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Cohomology of Infinite Groups

Kenneth S. Brown*

This is a survey of recent results in the cohomology theory of infinite groups,
with emphasis on the theory of groups of finite virtual cohomological dimension.
(Recall from [24] that if I' is a group which has torsion-free subgroups of finite
index, then all such subgroups have the same cohomological dimension ; this common
dimension is called the virtual cohomological dimension of I' and denoted vcd I'.)

1. Euler characteristics. 1.1. If I' isa group such that H; (I', Q) is finite dimensional
over Q for all i and is trivial for all but finitely many i, then we set F(I')=
> (—=1) dim H,(I', Q). We will say that a group I' has finite homological type
if (i) ved I'< > and (i) H, _(I", Z) is finitely generated for every torsion-free sub-
group I’ of finite index. We then define the Euler characteristic y(I')éQ by
x(D)=3T)/(I':I'"), where I'" is any such subgroup; it is shown in [10] that this
is independent of the choice of I'”. It agrees with the Euler characteristic studied
by Wall [39] and Serre [24] if I" is of “type (VFL)”.

1.2. It is immediate from the definition that d-y(I')€Z, where d is the greatest
common divisor of the indices of the torsion-free subgroups I'” of finite index.
But one can, in fact, prove the sharper result that m.y(I')éZ, where m is the
least common multiple of the orders of the finite subgroups of I' (cf. [10] or [13]).
In addition, there are a number of formulas which yield more precise information
about y(I') in terms of the torsion in I'. For example, let ¥ be a set of represen-
tatives for the conjugacy classes of elements of I' of finite order, and assume for
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each s€¥ that the centralizer Z(s) is of finite homological type. Then one can
prove that ¥ is finite and that

(%) x(I) =S§IX(Z(S))-

(More generally, if I’<I' is an arbitrary normal subgroup of finite index, then
there is a Lefschetz number formula for the action of I'/l” on H_ (I, Q), cf.
[14, § 6]; (%) is the special case I'’=T.) In particular, since F(I')€Z, we obtain
xD=—3 e x(Z(s)) mod Z, where P =¥ —{l}; this can be regarded as
a formula for the ““fractional part” of y(I') in terms of the torsion in I'.

There is also a formula for the “p-fractional part” of x(I'), where p is a prime
([11], [23]; see also [13]): Let &, be the set of nontrivial elementary abelian p-sub-
groups of I'. [An elementary abelian p-group is a group isomorphic to (Z,)" for
some r-<oo, where Z,=Z[pZ.] If the normalizer N(4) has finite homological
type for each 4€f,, then x(I')=yx,(#,) mod Z ,,, where Z ,) denotes Z localized
at p and y,.(o,) is an “equivariant Euler characteristic”’. Moreover, one can
show that the latter is given by

xr(e) = 5 (=1y-tpt-02 5 yx(N(4)),
r=1 A€

where o7 is a set of representatives for the conjugacy classes of elementary abelian
p-subgroups of I' of rank r. [Our hypothesis implies that there are only finitely
many such conjugacy classes.]

The results described above have applications to group theory and number theory
([10], [11]), as well as to the study of the finite subgroups of the exceptional
Chevalley groups over Z [26].

1.3. Suppose now that I' is a group such that Q, regarded as a module over
the group algebra QI, admits a projective resolution of finite length, 0—>P,~--- -
Py—>-Q—0, with each P, finitely generated. (I' is then said to be of type
(FP) over Q.) We then set (cf. [33]) E()=>(—1)'r(P,), where r( ) denotes
the Hattori-Stallings rank. This “complete Euler characteristic’” is a Q-linear
combination of I'-conjugacy classes. We denote by e(I') the coefficient of the
conjugacy class of 1; this is the Euler characteristic of I' in the sense of [3], [15],
and [34]. Like the Euler characteristic y defined in 1.1 above, e agrees with the
Wall-Serre Euler characteristic if I' is of type (VFL). It is not known whether
e(I')=yx(I') whenever both are defined, but this is easily seen to be true if I" is
residually finite [3]; more generally, they are equal if I' has a subgroup I'” of
finite index such that E(I'") is concentrated at the conjugacy class of 1. A related
question is whether e(I')=j(I') whenever I' is torsion-free and of type (FP) over Q.
This is known to be true by results of Bass [3] if I" satisfies a certain “condition D",
which holds for instance if I" is a linear group.

1.4. Bass’s results imply further that E(I') is supported on the conjugacy classes
of elements of finite order if I' is of type (FP) over Q and satisfies condition D.
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Additional results about E(I') can be obtained by using the methods of [10]. One
can prove, for example (cf. [14]), under suitable hypotheses on I, the following
formula suggested by Serre:

(% %) E(D) = 3 e(2)-Ish

SEY

where ¥ is asin 1.2 and [s] is the conjugacy class of s. This should be thought
of as a refinement of the formula (%) above. Indeed, if (% %) holds then one easily
deduces (*), but with x replaced by e.

The hypotheses on I' under which (% %) has been proved are quite complicated,
but we can describe a large family & of examples for which (% %) has been proved,
as follows. Let %, be the class of finite groups; assuming &%,_, has been defined,
let &, be the class of groups I' which admit a simplicial action on a complex
X such that (i) X/I" is compact, (ii) the isotropy group I', is in &,_; for each
simplex ¢ of X, and (iii) the fixed-point set X*® is contractible for each scI’
of finite order. Then FHcH cHKc..., and we set F=Z,. The family F
includes all arithmetic groups (which are in &, as a consequence of [7]), as well
as the S-arithmetic groups in the reductive case (these are in %#,, cf. [8, § 6]. I do not
know an algebraic characterization of &, nor do I know any examples of groups
of type (FP) over Q@ which are not in &.

