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2 - Groups of virtually finite dimension

KENNETH S. BROWN
Cornell University

The purpose of this paper is to give an exposition of two topics in
the theory of groups of finite virtual cohomological dimension: (a) the
theory of Euler characteristics and (b) the recently developed Farrell
cohomology theory. These are treated in Parts II and III, respectively.
Part I is devoted to a review of the necessary background material.

I wish to thank the Institut des Hautes Etudes Scientifiques in
Bures-sur-Yvette (France) and the Eidgendssische Technische Hoch-
schule in Zurich for their hospitality during the preparation of this paper,
also to acknowledge partial support by the National Science Foundation.

PART I. REVIEW

Good references for the material of Part I are [5] and [30].

§1. Finiteness conditions

Recall that the homology and cohomology of a group I' can be defined
algebraically, in terms of projective resolutions, as follows. Regard Z
as a module (with trivial I'-action) over the integral group ring ZI', and

choose a projective resolution P = (Pi)iZO:
.=>P P >Z-0.
1 0
One then defines, for any I'-module M,

H,(T, M) = H,(P 8, M) and H*(T, M) = H*(Hom, (P, M)).

[Note: We have been sloppy here about the distinction between left modules
and right modules. To avoid ambiguity, let us agree that all modules in

this paper are to be understood as left modules unless the contrary is
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explicitly stated. But then in order to make sense out of the tensor
product above, one must convert P to a complex of right modules in
the usual way, by setting xy =7 'x for x € P, ve T.]

Alternatively, the homology and cohomology groups H(I', M) can
be defined topologically, in terms of Eilenberg-MacLane complexes. One
chooses an Eilenberg-MacLane complex of type K(I', 1), i.e., a con-
nected CW-complex Y Asuch that 'nlY =T and ﬂiY =0 for i> 1, and

one sets
H(T, M) = H(Y, M),

where the groups on the right are to be interpreted as homology and co-
homology groups with local coefficients. [The equivalence of the algebraic
and topological definitions follows from the fact that the universal cover

Y of Y is contractible, so that its chain complex C(SNE) provides a free
resolution of Z over ZT.] '

(1.1) Example. Suppose I is a discrete subgroup of a Lie group
G which has only finitely many connected components. Let K be a
maximal compact subgroup of G and let X be the homogeneous space
G/K. One knows that X is diffeomorphic to Euclidean space ]Rd
(d = dim G - dim K) and that T’ acts properly on X (i.e., every point
x € X has a neighbourhood U such that yU n U # ¢ for only finitely '
many y € I'). In particular, every isotropy group FX is finite. If we
now assume that I" is forsion-free, then these isotropy groups are
trivial, so that I' acts freely on X and the projection X = I'\X isa
covering map. Since X is contractible, it follows that the manifold
I'\X isa K(T, 1), hence

H(T, M) = H(I'\X, M).

In the definitions of H(I', M) above, one is free to choose the
resolution P or the Eilenberg-MacLane complex Y. It is therefore
natural to try to take them to be as 'small' as possible, and this leads to
various finiteness notions. For example, if we interpret 'small' in terms

of dimension, then we arrive at the notion of cohomological dimension:
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one says that I" has finite cohomological dimension if the following con-

ditions, which are known to be equivalent, are satisfied:
(i) Z admits a projective resolution over ZI' of finite length,

i. e. a resolution of the form
Q=P =.,,,=>P =7Z-0.
n 0

(Such a resolution is said to have length = n.)

(ii) Z admits a free resolution over ZI' of finite length.

(iii) There is an integer n such that Hi(I“, M)=0 for i> n
and all I'-modules M.

(iv) There exists a finite dimensional K(T', 1)-complex.

If these conditions are satisfied then we define the cohomological

dimension of I' (denoted cd I') to be the minimal length of a projective
resolution of Z over ZI'; otherwise we set c¢d I' = «, It is known that
cd I' is also equal to the minimal length of a free resolution of Z over
ZT, as well as to the smallest integer n satisfying (iii). If ed I #2
then cd I' can also be described topologically, as the minimal dimension
of a K(I', 1)-complex, but it is not known whether this is true if c¢d I" = 2;
in this case one knows only that there exists a K(I', 1) of dimension =3,
The torsion-free discrete subgroups of Lie groups as in 1. 1 provide
examples of groups of finite cohomological dimension. On the other hand,
any group with torsion has infinite cohomological dimension. (In case T
is a non-trivial finite cyclic group, this is proved by a direct calculation
of H*(I'), which is non-trivial in arbitrarily high dimensions; the general
case follows from the elementary fact that ¢d I'" =< cd I' whenever I''CT.)
Further finiteness conditions are obtained by requiring not only that
the projective resolution P be of finite length, but also that each module
Pi be finitely generated. Such a resolution is said to be finite, and we
will say that I' is of type (FP) (resp. (FL)) if Z admits a finite pro-
jective (resp. free) resolution over ZTI. Unlike the situation in the
definition of cd I' above, where we allowed infinitely generated modules,
there is no reason to expect that a group of type (FP) is necessarily of
type (FL). Nevertheless, the surprising fact is that there are no known
examples of groups of type (FP) which are not of type (FL). Indeed,
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such a group would necessarily have a non-trivial projective class group
I~(0(ZP), aEd there are no known examples of torsion-free groups T
such that KO(ZI‘) # 0. In spite of this lack of examples, however, we
will see below (cf. 5.4) that the theory of groups of type (FP) has con-
crete applications.

The (FP) and (FL) conditions have reasonable topological inter-
pretations, at least if we assume that I' is finitely presented: If T is
finitely presented then T is of type (FL) if and only if there exists a
K(T, 1) which is a finite CW-complex, and I' is of type (FP) if and

only if some (and hence every) K(T', 1) is finitely dominated, i.e. is a

retract, in the homotopy category, of a finite complex. [Note: It is not
known whether the (FP) (or (FL)) condition implies that I' is finitely
presented; if so, then the finite presentation assumption above can be
dropped. |

For example, if I' is a torsion-free subgroup of a Lie group G
asinl.1, and if T is co-compact (i.e. G/T is compact), then T is
of type (FL). More interestingly, all torsion-free arithmetic groups
are of type (FL) even though they are rarely co-compact (see Serre's
lectures [32]).

We close this section by discussing the behavior of the finiteness

conditions with respect to passage to subgroups of finite index.

(1.2) Theorem (Serre [30]). Let I' be a torsion-free group and

I'"" a subgroup of finite index. Then c¢d I'' = cd I..

