(H),
the normalizer of H in SL,(0).

Note first that every finite subgroup of SL,(0) is cyclic (hence, in
particular, abelian), since SL,(0) can be embedded in SL,(R). Thus all
assertions of the lemma will follow if we show that C(H) is finite (which
. implies that N(H) is finite). This can be proved, for example, by inter-
preting C(H) as a group of automorphisms of a suitable ¢[(]-module,
where ( is a primitive n-th root of unity, n being the order of H. We
omit the details. (Note: The reader may want to refer to §9.2 below,
where a similar argument is given in detail.)

Remark. If SL,(0) contains a subgroup of order n>2 (and hence an
element of order n) then the field k, obtained from k by adjoining the
n-th roots of unity is quadratic over k. We therefore recover from (x)
(and even from Corollary 1 of Theorem 5) the following estimate of
Serre’s ([18], No. 3.7) for the denominator of {(—1):

Let m be the least common multiple of the integers n such that [k,:k]=2.
Then m - {,(—1) is an integer.

9.2. A Computation in the Symplectic Group. Throughout this section p
will denote a fixed prime number. We will need some notation, all of
which is defined relative to p:

F denotes the field k({), where { is a primitive p-th root of unity if p
is odd and a primitive fourth root of unity if p=2, and E denotes the
maximal real subfield of F.

* The formula given in this section was found independently by Hirzebruch ([13], § 1).
18*
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We set n=[E:k] (thus [F:k]=2n).

We denote by A the ring (9[%]; note that A4 is the ring of S-integers
of k, where S is the union of the infinite primes of k and the finite primes
dividing p.

B (resp. C) denotes the integral closure of 4 in E (resp. F).

We define integers a, hg, and w, as follows: 2% is the order of the
cokernel of the norm map N: C*— B*; hg is the order of the kernel of
the norm map from the ideal class group of C to that of B; and w is the
number of roots of unity in F.

Finally, we denote by I' the symplectic group Sp,,(4), where n is as
above; in particular, if n=1 then I'=SL,(4).

The following result will be needed in its full generality in §9.4.
In § 9.3 we will require only the case n=1, in which case the proof can
be considerably simplified.

Proposition 7. If p is odd (resp. if p=2), then the number of conjugacy
classes of elements of T of order p (resp. of order 4) is (p—1)2°"*hg /n
(resp. 2°hg). Moreover, the centralizer of any such element is a finitely
generated abelian group whose torsion subgroup is cyclic of order w and
whose rank is equal to the number of primes of E lying over p which split
in F.

We will give the proof of Proposition 7 in the case where p is odd;
the case p=2 requires only trivial modifications. Let a be an element
of I' of order p. Since the polynomial X?—1 splits into one linear factor
and (p—1)/2n irreducible factors of degree 2n over k, it is clear that the
minimal polynomial of « must be one of the irreducible factors, say
q(X). Letting { be a root of q(X) in F we construct an A[{]-module M
whose underlying 4-module is 42", with the action of { defined by a.
Now since p is invertible in A, one knows that A[{]= C (cf. [22], Corol-
lary 4.11, for example)®; thus M is a C-module, and, as such, it is torsion-
free and of rank 1. Moreover, « being symplectic, M has a non-degenerate
skew-symmetric A4-bilinear form {-,-), relative to which { acts as an
isometry. The fact that { acts as an isometry can be expressed by the

formula
ex, y)=<x,Cy, (*)

where x, ye M, ce C, and ¢ is the complex conjugate of c relative to any
complex embedding of F

It is now easy to compute the centralizer of &, which is isomorphic
to the group of C-module automorphisms of M which preserve <:, *).
In fact, any C-module automorphism of M is given by multiplication

5 This is our only reason for dealing with the ring 4 instead of with 0.
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by a unit u of C, and (*) shows that u preserves <+, *> if and only if i=u"1,
i.e., if and only if u is in the kernel of N: C*— B*; thus C(x)~kerN.
It follows that C(x) is a finitely generated abelian group whose torsion
subgroup is isomorphic to the group of roots of unity in F hence is
cyclic of order w, and whose rank is equal to rank C* —rank B*; this dif-
ference is easily seen (using the Dirichlet unit theorem) to equal the
number of primes of E lying over p which split in F, whence the second part
of the proposition.

