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ABSTRACT For a large class of discrete groups I', relations
are established between the high dimensional cohomology of
T and the cohomology of the normalizers of the finite subgroups
of T'. The results are stated in terms of a generalization of Tate
cohomology recently constructed by F. T. Farrell. As an illus-
tration of these results, it is shown that one can recover a co-
homology calculation of Lee and Szczarba, which they used to
calculate the odd torsion in Kj(Z).

F. T. Farrell (private communication, August 1974) has shown
that Tate’s cohomology theory for finite groups (cf. ref. 1, chap.
XII) can be extended to a large class of infinite groups. Farrell's
groups H(I',M) agree with the ordinary cohomology groups
HY(T',M) for sufficiently large i, and they are trivial for all
_coefficient modules M if and only if T is torsion-free.

In this note we announce, with some indication of proof,
results which make more precise the relation between the
Farrell cohomology of T' and the torsion in T'. These.results are
analogous to the results of refs. 2 and 3 on Euler characteristics.
They say, roughly speaking, that Hi(T',M) can be computed in
terms of the cohomology of the normalizers of the nontrivial
finite subgroups of T'. Moreover, to compute the p-primary
component of H{(I',M) (where p is a prime) one only needs to
consider the finite subgroups which are p-groups. For precise
statements, see Theorems 1 and 2 in sections 4 and 5 below; the
notation used in those statements is explained in sections 1, 2,
and 3. In section 6 we illustrate some of the results by applying
them to the group SL3(Z).

Throughout this paper, I" will denote a group of virtually
finite cohomological dimension, and ved T" will denote its vir-
tual cohomological dimension [cf. ref 4, 1.8].

1. Farrell’s cohomology theory

The cohomology groups H:(I',M) are defined for any integer
i and any I'-module M, and they satisfy:

(i) The functors H(T',—) form a connected exact sequence of
functors on the category of I'-modules, in the sense of ref. 1,
chap. V, §4.

(i) If Mis an induced module ZT' ® zivM’, where I" is a tor-
sion-free subgroup of finite index and M” is a I"-module, then
Hi{(I',M) = 0 for all i. N

(i) Fori > ved T the functors H¥(T',—
dinary cohomology functors H{(T',—
of functors).

If T is a virtual duality group [i.e., the torsion-free subgroups
of finite index satisfy Bieri-Eckmann duality (5)], then one also
has:

(iv) Let D be the I'module H*(T',ZT"), where n = ved T. For
any I'-module M there is an exact sequence

+ — H,_(I,D@ M) — HT,M)
— H'TM) — H,_,,(,D® M) —

In particular, Hi(T M)~ H,;1(T,D ® M) fori < —1.
We will often suppress the index i and the coefficient module

) coincide with the or-
) (as a connected sequence
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M from the notation and simply write H(T') instead of H*(T',\M).

The existence of a sequence of functors satisfying properties
(1), (#), and (iii), as well as uniqueness up to canonical iso-
morphism, can be proved by using the theory of satellites (ref.
1, chap. III). One can also obtain the Farrell cohomology groups
directly as the cohomology groups of a cochain complex, as
follows:

Let P = (P;);>0 be a projective resolution of Z over ZT". One
can show that there exists a chain complex C = (C;);cz of
projective ZI'-modules, together with a chain map f: C — P,
such that (a) C is I'-contractible for some torsion-free subgroup
I of finite index and (b) f is an isomorphism in sufficiently high
dimensions. We will call such a complex C [or, more precisely,
the triple (C,P,f)] a complete resolution for T'. One verifies
easily that if C is a complete resolution then there is a canonical
isomorphism H(I',M) ~ H{[Homr (C,M)].

In the case of a virtual duality group, Farrell constructs a
complete resolution by “splicing together” a resolution of Z and
the dual of a finite type resolution of D; this construction leads
to property (iv).

2. Equivariant cohomology

If T operates on a pair (X,X’) where X is a finite dimensional
semi-simplicial complex and X” is a (possibly empty) subcom-
plex, then one can define groups H%(X,X’;M ) which agree with
the usual equivariant cohomology groups fori sufficiently large
(e.g.,i > ved T + dim X). Here M is any I'-module. In terms
of a complete resolution C, these groups are given by
H{(XX;M) = H'{Hom[CC(X,X";M)],

where C(X,X’;M) is the complex of normalized cochains of
(X,X") with coefficients in the underlying abelian group of M,
and T operates on C(X,X’;M) via its action on (X,X’) and on M.
As before, we will often suppress i and M from the notation.
This equivariant cohomology theory has properties analogous
to ordinary equivariant cohomology theory. In particular, one
can prove analogues of the statements 1.6, 1.7, 1.10, and 1.11
of ref. 6. )

In case T is finite, the groups H(X,X’;M) are the same as the
groups JH(X,X’;M) studied by Swan (7). As in Swan’s work, the
main reason for the introduction of these groups is that they
enable one to systematically ignore free actions:

PROPOSITION 1. If T acts freely in X-X’ then Hp(X,X’)
=0.

3. Ordered sets

We will be particularly interested in the case where the complex
X is the complex K(S) associated to an ordered set S on which
T operates. In this case, we write H% (S;M) [or Hr(S)] instead .
of HY[K(S);M], and similarly for the relative groups.