(1.3) Corollary. If I and I'' areas in 1.2, then T is of type
(FP) if and only if I'"" is of type (FP).

Remark. It is not known whether the analogous statement for groups
of type (FL) is true.

We will now sketch the proof of the theorem; the corollary is left
as an exercise for the reader. Assuming first that c¢d I' < «, it is easy
toprove cdI'""=c¢d I. For if ¢cd I' = n then the functor Hn(F, -) is
right exact, hence Hn(I‘, F) # 0 for some free ZI'-module F; letting F'
be the free ZI''module of the same rank, we have Hn(P', F') = Hn(I‘, F)

(this is a special case of 'Shapiro's lemma'), so cdI'' =n=cd I. The
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opposite inequality is trivial.

It remains to prove that if ¢cd I'' < « then ¢d I' < «, Let X'
be a finite-dimensional contractible simplicial complex on which I'
acts freely (and simplicially), i.e. X' is the universal cover of a finite-
dimensional simplicial K(I'"",1). By a 'multiplicative induction' con-
struction (see [30], 1.7, or [25], II, §16) one produces a simplicial
T'-complex X whose underlying simplicial complex is isomorphic to the
product of (T : I'') copies of X'; in particular, X is contractible and
finite dimensional. Moreover, the action of I' on X is proper. Using
now the hypothesis that I' is torsion-free, we see that I' acts freely on
X, sothat X/T is a finite dimensional K(I", 1) and cd I' < <,

§2. Virtual notions

Groups I with torsion, as we have seen, cannot satisfy any of
the finiteness conditions of §1. There will, however, often be torsion-
free subgroups I of finite index which do satisfy the finiteness con-
ditions. (For example, in the arithmetic case we have the congruence
subgroups.) We are thus led to introduce 'virtual' finiteness conditions.

Let T" be a group which is virtually torsion-free, i.e. which has

a torsion-free subgroup of finite index. By Serre's theorem (1. 2), all
such subgroups have the same cohomological dimension, and this common
dimension is called the virtual cohomological dimension of I', denoted
ved I, Similarly, we say that I' is of type (VFP) (resp. (VFL)) if T
has a subgroup of finite index of type (FP) (resp. (FL)). If T is of type
(VFP) then Corollary 1. 3 implies that every torsion-free subgroup of

finite index is of type (FP). The analogous statement for groups of type
(VFL) is not known, and one therefore introduces the following apparent
strengthening of the (VFL) condition: A virtually torsion-free group is
said to be of type (WFL) if every torsion-free subgroup of finite index is
of type (FL). The main examples of groups of type (WFL) are the
arithmetic groups, as well as the S-arithmetic groups in the reductive
case (cf. [8], [9], [32]).

This paper is concerned with groups I' such that ved I' < <,
This condition has the following topological interpretation, which follows
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immediately from the proof of Theorem 1. 2:

(2.1) Proposition. Let I' be a'virtually torsion-free group.

Then ved ' < o if aI;d only if there exists a finite-dimensional contract-

ible simplicial complex X on which I' acts properly (and simplicially).

One should think of X as an analogue of the homogeneous space
G/K which is available if T' is a discrete subgroup of a Lie group,
cf. 1.1. '
For future reference we record the following fact, ‘which comes
from an examination of Serre's construction used in the proof of Theorem -
1. 2:

(2.2) Addendum. If ved I' < « then the space X in 2.1 canbe
chosen so that the fixed-point set XH is contractible for every finite
subgroup H C T,

Questions. 1. Can X always be chosen so that dim X =ved I'? ,
We will see in the examples below a number of cases where this is known
to be true, but the general case remains open, even if I'" is arithmetic.
Note, in particular, that if I"' has torsion then the space X constructed
by Serre in the proof of Theorem 1.2 always has dim X = 2-ved I,

except in the trivial case where I' is finite and X is a point.

2.  What algebraic finiteness conditions on I' will guarantee
that X can be chosen so that X/T' is compact? For arithmetic groups
such an X exists by Borel-Serre [8] and the equivariant triangulation
theorem [21]. Even for S-arithmetic groups, however, the question seems
to be open, the probleym being the existence of an equivariant triangulation
(cf. [9, p231]). Note, again, that Serre's construction in the proof of 1.2

will never produce an X with compact quotient, unless I' is finite.

Examples., 1. vedI' =0 if and only if TI' is finite,

2. vedI' =1 if and only if T" is the fundamental group of a
graph of finite groups of bounded order. This result is a generalization
of the theorem of Stallings [35] and Swan [40] that groups of cohomological

dimension 1 are free. See [28] for a proof and further references; see
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also [31], ch. I, 2. 6. (Note, in this case, that one does have a con-

tractible 1-dimensional complex on which I' operates properly.)

3. If T is a (finitely generated) 1-relator group then I' is of
type (WFL) and ved I' = 2, To prove this we use the Lyndon exact
sequence [23]

0 - z[T /]~ 2Z[T]" > 2Z[T]>Z -0,

where n is the number of generators in some l-relator presentation of
T, and C is a finite cyclic subgroup of TI. It is known [19] that T is
virtually torsion-free, and clearly the above exact sequence provides a
finite free resolution of Z over ZI" of length 2 for any torsion-free
subgroup I'' C T of finite index, whence our assertion. We remark that
it is easy to realize Lyndon's exact sequence topologically as the cellular
chain complex of a 2-dimensional CW-complex on which I' operates

properly and with compact quotient.

4, If T is a finitely generated nilpotent group then I' is of
type (WFL) and ved I is equal to the rank (or Hirsch number) of T,

5. GLn(Z) is of type (WFL) and has virtual cohomological
dimension n(n - 1)/2. This is, of course, a special case of the Borel-
Serre results on arithmetic groups ([8], [32]), but we will indicate here
a different proof due to Ash [1], based on the reduction theory of Voronoi
[43]. Let X be the space of positive-definite real quadratic forms in n
variables, modulo multiplication by positive scalars. The group GLn(Z)
acts properly on X (but with non-compact quotient). We have
dim X = 9—@;—1) - 1. According to Voronoi [43] (see also [22] and the
references cited there), X can be enlarged-to a space X* with the
following properties:

(a) The action of GLn(Z’) on X extends to X*, and X*/GLn(Z)
is compact. (This extended action, however, is not proper.)

(b) X* admits a cell-decomposition compatible with the action of
GLn(Z).

