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Euler Characteristics of Groups: The p-Fractional Part

Kenneth S. Brown * (Ithaca)

Introduction

If I' is a group satisfying suitable finiteness conditions, then one associates
to I' a rational number y(I'), called the Euler characteristic of I, whose failure
to be an integer is closely related to the presence of torsion in I' (cf. [1]). For
example, the “fractional part” of y(I') can be computed from the action of I' by
conjugation on the partially ordered set S of non-trivial finite subgroups of I
More precisely, if we write a~b whenever a and b are rational numbers whose
difference is integral, then we have ([1], § 6), under suitable finiteness conditions,

x (D)~ xr(S)- (*)

(Here x(S) is an equivariant Euler characteristic —see § 1 below.)

The purpose of this paper is to prove the following “local” analogue of (x):
Let p be a prime number and let S, be the set of non-trivial finite p-subgroups of I

If we write a~b whenever a and b are rational numbers whose difference is
p-integral (i.e., has denominator prime to p), then we have, under suitable finiteness

conditions, »
1)~ xr(S,).- (x)

This confirmsaconjectureof Serre’s [ private communication] that the “ p-fractional
part” of y(I') should be computable in terms of the p-subgroups of I' and their
normalizers, and it improves one of the results of [1] (§ 6, Cor. 3 of Thm. 5).

In §1 we summarize some facts about Euler characteristics and equivariant
Euler characteristics which are needed later. In §2 we prove a theorem about
the fractional part of x(I'). This is then used in §3 to prove (x#). Finally, in §4
we mention an application to number theory.

1. Preliminaries

Recall from [1], §3, that a group is said to have finite homological type if
it has subgroups of finite index which have finite cohomological dimension and
if every such subgroup has finitely generated integral homology. The Euler
characteristic y(I') is defined for groups I' of finite homological type and is char-
acterized by the following two properties ([1], § 4):

(i) If I is a subgroup of I' of finite index, then y(I")=(I":I")- x(I).

(ii) If I is torsion-free then x(I')=Y (— 1)’ dimg Hy(I; Q).

Suppose now that a group I' operates on a semi-simplicial complex K and
assume (a) that K has only finitely many non-degenerate simplices modulo the
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action of I' and (b) that the isotropy group I, of every simplex ¢ has finite homo-
logical type.Then the equivariant Euler characteristic y-(K) is defined by

(K=Y (=1 (L),

cel

where X is a set of representatives for the non-degenerate simplices of K modulo I’
In case K is the complex K(S) associated to a partially ordered set S on which I
operates, then we write y(S) instead of y.(K(S)). [Here K(S) denotes the semi-
simplicial complex whose n-simplices are the increasing sequences s, <---<s, of
elements of S, with the obvious face and degeneracy operators.]
Proposition 1. Let K be a semi-simplicial I'-complex satisfying (a) and (b) above.
(1) If I'" is a subgroup of I of finite index, then

xr(K)=(":1") - yr(K).

(1) If I is torsion-free and C is a chain complex of projective Z[I']-modules
which is weakly equivalent to the chain complex C(K) (regarded as a complex of
Z[I'}-modules), then the complex Cr=ZQ®gzr;C of abelian groups has finitely
generated homology and

xr(K)=x(Cp).

(i) If I is of type (VFP) and K has finitely generated rational homology, then

xr(K)=x(I) - x(K).
(See [1], § 3, for the definition of “type (VFP)”.)

A proof of (i) is contained in [4], no. 1.8, proof of Prop. 14(b). For (ii), see [1],
§ 5, Prop. 4, where the proof is given for the case where K =K(S); the proof in
the general case is identical. To prove (iii) we may assume, by passing to a subgroup
of finite index, that I' is torsion-free. Letting C be as in (ii), one has a spectral

AR Bgt=H?(I, HY(K, Q)) = H*(C;, Q).

(This can be obtained, for example, from the double complex
Hom(P., Homg(C., Q)),

where P. is a projective resolution of Z over Z[I'].) Since

Y (—1)? dimg H?(I, HY(K, Q))=x(I') - dimg HY(K, Q)

p

([1], §4, Cor. 1 of Thm. 4), (ii1) follows at once.

2. The Fractional Part of y (I')

Let I" be a group of finite homological type such that y(S) is defined, where S,
as in the introduction, is the set of non-trivial finite subgroups of I The following
result is implicit in [1], § 6, proof of Thm. 5:

Lemma. Let L be a finite dimensional semi-simplicial I'-complex such that (a)
each isotropy group I, (c€L) is finite and (b) each fixed-point complex I (HeS)
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is acyclic. If I'" is a torsion-free normal subgroup of I' of finite index such that
L/T" has finitely generated homology, then

x(LT7)

(r:r -

Provof. Let M=|Jg.s”. Then C(M) is weakly equivalent to C(S) ([1],

Appendix B). Since C(M) is a complex of free Z[I"]-modules, parts (1) and (ii)
of Proposition 1 imply that M/I" has finitely generated homology and that

xr(S) _ x(M/I")

xr(S)~

S =Ery =)
Ths (L) o LT M)
Ty YT Ty

which is indeed an integer; for I'/I" acts freely on L/I"— M/I", so
(LT, M/T)=(T:I") - x(L/T; M/T)
by [1], § 1, Thm. 1, applied to the normalized chain complex C(L/I", M/I").