Turning now to the first part of the proposition, I claim that the con-
struction given in the first paragraph of the proof (using a fixed () sets
up a 1-1 correspondence between conjugacy classes of elements of I’
with minimal polynomial ¢g(X) and isomorphism classes of pairs
(M, <+, ), where M is a (finitely generated) torsion-free C-module of
rank 1 and <-, +) is a non-degenerate skew-symmetric A-bilinear form
on M satisfying (). This claim follows easily from the following lemma:

Lemma. Let A be a Dedekind ring and M a finitely-generated projec-
tive A-module with a non-degenerate skew-symmetric bilinear form. Then
M is free and admits a symplectic basis, i.e., a basis {e,, ..., €,, f1, ..., fn}
with

<eisej>=0:<fi,f;'>9 <eiaf;‘>:5ij'

(Note: “Non-degenerate” means that the form induces an iso-
morphism of M onto its dual, Hom (M, 4).)

The lemma is proved by induction on the rank of M. If rank M >0,
then we must have rank M > 1, since otherwise the skew-symmetric form
would be zero. Then M has a direct summand which is free of rank 1
(see, for example, [16], Chapter 1), and we take e; to be a generator
of this summand. Using non-degeneracy, we can find fieM with
{ey, fiy=1, and it follows easily that e; and f; form a basis for the sub-
module N which they generate. We then have M = N@N*, and the proof
is completed by using the induction hypothesis to find a symplectic basis
{es,...,en fas ..., [} for N*.

Returning now to the proof of Proposition 7, we proceed to count
isomorphism classes of pairs (M, <+, -»). Consider, first, for fixed M, all
possible non-degenerate A-bilinear forms (not necessarily skew-sym-
metric) satisfying (*). I claim that C* acts freely and transitively on this
set of forms; one sees this by observing that such forms are in 1-1 cor-
respondence with C-module isomorphisms M — M*, where M is the
C-module whose underlying abelian group is the same as that of M,
with the C-action transformed by complex conjugation, and where M*
is the A-module dual of M. (Note that M*=Hom (M, A4) inherits a
C-module structure from M.) This action of C* can be described explic-
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itly, as follows: Given a bilinear form <-, -)> and a unit u of C, the trans-
form (-, <>, of {+, > by u is defined by <x, yD>,=<{x, uy).

Suppose now that (-, +) is skew-symmetric; then ¢+, >, is also skew-
symmetric if and only if u=u, i.e., ue B¥; thus the skew-symmetric non-
degenerate forms satisfying (*) are acted on freely and transitively by B*.
Moreover, one verifies easily that if (-, +> is skew-symmetric and ue B¥,
then (M, {+, D))=(M, <+, ), if and only if ue N(C*). Thus the number
of isomorphism classes of (M, <+, ->) for a fixed M is (B*:N(C*))=2%,
assuming, of course, that M admits at least one bilinear form of the type
we are considering.

Next, we count the number of isomorphism classes of C-modules M
for which such a form exists. We may assume that all C-modules M
being considered are fractionary ideals of C. Then M and M* can also
be identified with fractionary ideals; namely, M is identified with the
set of complex conjugates of elements of M, and M* is identified with

{xeF:trp(xM)c A}.

It follows that a non-degenerate A-bilinear form on M satisfying (*)
necessarily has the form ¢x, y>=tr(rXy), where r is an element of F such
that rM = M*; moreover, the form is skew-symmetric if and only if r
is pure imaginary, i.e.,, 7= —r. What we are trying to compute, then, is
the number of classes of ideals M such that M*~' M is principal and is
generated by a pure imaginary element of F.