Let oX* = X* - X, A glance at Voronoi's definition of the cells of
X* shows:

(c) @X* is a subcomplex and contains the (n - 2)-skeleton of X*,
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It is easy to see that X* admits a barycentric subdivision com-
patible with the GLn(Z)—action, and we denote by X' the 'simplicial
complement' of ¢X* in this subdivision, i.e. the union of all closed
simplices which are disjoint from ¢X*, Then X' inherits a simplicial
action of GLn(Z), and this action is proper since X' C X, Moreover,

X = X* - 0X* admits a canonical deformation retraction onto X' (cf.

[34], ch. 3, sec. 3, proof of Cor. 11), so X' is contractible. From

(a) we see that X'/GL (Z) is compact (whence GL (Z) is of type (WFL)),
and from (c) we see that X' has codimension at least n-1 in X*, so
that

n(n + 1)

n(n - 1)
> —

-1-(n-1)= 5

ved GLn(Z) =dim X' =

Finally, to show that these inequalities are in fact equalities, we need
only note that GLn(Z) containg the strict upper triangular group, which is
a finitely generated nilpotent group of rank n(n - 1)/2; thus

ved GLn(Z) =n(n- 1)/2.

Remark. The fact that X retracts ontoa GL (Z) invariant sub-
space X' of dimension n(n - 1)/2 was first proved by Serre for n= 2
(cf. [32], or [31], Ch. I, 4.2), by Soulé [33] for n= 3, and by Ash [1]
for arbitrary n. More generally, Ash proves the analogous statement
for a class of arithmetic groups including the groups GLn(Z), using a

generalization of Voronoi's theory.

§3. Duality groups and virtual duality groups

References: [5], [6].

For any group I' we may regard ZI' as a left I'-module and define
H*(T", ZI'). (The group Hl(I", ZT), for example, arises in the theory of
ends of groups.) Since ZTI is also a right I'~-module and the left and
right actions commute, the groups Hi(I‘, ZT) inherit a right I'-module

structure. These modules play a special role in the theory of groups of
type (FP).

Definition. TI' is called a duality group if the following two con-

ditions are satisfied:
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(i) T is of type (FP).

(ii) There is an integer n such that Hi(l", ZT) =0 for i#n
and H'(T, ZT) is Z-torsion-free. ,

The integer n here is necessarily equal to cd I'; in fact, it is
easy to see for any group I' of type (FP) that cd I' is equal to the
largest integer i such that Hi(I“, ZT') # 0.

If T is a duality group then the I-module D = HX(T, ZI) is
called the dualizing module of I'. The terminology 'duality group' and

'dualizing module' is justified by the existence of a duality isomorphism

(3.1) H(T, M) = H (T, D®M)

for any integer i a’nd T'-module M, where the tensor product is over
Z and is given the diagonal I'-action: - (d ® m) = dy—l ® ym for
yel', deD, m e M,

To prove 3.1, choose a finite projective resolution P of length n
of Z over ZI' and let P' be the dual complex of projective right
ZT-modules, i.e. P'=Hom, (P, ZT). Since H'(T, ZI)=0 for

i #n, P' provides a projective resolution of D over ZTI":
O0=P' -».,.. PP =D=-=0.
0 n

Using the canonical isomorphism HomZF(P, M) = P' ®,_, M, we deduce

Z1r

HY(T, M) = Torf_ri(D, M).

Finally, since D is Z-torsion-free we have

Tor2T(D, M) ~H (T, D ® M),

whence 3. 1.

Remarks. 1. Conversely, if I' is a group such that there exist
isomorphisms of the form 3.1 which are natural in M, (where D isa
fixed I'-module and n is a fixed integer), then T is a duality group.
Indeed, T is then of type (FP) by [13] or [36], and condition (ii) above

is easily derived from 3. 1,
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2. If the dualizing module D is Z-free, which is the case in all

known examples, then there are also isomorphisms
(3.2) H/(T, M) ~H" T, Hom(D, M)),

where Hom(, )= Homz( , ), with the diagonal I'-action.

3. If T is anarbitrary group of type (FP), then one can still
derive isomorphisrhs of the form 3.1 and 3. 2, but with the dualizing
module D replaced by a 'dualizing chain complex'. (The groups on the
right-hand side of 3.1 and 3. 2 must then bé, interpreted as in the appendix
at the end of this section,) Conversely, the existence of such generalized
duality isomorphisms, natural in M, implies that T' is of type (FP).

A duality group is said to be a Poincaré duality 'group if D, as

Z-module, is infinite cyclic. In this case the duality isomorphisms take

a form more familiar to topologists:
i ~
H(T, M) = Hn-i(r’ M),

where M denotes M with the I-action 'twisted' by the character
I' = {#1} by which T acts on D. (For example, if there exists a
K(T, 1) which is a closed manifold, then T is a Poincaré duality group. )
From the point of view of group theory, however, Poincareé dualij:y is
rather rare. Torsion-free arithmetic groups, for example, are always
duality groups, but they are Poincaré duality groups only in the rank 0
case ([8], 11.4).

A group T is said to be a virtual duality group if it contains a sub-

group of finite index which is a duality group. This is equivalent to saying'
that T' is of type (VFP) andthat I' satisfies condition (ii) of the defini-
tion of 'duality group'. Again we set D - Hn(l", ZT') and we note that
every torsion-free subgroup I'' C I' of finite index is a duality group
whose dualizing module is D, regarded as I''-module. [More generally,
if T is an arbitrary group of type (VFP) then one can find a chain com-
plex of I'-modules which serves as dualizing complex in the sense of
Remark 3 above for every torsion-free subgroup of finite index. |

We mention one example, which is a special case of the Borel-Serre

results on arithmetic groups [8]: The group GLr(Z’) is a virtual duality
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group of dimension r(r - 1)/2, with

St if r is odd

~

St if r is even,

(3.3) D=

where St is the 'Steinberg module' and §t denotes St with the GLI_(Z)-
action twisted by det : GLr(Z) - {1},

Appendix. Homology with coefficients in a chain complex

Let T" beagroupand C = (Ci)
We then set

j=g & chain complex of ZI'-modules.

H,(T, C) = H,(P 8, C),

where P is a projective resolution of Z over ZI' and the tensor
product is the total tensor product, i.e. the total complex associated to
the double complex P, ®ZI‘ C. . Note that if C consists of a single
module M concentrated in dimension 0, then H_ (T, C) = H (T, M).