2. Farrell cohomology. F. T. Farrell [17] has shown that the Tate cohomology
theory for finite groups can be extended to the class of groups I' such that ved I' < .
Farrell’s theory yields cohomology groups H'(I") (i€Z), such that A’=H'® for
i=vedI'. If I' is a ““virtual duality group”, then one can describe H* for i<—1
as a homology functor ﬁn_i_lzﬂn_i_l(F,D(g)z —), where n=vcedI’ and D
isthe I'-module H"(I', ZI'); moreover, there is an exact sequence relating {f] i}—1§i=_§n R
{HYozizn» and  {H )iz, (cf. [17], [13]). This exact sequence generalizes the
sequence 0-H~1-~H,—~> H°-~H°—~0 which one has if I' is finite, where N is
the “norm map”. (Note: If I' is finite then »=0 and D=Z, with trivial I'-
action.) The Farrell cohomology groups are all torsion groups. In fact, if d and
m are the integers defined in 1.2, then d- A*(I")=0, but it is not known whether
one always has m« H*(I')=0.

It is shown in [12] and [13] that a great deal of information about A *(I') (and
hence about H'(I') for i>vedI') can be extracted from the finite subgroups
of I'. For example, H*(I') is periodic if and only if every finite subgroup of I' has
periodic cohomology in the usual sense. (This improves a result of Venkov [36].)
Similarly, if p is a prime then the p-primary component H *(I), is periodic
if and only if A*(G),, is periodic for every finite subgroup G<T, i.e., if and only
if I' contains no subgroups isomorphic to Z,XZ,. Another result, analogous
to that described in 1.2 on the p-fractional part of the Euler characteristic, is that
H*(I),y~Hf(s4,),, the latter being “equivariant Farrell cohomology”. If I
contains no subgroups isomorphic to Z,XZ, (ie., if H*(),, is periodic), this
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isomorphism takes the simple form H*(I'),, = []pcs H* (N (P))py» Where 2 is
a set of representatives for the conjugacy classes of subgroups of order p. See [22]
for earlier results relating the cohomology of I' to the elementary abelian p-sub-
groups.

3. Cohomology calculations. The proofs of the results described in §2 are based
on the fact, due to Serre [24, 1.7], that if ved I'<<o then there exists a contractible
finite-dimensional space X on which I' acts properly (and hence with finite isotropr,
groups). The arguments are of a general nature. For a given group I, howeveyl
one can often get more precise information about H *(I') by choosing X convementy
and making a more detailed analysis.

Consider, for example, the case I'=SL, (Z). Classically one takes X to be the
symmetric space SL,(R)/SO,(R); which can be identified with the space of
positive definite real quadratic forms in » variables, modulo multiplication by
positive scalars. This choice of X, however, is inconvenient for calculation
because I'\X is noncompact. One way to remedy this is to replace X
by its Borel-Serre “bordification” X [7]. This was done, for example, by Lee
and Szczarba [20], who were thereby able to completely compute the integral
cohomology of the principal congruence subgroup of level 3 of SL;(Z). The space
X was also used by Lee [19] in his construction of several families of ‘“‘unstable”
elements of H*(SL,(Z), R), i.e., cohomology classes which do not come from
H*(SL(Z), R). (Recall that the latter was computed by Borel [5]; it is an exterior
algebra with one generator of degree 4i+1 for each integer i=1.)

A different approach is to replace X by a contractible SL,(Z)-invariant subspace
X’ with compact quotient SL,(Z)\X’. Soulé ([27], [31]) and Ash ([1], [2]; see also
[13, §2, Ex. 5]) have shown that there always exists such an X’ of dimension
n(n—1)/2; this had previously been observed by Serre [25] in the case n=2. (We
remark that ved SL,(Z)=n(m—1)/2, so X’ has the smallest possible dimension
for a contractible space on which SL,(Z) acts properly.) The most striking result
obtained in this way is the complete calculation by Soulé [27] of H*(SL;(Z), Z).
This was achieved by using an explicit cell-decomposition of X” in order to compute
the spectral sequence of equivariant cohomology theory (cf. [18] or [22])

Eft = HP(INX', #F) = HP4(I).
(Here ¢ is a certain sheaf on '\ X’ whose stalks are the groups H?(I',), where
x€X’ and I, is the isotropy group of x.)

Still a third method was used by Lee and Szczarba [21] to partially compute
H*(SL,(Z)) for n=4 and 5. They replaced X by an enlargement X* due to
Voronoi [37], which comes equipped with a cell-decomposition compatible with
the SL,(Z)-action. Their calculations were pushed further by Soulé ([29], [31]).
Similar methods have been applied in [32] to the group SL;(Z [V=1).

Further information on the cohomology of SL,(Z) and other arithmetic groups
has been obtained by Eckmann [private communication] and Soulé ([28], [30], [31];
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see also [16], [35]) by studying characteristic classes. In particular, many interesting
examples of torsion classes in H*(SL,(Z), Z) have been obtained in this way.

4. Further results. I have, of course, had to omit many topics from this survey.
In particular, I would like to call attention to: (a) the work of Bieri and others on
cohomological dimension, duality groups, and related matters (see [4] and the
references cited there); (b) stability theorems of Quillen (unpublished), Wagoner [38],
and R. Charney [unpublished] for H,(GL,(R)) for suitable rings R; and (c) connec-
tions between cohomology and representation theory for discrete subgroups of Lie

groups ([6], [9], [40]). _

Finally, the reader is referred to the forthcoming proceedings of the 1977 Durham
conference on homological and combinatorial techniques in group theory (C. T. C.
Wall, ed.) for additional references and a list of open problems.
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