I now assert that there is a pure imaginary element d of C such that
M*~!'=dM. Accepting this for the moment, we see that our condition
on M is equivalent to the condition that M M is principal and is generated
by an element of E, or, equivalently, that N (M) is principal. Thus
there are precisely hg such ideal classes; combining this with the result of
the earlier part of the proof, we see that there are precisely 2°hg iso-
morphism classes of pairs (M, {-,+>), ie, 2*hg conjugacy classes of
elements of I' of order p with given minimal polynomial. Finally, since
there are (p—1)/2n possibilities for the minimal polynomial, there are
precisely (p—1)2°~1hg /n conjugacy classes of elements of order p, as
required.

It remains to verify the assertion about the existence of d. In the first
place, note that M*=D~"'M~!, where D is the different of C over A;
in fact,

xeM* <> tr{xM)cA<xMcD < xeD M.

Thus M*~'=DM, so the proof will be complete if we show that D is
principal and has a pure imaginary generator d. Computing D by the
formula of [20], Chapter III, §6, Proposition 11, we find that D is
generated by ({—1)?""1, hence also by {™({—1)*""! for any integer m;
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taking m=(2n—1)(p—1)/2, for example, we obtain a pure imaginary
generator for D. [Note: In case p=2, D is generated by 2(, which is pure
imaginary.]

9.3. The Fractional Part of {;(—1). In order to compute the fractional .
part of {;(—1), we will compute the p-fractional part of {,(—1) for each
prime number p, i.e., the part of the partial fractions decomposition of
{x(—1) with denominator a power of p. (For p=2, we will actually
compute somewhat more than this.)

Let p be a fixed prime number and let the field F and the integers
n, a, hg, and w be as in §9.2. We will assume that n=1, since otherwise
SL,(®) has no p-torsion and {,(—1)=y(SL,(0)) is p-integral by [18],
No. 1.8, Proposition 13 (or by § 9.1 above).

Let {; s denote the function obtained from {, by deleting the factors
in the Euler product expansion of the latter corresponding to primes
of k lying over p, cf. [18], No. 3.7. Then for any positive integer i,

(. s(—=D)=C(—1) 1_[(1 — Ny,

plp

where Np is the cardinality of the residue field O/p. In particular, {; s(—1)
differs from {,(—1) by a factor which is relatively prime to p, so the
knowledge of the p-fractional part of {,(— 1) is equivalent to the knowled ge
of the p-fractional part of {; s(—1), which we will now compute.

We consider first the case where p is odd. Recall that, by Serre’s
estimate of the denominator of {,(—1) which we reproved in §9.1,
w - {p(=1) 1s p-integral.

Proposition 8. Assume p is odd.

(i) If some prime of k lying over p splits in F, then {,(— 1) is p-integral.

(i) If no prime of k lying over p splits in F, then the p-fractional part
of . s(—1) is the same as that of 2°~ " hg /w; in other words, w - {; s(—1)
is congruent to 2°~* hg modulo the highest power of p dividing w.

Corollary. Let h(k) (resp. h(F)) be the class number of k (resp. F),
and let h™ =h(F)/h(k). Then, in the situation of Proposition 8 (ii) the
power of p dividing the denominator of {,(— 1) is the same as the power of p
dividing the denominator of h™ /w.

The corollary follows immediately from the proposition, once one
observes that, under the hypothesis of (ii), h~ differs from hg by a factor
which is a power of 2. More generally, if we return temporarily to the
situation of §9.2 (including the possibility n> 1), we have:

Lemma 1. Let h~ =h(F)/h(E). If no przme of E lying over p splits in F,
then h™ /hg is a power of 2.
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In fact, if we ignore 2-torsion, then the ideal class group of F de-
composes as the direct sum of its +1 eigenspaces under complex con-
jugation, with the + 1 eigenspace being isomorphic to the class group
of E and the —1 eigenspace being the kernel of the norm map. [This
follows from the formal properties of the norm map and the map from
the class group of E to that of F induced by the inclusion of rings of
integers.] Thus h~ differs from the order of the —1 eigenspace only
by a factor which is a power of 2. Similarly, hy is essentially the same
as the order of the — 1 eigenspace in the S-class group of F, i.e., the class
group of C. Now the S-class group of F is obtained from the class group
of F by dividing out by the subgroup generated by the classes of the
primes of F lying over p, and the hypothesis implies that these classes
are all in the +1 eigenspace. Thus (still ignoring 2-torsion) the —1
eigenspace is unaffected by the passage to the S-class group, whence
the lemma.