The definition immediately gives us two spectral sequences con-
verging to H, (T, C). The first has

2
E- =H (I, HC);
pq p(’q)

the second has

1
pq

E . =H T C),

with the differential d' induced by the differential in C, In particular,
one obtains from these spectral sequences the following two properties of
H, (T, C):

(3.4) If each Cp is projective over ZI' then H,(T, C)= H*V(Cl_,).
[Here Cr= HO(I‘, C)=12 81 C] More generally, the same conclusion
holds if each Cp is H, -acyclic, i.e. if Hq(Cp) =0 for q> 0.

(3.5) If £:C—=C" is a weak equivalence of chain complexes (i. e.

f, :H,C—=H,C' is an isomorphism), then f induces an isomorphism
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H,(T, C) 3 H,(T, C".

One can also define cohomology groups H*(T, C), where
C= (Cl)i>o is a cochain complex, as the cohomology of the total com-
plex associated to Homzr(P. , C'). Again there are two spectral

sequences and properties analogous to those above.

PART II. EULER CHARACTERISTICS

Main references: [11], [30]; see also [4].

We wish to define the Euler characteristic of a group of type (FP)
as the alternating sum of the 'ranks' of the projective modules Pi which
occur in a finite projective resolution of Z over ZI'. We begin, there-

fore, by defining a suitable notion of rank.

§4. Ranks of projective modules

If T' isagroupand P a I'-module, we denote by PI‘ the abelian
group HO(I‘, P)=2
over ZTI then PI‘ is a finitely generated free Z-module, and we set

®ZI" P. If P is finitely generated and projective
e(P) = rankZ(Pr).

We will sometimes write er.(P) instead of €(P) when this is necessary
for "clarity. The following proposition shows that € has the multiplicative

property which one expects of a reasonable 'rank’:

(4.1) Proposition. Let I'' C T be a subgroup of finite index. If

P is a finitely generated projective ZI'-module, then P is also finitely

generated and projective as ZI''-module, and

er,(P) =(T:1" - er(P).

Proof., Let I'" C I'" be a subgroup of finite index which is normal
in T, Then we may replace I, I'", and P by I'/T", I''/T", and PF"
to reduce to the case where I' is finite. But in this case one knows by a
theorem of Swan that ®Z P is free over QI. It is clear, then, that

38



er(P) is simply the rank of this free QI'-module, and the proposition
follows at once. (Proofs of Swan's theorem can be found in [38], [39],
[2], and [3]; see also [4].)

Remark. There is another notion of rank, which we will denote
p(P), defined as the coefficient of the conjugacy class of 1 in the
Hattori-Stallings rank of P. (Recall that the Hattori-Stallings rank of
P, .which we denote r(P), is a finite linear combination of I'-conjugacy

classes, cf. [3], [4].) The rank p, like €, has the multiplicative property
(40 2) prv(P) = (P . P') ¢ pI-\(P)-

Bass's 'weak conjecture' ([3], p. 156) says that one always has &€ = p,
and, as Bass observed ([3], 6.10), this is easily proved if T' is resi-
dually finite, To see this, note first that one can express €(P) as the
sum of the coefficients of r(P), hence &(P) = p(P) if r(P) is concen-
trated at the conjugacy class of 1, Now if I' is residually finite, then
we can find a subgroup I'" of finite index which does not contain the ‘
finitely many non-trivial conjugacy classes where r(P) has a non-zero
coefficient. We will then have ar,(P) = pr,(P), and hence SI.,(P) = pr(P)
by 4.1 and 4. 2.

§5. Euler characteristics for groups of type (FP)

One can use either of the ranks € and p discussed in the previous
section to define the Euler characteristic of a group of type (FP). For
our purposes it will be more convenient to use €. (Of course, the two
definitions agree if I' is residually finite by what we have just proved,
and they agree for all T if Bass's weak conjecture is true. See [3],

[4], and [17] for a discussion of the Euler characteristic based o p.)

Thus let T' be of type (FP) andlet P = (Pi) be a finite projective
resolution of Z over ZI. We then set

X(T) = 2(-1'e(®) = 3(-1)" rank, (2. .

Note that the homology of the complex PI‘ is H,I', so we can also write
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X(T) = 3(-1)} rank,, (H.T) .

Thus Xx(I') is simply the 'naive' Euler characteristic, which could have
been defined a priori, without any discussion of ranks. The point of the
definition in terms of €, however, is that we immediately obtain from

4,1 the multiplicative property
(5.1) x(TM)=(T:17) - x(I) .

if I''C I is a subgroup of finite index. This property is by no means |
obvious from the naive definition, and some argument like that of §4 is

needed in order to prove it. On the other hand, (5.1) is obvious if T’
is of type (FL). We will also need a multiplicative property of the Euler

characteristic with respect to the coefficient module; again this is obvious
if T is of type (FL) but requires some work in general.

(5.2) Proposition. Suppose T is of type (FP), k is a field, and

V is a kI'-module of finite dimension over k. Then

Z(—l)idimkHi(I‘, V) = x(I) + dim V = 3(-1)'dim B(T, V).

A proof‘ of the second equality can be found in [11], §4, and the
first equality is proved similarly. 4

Before proceeding further, we mention a group theoretic application
of the existence of an integer-valued Euler characteristic satisfying 5.1
for groups of type (FP): | |

(5. 3) Pfopositibn. Let T bea group of type (FP). If T' can be

embedded as a subgroup of finite index in a torsion-free group _f, then
x(T) is divisible by ‘(f : I).

The proof is immediate, for T is of type (FP) by 1.3, hence

XD _ x(T)ez.
T:1)

Thus |x(1")| , if non-zero, provides an obstruction to the existence
of torsion-free enlargements of T

(5.4) Remark. Even if one is only interested in the case where T
is of type (FL), the proof requires a theory of Euler characteristics for
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groups of type (FP), since one does not know that T will be of type (FL).

(5.5) Corollary. Let 1= T'=E =P =1 be a group extension,

where I is of type (FP) and P has prime order p. If p }/x(I‘) then
the extension splits. ’

In fact, E necessarily has torsion by 5.3; T being torsion-freé,
it follows that any non-trivial finite subgroup of E must map isomor-
phically to P, thus providing a splitting.

We will see later (Cor. 7. 3) that 5.5 can be substantially improved.