Fors €S, letS;={t ©S:t>s}andS; = {t € S:¢t >s}.
Define the depth of s to be the dimension of K(S;), i.e., the
largest integer n such that there is a chain so <+ < s, in S with
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so = 5. The isotropy group T'; of s operates on the pair (S5,Ss),
and we have:
PROPOSITION 2. There is a spectral sequence,

E" =Tl HI™ (5,80 => H* (S),
sesp
where &, is a set of representatives for the T-orbits of ele-
ments of S of depth p.
Similarly, there is a spectral sequence involving the sets 5°
={t:t <s}and S* = {t: t <s}.

4. The finite subgroups of I'

In this section S will denote the set of nontrivial finite subgroups
of T'. We let T act on S by conjugation. Since I is virtually tor-
sion-free, K(S) is finite dimensional and Hr(S) is defined. Note
that Proposition 2 relates Hp(S) to the cohomology of the
normalizers of the (nontrivial) finite subgroups of T'.

THEOREM 1. There is an isomorphism H(T) ~ Hp(S).

[More precisely, the canonical map H(T') — Hr(S), induced
by the map of K(S)to a point, is an isomorphism. ]

Theorem 1 is obtained from the following more general re-
sult by taking X to be a point:

PROPOSITION 8. Let X be a finite dimensional T-complex
such that the fixed-point subcomplex XH is acyclic for each
H ES Then HF(X) HF(S)

To prove Proposition 3 one first replaces X by its cartesian
product with a suitable contractible complex, in order to reduce
to the case where all the isotropy groups of I" in X are finite.
Letting X’ = UpnesX ¥, one then shows Hr(X)~ Hp(X') =
Hr(S).

PROPOSITION 4. Under the hypotheses of Proposition 3,
the canonical map H(T') — Hrp(X) is an isomorphism.

In fact, Theorem 1 and Proposition 3 show that there is an
isomorphism H(I") ~ Hp(X), and one can verify that it is given
by the canonical map.

5. Localization at p

It is easy to see that the cohomology groups H(T') are torsion-
groups, hence we have a primary decomposition

H(T) =@ HT),,
p

and similarly for equivariant cohomology.

Let S,, be the set of nontrivial finite p-subgroups of T', where
p is a fixed prime.

PROPOSITION 5. Let X be a finite dimensional T-complex
such that XH s s acyclic foreach H € S,,. Then the canonical
map H(I') = Hp(X) induces an isomorphism on p- pmmary
components:

H(T)(,,~ H{(X),,,

This is proved by using a transfer argument (as in ref. 1, chap.
XII, §10) to compute H (T)p)and Hrp(X)@)in terms of the co-
homology and equivariant cohomology of subgroups of I' which
have only p-torsion. One then applies Proposition 4 to these
subgroups.

It was shown in ref. 3, §3, that the hypothesis of Proposition
5 is satisfied for X = K(S,). Consequently:

THEOREM 2. The canonical map H(T') — Hr(S ) induces
an isomorphism

H(.I‘)(p} ~ H{(Sp)p)

COROLLARY. Let p be a prime such that every nontrivial
p-subgroup of T contains a unique subgroup of order p. Let
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& be a set of representatives for the conjugacy classes of
subgroups of T of order p, and let N(P) for P & ® be the
normalizer of P in T. Then the restriction maps H() —
H[N(P)] induce an isomorphism

HT),, = [ HIN(P)],,

Ped

6. Example

In this section we give an example where some of the above
results are particularly easy to apply. Further examples will be
given elsewhere.

Let I = SL3(Z). Then I has only 2-torsion and 3-torsion, so -
the same is true of H(I"). Up to conjugacy I has only two
subgroups of order 3, P) and Py, generated by

01 0 -1 0
00 and 1 -10}),
10 0 00

respectively. Their normalizers, N1 and Ny, are dihedral of
orders 6 and 12. The corollary of Theorem 2 is applicable with
p = 3, and we obtain:

H(F)m = ﬁ(N1)(3)@ ﬁ(Nz)(a) = ﬁ(Pl)Nl® I‘AI(Pz)NZ.
Taking Z as coefficient module, for example, we find

Z/3®Z/3 i=0 (mod 4)
0 otherwise.

S = O

(1]

It is known from Borel-Serre (8) that I' is a virtual 3-dimen-
sional duality group with H3(T',ZT") ~ St, the Steinberg module
associated to SL3(Q). It is also known that HY(T',Z) = H%T',Z)
= H(T,St) = 0 (cf. refs. 9 and 10). Using these known results,
together with properties (iit) and (iv) of §1, we obtain from [1]
the following result:

Let @ be the Serre class of finite abelian 2-groups. Fori >0
there are @ isomorphisms

H\D\Z), ~ {

i=0 (mod 4)

i . Z/ 3@ Z/3
H(T.2) e { 0 otherwise. (2]
Z/3 i =2
H(TSt) ~ Z i=3 [3]
e|Z/B@Z/3 i=2 (mod 4),i>2
0 otherwise.

In particular, we have recovered the Lee-Szczarba result (10)

that H1(T',St) = 0 mod @, which is a crucial step in their proof
that K3(Z) = Z/3.
Remark. C. Soulé [“Cohomologie de SL3(Z),” preprint] has
mdependently obtained [2] and has, in addition, calculated the
2-torsion in H*(T',Z). Moreover, he has pointed out that his
methods can be used to calculate H(I',Z) as well. One can
therefore recover [3] by Soulé’s methods, and one can also cal-
culate the 2-torsion in H¥(T',St).

I am very grateful to Tom Farrell for telling me about his coho-
mology theory; without it, the methods used above would yield con-
siderably weaker results. This research was partially supported by a
grant from the National Science Foundation.
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