Proof of Proposition 8. Let I'=SL,(A); one knows ([18], No. 3.7)
that x(I')={; s(—1). Consequently, since every finite subgroup of I
is cyclic [recall that I'<SL,(IR)], we can determine the p-fractional
part of {; s(—1) by means of the result of the second paragraph of §7.
Rewriting that result as in the remark following Proposition 5 of §7,
we find that the p-fractional part of {; s(—1) is the same as that of

1
——7 LC@) )

where a ranges over the elements of order p of I', up to conjugacy. Using
Proposition 7 of §9.2, we compute (*) to be 0 under the hypothesis
of (i) and 2*~ ! hg /w under the hypothesis of (ii), which completes the proof.

We consider now the case p=2. In this case the results obtainable
by the method of proof of Proposition 8 can be substantially improved
by using, instead of I', a group I'” introduced by Serre in [18], No. 3.7,
proof of Proposition 30. The relevant properties of I'” are given in
Lemma 2 below.

Let (A*: A*?)=2¢° and let 2° be the order of the group of ideal classes
of A whose square is trivial.

Lemma 2. There exists a group I'” with the following properties:

(@) I'" contains I'"=SL,(A)/{+ 1} as a normal subgroup of index 2°*°.

(b) If H is any finite subgroup of I'", then (H: HNTI") is equal to
1, 2, or 4. .

Let L= A? be the standard lattice in k* and let I = GL,(k) be the
group of matrices which transform L to I - L for some fractionary ideal I
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of A; then I contains the group k* of scalar multiples of the identity,
and I'" is defined to be I'"'/k*.

The determinant map I'”— k* defines by passage to the quotient
a homomorphism I'"— k*/k*?> whose kernel is easily seen to be
SL,(A)/{+1}; since the index was calculated in [18], loc. cit., to be
2¢*¢ (a) is proved. Note also that I'’/I" embeds in k*/k*2, hence has
exponent 2.

Suppose now that H is a finite subgroup of I'”. In case H is cyclic,
the image of H in I'''/I"" is also cyclic,so (H: HNI")is 1 or 2. To obtain (b)
in the general case, we need only observe that H contains a cyclic sub-
group of index 1 or 2. In fact, by choosing an embedding of k in IR, we
can regard H as a subgroup of PGL,(IR); then H nPSL,(R) is cyclic
and has index 1 or 2 in H.

Serre ([18], No. 3.7, Proposition 30) used the group I'’ to show
that wg - {(—1)/2¢*°=3 is 2-integral, where wyo=w/2. We will now
reprove and sharpen this result.

Proposition 9. Assume p=2.

() If some prime of k lying over 2 splits in F then {,(—1)/2¢+¢3
is 2-integral.

(ii) Supposeno prime of k lying over 2 splits in F and let q = hg 2%+~ 1,
Then q is an integer and the 2-fractional part of (i s(—1)/2¢7¢~3 is the
same as that of q/wq; in other words, wy - {; s(—1)/2¢+3 is 2-integral
and is congruent to q modulo the highest power of 2 dividing w,,.

It is clear from Proposition 7 of §9.2 that any 2-subgroup of I"" has
order dividing w,, so Lemma 2(b) implies that any 2-subgroup of I'”
has order dividing 4w,. Therefore, by Corollary 1 of Theorem 5 of §6,
4wox(I'") 1s 2-integral ; since

4x(T")={,, s(=1)/2+73,

we immediately recover Serre’s result that wy-{ s(—1)/2°773 is
2-integral.