§6. Extension to groups of type (VFP)

Let I" be a group of type (VFP). Following the method of Wall
[44], we then define x(I') by choosing a subgroup T of finite index
which is of type (FP) and setting

X0 = 28

the right-hand side being independent of the choice of I'" by 5.1. Note
that x(I"). is a rational number and is not, in general, an integer. For
examplé\, if T is finite then x(I) = l/IFI. If T is torsion-free, on the
other hand, then I' is of type (FP) and hence x(I') € Z.

We list some useful properties of the Euler characteristic:
(6.1) If I'"C T is a subgroup of finite index, then
x(I'")=(:1")- x(I).

This is immediate from the definition.

(6.2) Let 1= TI'"=T=TI"=1 bea group extension, where I
and I'" are of type (VFP). If T is virtually torsion-free then T is
of type (VFP) and

X(T) = x(T") - x(T™).

The proof that T" is of type (VFP) is straightforward. To prove

the Euler characteristic formula, one reduces to the case where all
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groups are of type (FP), in which case the result follows from a
spectral sequence argument together with 5, 2.

(6.3) Let T be an amalgamation I' x, I‘2 where A<> I‘i, and
suppose 1“1, 1"2, and A are of type (VFP). If I is virtually torsion-
free then T is of type (VFP) and

x(T) = x(T)) + x(T") - x(A).

This can be proved exactly as in [30], where the (WFL) case is

treated.
As an example of 6. 3 we may take T = SLz(Z) = Z4 *o Zé (where
Z_ = Z/nZ). We obtain 2
1,1 1_ 1
X(SLz(Z)) =7 s 3712

(Alternatively, one can derive this formula from the fact that SL_(Z) |
contains a subgroup of index 12 which is free on two generators, cf.
[30], 1.8, Ex. 2). ,

The theory of Euler characteristics becomes especially interesting
when applied to Chevalley groups over a ring of algebraic integers. In
this case one has Harder's formula expressing x(I') in terms of values
of ¢{-functions (see [20], [30], [32]). For future reference we record two
special cases of this formula:

n n
(6.4) x(Sp,, () = I &1 - 21) = I - B,,/2i,
i=1 i=1
where B,. is the Zith Bernoulli number (B =1 =1 )
2i 2 6 T4 307 "
(6.5) X(E, (@) = - 73— 2250
2°7¢3°.5%.77.11.13-19

Note that sz = SLz’ so we recover from 6.4 (with n = 1) the
formula x(SLZ(Z)) =-1/12.

§7. Integrality properties of x(I')

Throughout this section I" will denote an arbitrary group of type
(VFP). We have seen that Xx(I') need not be an integer if I' has torsion.
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The results of this section and the next resulted from an attempt to

explain more precisely the relation between the torsion in I and the
non-integrality of x(I'). The first result along these lines is the following
observation due to Serre ([30], 1.8, Prop. 13):

(7.1) Proposition. If p is a prime such that' T' has no p-torsion,

then x(I') is p-integral, i.e. p does not occur in the denominator of
x(T).

[Taking T = E7(Z), for example, it follows from this proposition
and 6. 5 that E_/(Z) must have p-torsion for p=2, 3, 5, 7, 11, 13, 19.]
To prove the proposition choose a torsion-free normal subgroup
I'" C T of finite index, and choose 'I"p(l“’ c I‘p CTI) sothat ]."p/l'" is
a p-Sylow subgroup of I'/I"". Then (T : I’p) is relatively prime to p,

and I"p is torsion-free (since any torsion would be p-torsion). Thus
X(Pp) €Z and x(I) = x(I‘p)/(I" : Pp) is indeed p-integral.
Serre went on to conjecture the following more precise result,

which was proved in [11]:

(7.2) Theorem. Let m be the least common multiple of the

orders of the finite subgroups of I'. Then m - x(I') € Z.

Note that the p-part of m for a given prime p is simply the
maximal order of a p-subgroup of I', so the theorem can be restated as
follows: If a prime power pk occurs in the denominator of x(TI'), then
I" has a subgroup of order pk.

For example, taking T = E7(Z) again, we see that not only must
E7(Z)' contain elements of order 2, 3, ..., but it must contain sub-
groups of order 221, 39, ... « This application of Theorem 7. 2 to the
study of torsion in the exceptional Chevalley groups is due to Serre. See
[32] for a more detailed discussion.

Another application is the promised improyement of 5. 5.

(7.3) Corollary. Let 1= I =E =P =1 be a group extension

such that I' is of type (FP) and P is a p-group for some prime p.
If p} x(I) then the extension splits.
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Proof, One has x(E) = x(I") /]PI, and this fraction is in lowest
terms. By the theorem, E must contain a subgroup of order equal to
IP | , and any such subgroup provides a splitting of the extension.
' As an example of the corollary, take I' = Fn’ the free group on
n generators. Then x(Fn) =1 - n, so an extension as above must split
if p }’ n - 1, This result is vacuous if n =1 and easy to prove directly
if n = 2, using the known structure of the group of outer automorphisms
of F2 ([24], §3.5, Cor. N4).‘ If n= 3, however, I know of no proof
other than that given here, based on the theory of Euler characteristics.
We now prove Theorem 7.2, Let X be a finite-dimensional con-
tractible simplicial complex on which I' acts properly (2.1). Let
I'" C T be a torsion-free normal subgroup of finite index and let Y=X/TI",
[Note: Replacing X by its barycentric subdivision, if necessary, we can
assume that Y inherits a cell-decomposition from that of X. Taking
another barycentric subdivision, we can even make Y simplicial, cf.
[10]. ] Since I" is of type (FP) and acts freely on X, we have
x (M) = x(Y), ;_th.e, latter being, by definition, E(-l)irk(HiY). Hence
x(T) = x(Y)A(T : T'') and what we are trying to prove, then, is that

z_f‘_:‘n_f'_)‘ - x(Y) €2,
or, in other words, that x(Y) is divisible by the integer d= (I" : T'')/m.
To this end we note that the action of T" on X induces a (simplicial)
actionof G=T/T"' on Y = X/T"'. Moreover, the isotropy groups
Gy‘ (y € Y) are simply the images in G of the isotropy groups I’X (x €X),
hence they all have order dividing m. Thus every orbit Gy has car-
dinality divisible by d, and one would like to conclude that x(Y) is
divisible by d. This is trivially true if Y is compact, since Xx(Y) can
then be computed by counting simplices, and the number of these in each
dimension is divisible by d. If Y is not compact, one still knows that
Y is finite dimensional and that H,Y is finitely generated, and it turns
out that these finiteness conditions on Y are enough to yield the result
that d[x(Y). In fact, one can prove:

(7.4) Theorem. Let Y be a paracompact space of finite coho-

mological dimension in the sense of sheaf theory, and assume that
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H*(Y, Z) is finitely generated. If a finite group G acts on Y and the

cardinality of each orbit Gy is divisible by some mteger d, then
d| x(v). |

[Here H*(Y, Z) denotes the sheaf-theoretic (or Eech) cohomology
of Y, and x(Y) is defined tobe 3(-1)'rk@®(T, 2)).]
We will sketch the proof of this theorem; for further details see
[11], §2. Note first that, by a Sylow argument, we may reduce to the
case where G is a p-group for some prime p. Moreover, since H*(Y, Z)
is flmtely generated x(Y) is equal to the mod p Euler characteristic
5 (-1)" d1m H (Y, Zp). Throughout the remainder of this proof, then,

H*( ) will%enote H*( , Zp)” and X will denote the mod p Euler =
characteristic. ‘ ‘ ’ - '
(@) If G acts freely on Y, then the desired result that
IGI x(Y) is a well-known consequence of Smith theory, cf. [7], ch, IO
More generally, one has the following relative version of this result:
If Y'CY isa G-invariant closed subspace such that H*(Y, Y') is
finitely generated and G acts freely in Y - Y', then fGl x(Y, Y").
(b) In the general case we use the technique of stratlflcatlon by
q= ly eY : Gy =H} and
let Y H]= G- YH' (Thus Y (H) is the union of all orbits of type G/H.)
Let C be a set of representatives for the conjugacy classes of subgroups

orbit type'. For any subgroup HC G let Y

of G which occur as isotropy groups in Y. It'is easy to see that there
is a filtration of Y by closed subspaces ¢ = Y0 c... C Yn =Y, such
that the successive differences Yi - Yi-l are the subspaces Y {H)

(H € €). It follows that

)= 2 x'(Y ),
XL YD

where X' is defined as follows: If A is a locally closed subspace of Y
then we write A = B - B', where B and B’ are closedand B' c B;

if H*(B, B') is finitely generated then we set X'(A) = x(B, B'), this
being independent of the choice of (B, B'). (Alternatively, x'(A) can
be defined in terms of the cohomology of A with supports in the family
of subsets of A which are closed in Y.) One must verify, of course,

that x'(Y {H}) is defined, but this follows easily from the fact (known
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from Smith theory) that each fixed point set XI-I has finitely generated
mod p cohomology.
It suffices, therefore, to prove that x'(Y (H }) is divisible by
(G : H). Now clearly
Y= L& Y
geG/N(H)
where N(H) is the normalizer of H in G, so

X'(Y () = (G : N@®) - X'(¥pp).

On the other hand, the group N(H)/H‘ acts freely in YH’ so the relative
.version of (a) implies that x'(YH) is divisible by (N(H) : H). Thus

x'(Y {H}) is indeed divisible by (G : N(H)) - (N(H) : H) = (G : H).

§8. Formulas for x(TI")

A careful examination of the proof of Theorem 7.2 yields more
precise information than what was stated. For example, suppose T

satisfies the following condition:

(8.1) T has only finitely many conjugacy classes of finite sub-
groups, and for each finite subgroup H the normalizer N(H) is of type
(VFP).

One can then derive ([11], §6) a formula of the form

(8.2) x(M) =%M + ¥ cy/lH|,
HeC

where X(I') is the 'maive' Euler characteristic E(-l)lrk-z(HiI‘), C isa
set of representatives for the conjugacy classes of non-trivial finite sub-

groups of I', and c., is an integer which is defined in terms of the con-

jugation action of N%—I) on the ordered set of finite subgroups of I' con-
taining H. This formula then 'explains’, in terms of the torsion in T,
the failure of x(I') to equal the integer X(I). We will not prove 8, 2
here, but we will instead give some results which are less precise but
easier to use in practice. V

We will need the notion of 'equivariant Euler characteristic' for a
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pair (T, K), where T isa group and K a CW-complex on which T
acts. For simplicity we will assume that the following two conditions
are satisfied:

(i) The I'-action permutes the cells of K.

(ii) For each cell o of K, the isotropy group 1"Or fixes ©
pointwise.

We then say that K is an admissible I'~-complex. [Note: Condition

(ii) is harmless in practice; in the case of a simplicial action, for
example, it can always be achieved by passing to the barycentric sub-
division. | If, in addition, K/I" is compact and each isotropy group ro
is of type (VFP), then we define the equivariant Euler characteristic

x (&) by |

xp&) = 3D,

where o ranges over a set of representatives for the cells of K mod I
It is easy to verify (cf. [30], 1.8, proof of Prop. 14(b)), that

if IT" C I is a subgroup of finite index.

We will be particularly interested in the case where K arises
from a partially ordered set S on which I' operates, i.e. K is the
simplicial complex K(S) (sometimes called the nerve of S) whose ver-
tices are the elements of S and whose n-simplices correspond to the

chains s0 < 8 <... < Sh in S. In this case we set
xp®) = x(K(S)),

if the right-hand side is defined.
We can now state (cf. [11], §6):

(8.3) Theorem. Let I be a group which satisfies condition 8. 1

and let F be the set of non-trivial finite subgroups of I. Regard F as

an ordered set under inclusion, with I"-action by conjugation. Then

xF(S’) is defined and
X(T) = x(%)  (mod Z).
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This theorem can be regarded as a formula for the 'fractional
part' of X(I') in terms of the Euler characteristics of groups of the
form N(Ho) N... N N(Hn)’ where H0 c... C Hn is a chain of non-
trivial finite subgroups of I'. There is also a 'local' version of the
theorem, proved in [12], which says that if we just want the 'p-fractional
part' of X(I') for a fixed prime p, then it suffices to consider those

finite subgroups H which are p-groups, i.e.
I = F d Z
x(T) = x p) (mo (p)),

where pr is the set of non-trivial finite p-subgroups of I" and Z(p)

is Z localized at p. Quillen [26] improved this result by showing that
EFp can be replaced by the smaller set @p consisting of the non-trivial
elementary abelian p-subgroups of I'. (Recall that an elementary abelian
p-group is a group isomorphic to (Z/p)r for some integer r, called the

rank of the group.) The precise statement of this improved result is:

(8.4) Theorem. Let I be a group and p a prime such that N(H)

is of type (VFP) for every elementary abelian p-subgroup H € I. Then

xl-,(@p) is defined and

T) = G dZ .
x(T) Xr( p) (mo (p))
We will give the proofs of Theorems 8. 3 and 8. 4 in the next section.