Theorem 1. Let K be a semi-simplicial I-complex such that yr(K) is defined,
and assume that K¥ is acyclic for each HeS. Then y(I')~ xr(K).

Proof. Let Z be a finite dimensional acyclic I-complex satisfying conditions
(a) and (b) of the lemma (cf. [1], § 6, Lemma), and let L=K x Z. Then I acts on L
by the diagonal action, and L also satisfies (a) and (b). Let I be a torsion-free
normal subgroup of I' of finite index. Since Z is acyclic, the projection L— K
induces a weak equivalence C(L)— C(K), so we may use Proposition 1 as in
the proof of the above lemma to deduce that L/I" has finitely generated homology
and that y(K)=y(L/I")/:I"). In view of the lemma, it follows that y(K)~ y(S).
The theorem now follows from the known fact that y(I')~ y(S) ([1], § 6, Cor. 2
of Thm. 5; alternatively, apply the above lemma to the complex Z).

3. The p-Fractional Part of x(I')

Let I" be a group of finite homological type, and assume that I" has only finitely
many conjugacy classes of finite p-subgroups and that the normalizer of any such
subgroup has finite homological type. These hypotheses imply (by [1], § 5, Lemma)
that y,(S,) is defined, where S, is, as in the introduction, the set of non-trivial
finite p- subgroups of I

Theorem 2. Under the above hypotheses, y(I" )i’, xr(S,).

The proof will use the following lemma:

Lemma. Let T be an ordered set which contains an element t, such that for any
te T'the least upper bound t, v t exists. Then K (T) is contractible, hence, in particular,
acyclic.

Proof. Let T'={teT: t=ty} and let r: T— T’ be defined by r(t)=t, vt. Then r
is an order-preserving retraction of T onto T’ and induces a retraction
1*
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K(r): K(T)— K(T"). Moreover, since r(t)=t for all ¢, the composite
K(T)2% K(T") > K(T)

is homotopic to the identity (cf. [3], § 1, Prop. 2, for example), so K(T") is a de-
formation retract of K(7T). The lemma now follows from the fact that, since T’
has a smallest element, K(T") is contractible ([3], § 1, Cor. 2 of Prop. 2).

Proof of Theorem 2. Let I'" be a torsion-free normal subgroup of I' of finite
index and let I, be the inverse image in I' of a p-Sylow subgroup of I'/I". Then
xD)=x(I)A:1,) and xp(S,)=yxr, (S)AI':I}). If therefore suffices, (I':1,) being
prime to p, to show that x(I})~ xr, (S,), which we will do by means of Theorem 1.
(Note that every finite subgroup of F is a p-group, so I, satisfies the hypotheses
of § 2.) Thus we must show that K(S, )H is acyclic for every non-trivial finite sub-
group H of I. Now K(S, Y =K(T), where T is the set of nontrivial finite p-sub-
groups of I Wthh are normallzed by H; since H and P generate a finite p-group
for any Pe T, the above lemma shows that K(T) is indeed acyclic.

Corollary 1. Suppose every non-trivial finite p-subgroup of I has a unique
subgroup of order p. Then

2~y x(N(P))—p—— > x(C@),

Ped 1 ael¥

where @ is a set of representatives for the conjugacy classes of subgroups of I’
of order p, ¥ is a set of representatives for the conjugacy classes of elements of I’
of order p, N(P) is the normalizer of P in I, and C(a) is the centralizer of a in I

In fact, under the given hypothesis it is easy to see that

1r(Sp)= 2 x(N (P))——— 2 1(C@),

Ped L ae¥

of. [11,§ 7, pp. 247-248.

Remark. The hypothesis of Corollary 1 holds if and only if every finite p-sub-
group of I is cyclic or generalized quaternion ([2], §§ 104 and 105).

Corollary 2. If I' is of type (VFP) and K(S,) has finitely generated rational
homology, then x(S,)=1 modulo the highest power of p dividing the denominator of
x(I'). In particular, if I is finite, then x(S,)=1 modulo the highest power of p dividing
the order of T.

In fact, under the given hypotheses one has y(S,)=x(I')- x(S,) (Proposition

1(ii)), so Theorem?2 yields y(I’ )X %(I)- x(S,), from which the first assertion
follows at once. If I' is finite then y(I')=1/|I'|, whence the second assertion.

4. Application to Number Theory

Using Corollary 1 of Theorem 2, one can improve the results of [1], §9.4,
and settle a question raised there (loc. cit., Remark 1). We indicate briefly the
improvement:
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Proposition 2. With the hypotheses and notation of [1], § 9.4, one has:
(i) If some prime of E lying over p splits in F, then | [{_; {,(1—2i) is p-integral.
(1) If no prime of E lying over p splits in F, then

[T¢.s(1—=2i)% 2 hg/nw.
i=1
This is proved by applying Corollary 1 of Theorem 2 to the group I' used in
[1], §9.4, proof of Prop. 10. (Note that every p-subgroup of I' is cyclic by [1],
§9.2, Prop. 7, so Corollary 1 is applicable.) All the necessary computations are
done in [1].
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