We will now prove (i) and (i1) by computing the 2-fractional part of
4x(I'"). Let S be the ordered set of finite subgroups of I'” whose inter-
section with I has even order. Lemma 2(b) shows that 4 is the largest
power of 2 which can divide the order of a finite subgroup of I'"' not in S,
so Theorem 5 of §6 implies that the 2-fractional part of 4y(I"") is the
same as that of 4 y..(S). But xr..(S) is easy to compute:

Since every finite subgroup of I" is cyclic, S decomposes as [ [ S,,
where o ranges over the elements of I of order 2 and S, is the set of finite
subgroups of I’ which contain . We now apply parts (i), (i), and (iii)
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of Proposition 2 of §5 and we obtain:

> tew(8) =5 2 1(C@),

ae¥V ac¥

1 1
Xr"(S)’—‘Eg_ﬁ Xr'(S):?e:?

where ¥ is a set of representatives for the conjugacy classes of elements
of order 2 of I'" and C’(«) is the centralizer of « in I"". Using Proposition 7
0f §9.2 to compute the last sum, we find that y..(S) is 0 under the hypoth-
esis of (i) and is equal to 27! hg /2°+°w,=q/4w, under the hypothesis
of (ii). Therefore, the 2-fractional part of 4y(I'”) is 0 under the hypoth-
esis of (i) and is equal to g/w, under the hypothesis of (ii). This proves
all assertions of the proposition except for the integrality of g, which
follows now from the already established fact that 4w x(I"") is 2-integral.

Remark. The integrality of g, as well as an analogous fact in the
situation of (i), can be proved as a consequence of some facts about I'”,
independent of the theory of Euler characteristics. Specifically, by
computing the centralizer in I of an element of order 4 of SL,(A),
one can show that I'" contains a subgroup D with the following two
properties:

(@) D is an abelian group with m+1 generators, where m is the
number of primes of k lying over 2 which split in F.

(b) (D: DNI")=2"%*b where 2° is the order of the kernel of the
map on ideal class groups induced by the inclusion 4 C.

Now (a) implies that (D: DN I") divides 2™+, since I'"’/T" has ex-
ponent 2, so we obtain from (b) the inequality

e—a+b<m+1.

This inequality is of interest in itself, and, in particular, it can be used
to show that hg is divisible by 2°~*+¢~1=™ [First show that the kernel
of the norm map from the ideal class group of C to that of 4 contains a
subgroup of order 2°7%, so that 2°~? divides hg.]

9.4. Theorems of Kummer and Greenberg. The application to be
given in this section was suggested by Serre.

Let p be an odd prime number, let F, E, n, and w be as in §9.2 and let
h™ =h(F)/h(E), as in Lemma 1 of the preceding section.

Part (ii) of the following proposition was proved by Greenberg [9]
under the additional hypothesis that p does not divide [k:@].

Proposition 10. (i) (Serre [18], No. 3.7) The rational number

w- ﬁCk(l_Zi)
i=1

is p-integral.
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@ii) If no prime of E lying over p splits in F, then p divides h™ if and
only if p divides the numerator of w- HC,;(l—Zi). If some prime of E

i=1
lying over p splits in F, then p necessarily divides the numerator of

w- j]‘[lck(1 —2i).

Remarks. 1. The proof of Proposition 10 will yield a congruence

mod p, making more precise the relationship between w - [ ] {,(1—2i)
i=1

and h~. In case n= 1, this result can be improved to a congruence modulo

the highest power of p dividing w, cf. Proposition 8 of §9.3.1do not know

if such an improvement is possible in the general case.
2. Suppose k=Q. Then we have

B,;

. 2

w=2p, and {((1-2i)=-—

where B,, B,, ... are the Bernoulli numbers. By von Staudt’s Theorem
(cf. [5], Chapter 5, §8, Theorem 4), B,,...,B,_; are p-integral and
pB,_, is p-integral and not divisible by p. The proposition thus implies
that p divides A~ if and only if p divides the numerator of one of the
Bernoulli numbers B,, ..., B,_3; this result is the theorem of Kummer’s
referred to in the title, cf. [5], Chapter 5, §5, Theorem 4.