Remark., Theorem 8.4 (unlike Theorem 8. 3) is non-vacuous even
if T" is finite, In this case the congruence above can be unscrambled
to yield

x(@) =1 (mod ),

where pk is the highest power of p dividing IPI and x(@p) is the
Euler characteristic of the finite complex K(@p). See Quillen [26] for
further results about the homotopy type of K(@p).

The simplest case of Theorem 8. 4 is that where every elementary
abelian p-subgroup of I' has rank =1, i.e. I' contains no subgroup
isomorphic to Z/p X Z /p. In this case K(Gp) is discrete and one has
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xp(@) = 2 x(N(P))

where P ranges over the subgroups of I' of order p, up to conjugacy.
Using the fact that each P contains exactly p - 1 elements of order p,
one can easily rewrite the right-hand side of this equation in terms of the

elements of IT" of order p and their centralizers, and one obtains:

(8.5) Corollary. Let I' be a group of type (VFP) and p a
prime such that IT' contains no subgroup isomorphic to Z/p X Z/p.

For each element @ of I' of order p, assume that the centralizer

Z(a) is of type (VFP). Then I has only finitely many conjugacy classes

of elements of order p, and

x(T) EB-}I P x@(@)  (modZy),

where o ranges over the elements of order p, up to conjugacy.

As an application of this corollary, due to Serre, one can recover
Kummer's criterion in terms of Bernoulli numbers for the irregularity
of a prime p. This is done by taking I' = Spp_l(Z) and combining the
above congruence with Harder's formula 6, 4. See [11], §9.4, and [12],

84, for details and a generalization.

§9. Proofs of Theorems 8. 3 and 8. 4

The proofs will require the rudiments of equivariant homology theory.
Specifically, we will need to know that there are groups Hf (K), defined,
say, if K is an admissible I'-complex, and having the following three
properties:

(9.1) If T acts freely on K then HL(K) ~H,(K/T).

(9.2) If f:K =K' is a I'-equivariant cellular map which induces

an isomorphism H,K = H_K', then f induces an isomorphism

T\~ T
H, (K) 5 H, (K") .
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(9.3) There is a spectral sequence converging to H,,I: (K), with

1
E- = & Hq(I‘O),

L
p
where Zp is a set of representatives for the p-cells of K mod I'.  Con-
sequently, if K/I' is compact and each 1"0 is of type (FP), then

3(-1)'rky By (K) = x(K) .

There are various ways to define the equivariant homology groups

and prove the above properties. For example, one can set
T
H* (K) = H*(r; C(K)) ’

where C(K) is the cellular chain complex of K and the right-hand side
is to be interpreted in the sense of the appendix to §3. The properties
9. 1-9. 3 then follow from results stated in that appendix.

We cari now prove Theorem 8. 3. First, the fact that xr(SF) is
defined is an easy consequence of 8.1, cf. [11], 85, Lemma. Now let
X, as in the proof of Theorem 7.2, be a finite-dimensional contractible
simplicial complex on which I acts properly, let I'" C I' be a torsion-
free normal subgroup of finite index, and let Y be the I'/T"'-complex
X/I''. Assume further that X has been chosen so that XH is contrac-
tible for H € &, cf, 2.2. Let X0 be the set of points of X with non-
trivial isotropy group and let Y0 = XO/I". Iclaimthat Y 0 has finitely
generated homology. Accepting this for the moment, and noting that
T'/T" acts freely in Y - Yo’ we obtain (cf. proof of Theorem 7. 4)

x(Y) = x(Y ) (mod(I": I')).
Thus

x(Y )
@0 x(0) = 2= ity (mod 7).

n

Observe now that Xo =Ug eEFXH' Since each XH is contractible,
one deduces that X0 is homotopy equivalent to the 'nerve' of the covering

{XH }, and in the present context 'nerve' can be taken to mean the complex
K(F):
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(9. 5) X0 =~ K(F) .

(Cf. [11], Appendix B, and [26], proof of 4.1.) Moreover, this homotopy
equivalence can be taken to be compatible with the I'-action, in the sense
that there is a third I'-complex which maps to both Xo and K(F) by
I'-equivariant maps which are homotopy equivalences. Using 9.1 and 9. 2,

we conclude that
I I
H,(Y )~ Hy (X)) =~ H, (K(5)).

Thus H*(YO) is indeed finitely generated and, by 9. 3, x(YO) = xl.,,(ff);
‘the right-hand side of 9. 4 is therefore equal to xI,(EF), and the proof is

complete.

Theorem 8. 4 will be deduced from:

(9. 6) Proposition. Let I' be a group of type (VFP) and let K
be an admissible I'-complex such that XI“(K) is defined. If p isa

prime such that KH is contractible for every non-trivial finite p-subgroup
HCT, then

xp®) = () (mod Zy).

Proof. Let I' C T be a torsion-free normal subgroup of finite
index. Replacing I" by a subgroup Pp such that T /I‘p is a p-Sylow
subgroup of I'/T"', we may reduce to the case where I'/T" is a p-group,

in which case we will prove
x pK) = x(T) (mod Z).

Note that every finite subgroup of I" is now a p-group, so our hypothesis
says that KH is contractible for every H € §. We may therefore argue
as in the proof above to deduce

XD =@y “ T

(mod Z) ,

where RF,(SF) = E(—l)lrkzz Hir (K(%), Zp). (One needs to use here the
fact that H,k(Y0 , Z’p) is finitely generated by Smith theory, cf. proof
of Theorem 7.4.) On the other hand, we may apply the same argument

51



- with X replaced by X = X X K, since iH = XH X KH is still contrac-
tible for H € §. Writing Y = X/I"", we find

XpK) =y =Sy T )

(mod Z),
whence the proposition.

Proof of Theorem 8.4. We remark first that I" has only finitely
many conjugacy classes of p-subgroups. This follows from the fact that,
with the notatlon we have been using, H (YP Z ) is finitely generated
(and hence Y has only finitely many connected components) for every
p-subgroup P C I'/T'; see [15], proof of Lemma 4, 11(a), or [25], proof
of Prop. 14.5, for more details. In particular, I"' has only finitely many
conjugacy classes of elementary abelian p-subgroups, and it follows easily
that xr((i ) is defined. The theorem will now follow from Proposition
9. 6 applied with K = K(G ), if we verify that K(@ ) is contractible
for each non-trivial p-—subgroup HCTI. Fixa central subgroup C of H
of order p. If A€ @;I, i.e. ’A isa non-I’_cIrivial elementary abelian p-
subgroup of I' normalized by H, then A is non-trivial; hence we
have a sequence of inclusions A 2 AI-I c C-A 2C m @H and this yields
the required contracting homotopy of \K(@é) —K(@ ), cf [26], 4.4.