Proof of Proposition 10. Let I'=Sp,,(A4) as in §9.2. According to
Harder and Serre ([18], No. 3.7, Example (iii)),

20)= 14120,

where {; shas the same meaning as in the previous section. In particular,
except for a factor which is relatively prime to p, x(I') is the same as

Hl L1 —2i).

Observe, now, that any finite p-subgroup of I" has order dividing w;
in fact, such a subgroup must centralize an element of order p, so the
assertion follows from Proposition 7 of §9.2. Consequently, Corollary 1
of Theorem 5 implies that w - x(I') is p-integral, whence (i).

Next we apply Proposition 5 of §7 (and the remark following its
statement), with g equal to the highest power of p dividing w. We find

we (D=5 $U(C@) (mod p)



260 K.S. Brown

where o ranges over the elements of order p of I', up to conjugacy.
Using Proposition 7 again, we compute the right-hand side to be O if
some prime of E lying over p splits in F, and 2*~! hg /n otherwise. This
proves the second part of (ii)) and shows under the hypothesis of the
first part of (ii) that p divides w- y(I') if and only if p divides hg. (Note
that n and 2°~! are both prime to p.) The first part of (i) now follows
from Lemma 1 of §9.3.

Appendix A. Projective Modules over Infinite Group Rings

Theorem 7. Let I' be a finitely generated group, let P be a finitely
generated projective Z[ I ]-module, let K be a field, and let V be a K[I']-
module of finite rank over K. Then for any normal subgroup I'' of finite
indexinl,the K[I'/T""]-module Homg(P, V)is free of rank r(P) - dimg(V),
where r(P) is the rank of the ( free) abelian group B-=Z ) P.

Zir)

(Recall the definition of the I'/T"-action on Homg (P, V): let
o€l let s be its image in I'/I", and let fe Homg (P, V); then s- f is
defined by (s- f)(x)=0-f(c" ' x).)

The proof of Theorem 7 will require two lemmas, both of which are
elementary and well-known.

Lemma 1. Let I" be a group, I'' a normal subgroup of finite index,
R a commutative ring, P a finitely generated projective Z[I']-module,
and V an R[I ]-module which is projective and finitely generated as an
R-module. Then Homg (P, V) is a projective, finitely generated R[T'/T""]-
module.

It suffices to consider the case where P=Z[I'], in which case one
sees easily that Homg (P, V) is the R[I'/T"]-module induced from
the R-module V, and the result follows at once.

Lemma 2. Let I" be a finitely generated group, let K be a field, and
let p: I' - GL,(K) be a representation of I' over K. Then K contains a
local ring R with finite residue field, such that p(I') = GL,(R).

Let {s;} be a finite set of generators of I" and let S be the subring of
K generated by the entries of all the matrices p(s;) and p(s;!). Then
p(IN<=GL,(S). Now S is a finitely generated ring, so any residue field
of S, being a field which is finitely generated as a ring, is finite. Therefore
we may take R to be the localization of § at any maximal ideal.

We will also require the following refinement of the version of
Swan’s Theorem stated in §1:
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If G is a finite group, P is a finitely generated projective Z[ G]-module,
and R is the localization of Z at any prime ideal, then R@P is a free
R[G]-module. -

This refinement can be deduced from the version stated in §1 by
using [22], Theorem 1.10, or [1], Chapter XI, Proposition 5.1.

Proof of Theorem 7.

Case 1, I' is finite. The homomorphism Z — K factors through a
local ring R of Z, and we have:

Homgr1(P, V)~ Hompg(RQP, V).

Now R ® P is free (of rank r(P)) over R[I'] by the refinement of Swan’s
Theorem, and it follows easily that Homgr(R ® P, V) is free of rank
r(P) - dimg(V) over K[I'/T""], as required.

Case 2, K is finite. Since GL,(K) is finite, the action of I on V factors
through a finite quotient G=I/I'", where we may take I'"<I". Let
G'=I"/T" and let P=Z[G]X) P. Then I'/T'~ G/G’ and

Z\I

Homg (P, V)~ Homgg,(P, V);

the theorem for I' is thus reduced to the theorem for G, i.e., Case 2 is
reduced to Case 1.

Case 3, general case. Identifying V with K", we can apply Lemma 2
to find a local ring R<=K with finite residue field, such that R" is in-
variant under I'. Writing R"=M, an R[I"]-module, we have VX~ K ®M
and it is easily seen that the natural map

K® Homzuv} (P, M) - Homz“"/] (P, V)
R

is an isomorphism. (In fact, this need only be checked for P free, in which
case it is obvious.) It will therefore suffice to prove that Homg (P, M)
is free of rank r=r(P)-rankgz(M) over R[I'/T""].

Now we know from Lemma 1 that Homg(P, M) is projective and
finitely generated over R[I'/T"], so by a standard argument based on
Nakayama’s Lemma (see, for example, [1], Chapter I11, Proposition 2.12)
we need only show that kQHomg,(B, M) is free of rank r over k[I'/I""],

R

where k is the residue field of R. But
R R

so we are reduced to proving the theorem with K replaced by k, ie.,
Case 3 is reduced to Case 2 and the proof is complete.
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Appendix B. Acyclic Covers

The following result is a variant of a well-known result in Cech
cohomology theory, cf. [8], Chapter II, § 5, Corollary of Theorem 5.4.1.
[See also [24],§ 1, Lemma A. ]

Proposition 11. Let W be a semi-simplicial complex which is the union
of acyclic subcomplexes X indexed by a partially ordered set S, and assume :

(1) if s<tthen X;2 X,; and
(ii) for any s,t, if X;n X, =+ then there isau in S with u=s, t.
Then the chain complex C(W) is canonically weakly equivalent to C(S).

(See Proposition 4 of §5 for the definitions of C(S) and weak equiv-
alence.)

The proof is based on a “simplicial resolution”
L L3030 ->W

of W (without degeneracy maps), constructed from the cover {X;} as
follows: For any simplex o of K(S), let s be the largest vertex of ¢ and
let X,=X,. We then define U, to be the semi-simplicial complex

[ X,

ceKy
where K, is the set of n-simplices of K(S). The augmentation U, — W
is defined by means of the inclusions X;<—» W, and the i-th face map
U,— U,_; (i=0, ..., n) is defined by means of the inclusions X, X, ,,
where d;o is the i-th face of the simplex o.

Applying the (unnormalized) chain complex functor C to each U,
and taking the alternating sum of the face maps, we obtain a double
complex C.(U.), and hence a total complex T and two spectral sequences
converging to H,(T). There are obvious maps T— C(S) and T— C(W),
and we will complete the proof by using the spectral sequences to show
that both maps induce homology isomorphisms.

One of the spectral sequences has E,,=H,(U,); since each X, is

acyclic, we obtain
Bl - 0 g¢>0
PEC8) g=0,

from which it follows that the map T— C(S) induces an isomorphism
in homology.

Turning now to the other spectral sequence, one checks the definitions

and finds that
E;q: @ HQ(K(SW))a

weW,
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where S,=(seS: weX,}. But the hypothesis (ii) implies that S, is a
directed set, hence is a directed union of ordered sets with a largest
element; therefore K(S,,) is a directed union of cones and thus is acyclic.
(Note that we need the hypothesis W=| ) X, here to guarantee S, +§.)
Thus ‘

L 0 qg>0
E =
b Cp(W) q=0:

hence the map T— C(W) also induces an isomorphism in homology,
as required.
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