PART III. FARRELL COHOMOLOGY THEORY

References: [18], [14].

Let I be an arbitrary group of finite virtual cohomological dimen-
sion. If T is torsion-free then c¢d I' < » and therefore H*(I') = 0 in
high dimensions. This suggests (by analogy with the results of §§7 and 8)
that, in general, one might try to 'explain' the high-dimensional cohom-
ology of T" in terms of the torsion in I'. For this purpose it is convenient
to use a modified cohomology theory fI introduced by Farrell [18]. There
is a map Hi(l") - ﬁi(F) which is an isomorphism for i> ved I', and one
has fI*(I‘) =0 if T is torsion-free. Thus it is réasonable to expect that,
in some serise, fi*(l") isolates the cohomological contribution of the finite
subgroups of I'. It is not yet clear to what extent the Farrell theory will

be useful in the study of the low-dimensional cohomology of I' (which is
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often more interesting than the high-dimensional cohomology, e.g. for
applications to algebraic K-theory), but at the very least it allows one to
break the study of H*(I') into two steps: (a) understand H*(T); (b) under-
stand the map H*(T) = H*(I).

Farrell's cohomology theory is a generalization of the Tate cohom-
ology theory for finite groups. We will therefore begin by reviewing the
latter (§10); then in §§11 and 12 we discuss the foundations of Farrell's
theory. Two of the well-known applications of Tate cohomology theory
are the Nakayama-Rim theory of cohomologically trivial modules (cf. [29])
and the theory of groups with periodic cohomology (cf. [16]); in §§13 and
14 we give the generalizations of these theories to infinite groups, using
Farrell cohomology. Finally, §15 contains the results alluded to above,
relating fI*(I") to the finite subgroups of I'; as an application, we obtain
some results on H*(SLB(Z[%])).

§10. Review of Tate cohomology theory

Let G be a finite group. To define the Tate groups ﬁ*(G), one
i=0 of Z over ZG and

'‘completes’' it to a complex of projectives P which is acyclic in all

begins with a projective resolution P = (Pi)

dimensions:

e *P =P =P =P =....
1 0 -1 -2

The existence of such a completion is easily proved as follows. To begin,
one chooses an injection i:Z < P_1 of ZG-modules, such that P_1 is
projective and i is Z-split (e.g. take P_1 = ZG and i(1)=N=Eg€Gg).
Let C = coker i. Since C is Z-free, one can find a Z-split injection
j:C < P—z’ where P__2 is projective (e.g. take P_2 = ZG ® C, with

G acting on the first factor, and let j(c) = 2 gr g'lc). Continuing

~ g€G
in this way we obtain P:

..>P =P =P ~P_ ..

\/\/

Z C
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It is easy to see that any two such completions are canonically

homotopy equivalent, and we can therefore define
H*(G, M) = H*(Hom, (P, M)

for any G-module M. The Tate theory has the following properties:
(10.1) H*(G, M)=0 if G is the trivial group.

(10.2) As in ordinary cohomology theory one has long exact co-
homology sequences associated to short exact sequences of modules,

Shapiro's lemma, restriction and transfer maps, and cup products.

(10. 3) ﬁ*(G, M) =0 if M is an induced module ZG ® A for some
abelian group .A; hence the functors ﬁl(G, -) are effaceable and co-

effaceable,

(10.4) B'=H' for i> 0.
(10.5) % isa quotient of HO, namely, the cokernel of the norm
map N: HD*HO. '

(10. 6) gt is a subgroup of Ho’ namely, the kernel of the norm
map N: H0 -u°,

(10.7) H'= H, . i i<-L
Properties 10.1-10. 5 are easy to verify directly from the definition,

while 10. 6 and 10. 7 follow from the fact that a complete resolution can be

constructed by splicing together a finite type resolution P of Z over ZG

i s . ~ .
with its dual P —-HomZG(P, ZG) HomZ(P, Z):

(10,8 ... =P =P =P =P =
1 o\< /o 1
Z
Thus we have a cohomology theory {H'] consisting of the functors
H' and Hi for i> 0, together with modified H° and H0 functors:
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§11. Definition of ﬁ*(l")

Let T' be a group such that ved I' = n < «, (The previous section
treated the case n=0.) Let P be a projective resolution of Z over
ZI'. By a completion of P we will mean an acyclic complex P of pro-
jectives which agrees with P in sufficiently high dimensions. A com-
pletion of P can be constructed as follows: Let K =1Im {Pn - Pn—l }.

If T"C T isa torsion-free subgroup of finite index, then K is ZI''-
projective, hence we can find an embedding i : K < f)n—l where i)n—l
is ZT'-projective and i is ZI'"-gsplit (e.g. take Pn— =2 ® K and

1 VAN
ix) = 2y ® y_lx, where 7y ranges over a set of representatives for the
cosets I'/T'"). Applying the same process to coker i and continuing as
in the previous section, we obtain a completion of P:

e >P P D Lol

\/

K

In case I' is of type (VFP), we can also use the following method
for constructing complete resolutions, which generalizes the splicing
construction (10. 8) available if I' is finite: Take the original resolution
P to be of finite type and let P' be the dual complex HomZP(P, Z1).
One can show that there exists a chain complex Q = (Qi)izo of finitely
generated projectives which maps to P' by a weak equivalence of the

form
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Q ...
1 A\l \
Pl=... =P =P ..

(If T is a virtual duality group, for example, then Q is simply a finite
type projective resolution of the module D = Hn(I‘, ZT).) The mapping
cone of this weak equivalence is then an acyclic complex of projectives,
whose dual is the desired completion P,

Returning to the general case, now, one shows that any two com-
pletions are canonically homotopy equivalent, hence we can define the

Farrell cohomology groups by

H*(I', M) = H*(Homzr(iD, M)).

One shows also that there is a chain map P P, well-defined up to

homotopy, whence a map
H*(I', M) = H*T, M).

We will often suppress the coefficient module M from the notation and
simply write ﬁ*(l“).

The Farrell theory has properties analogous to the properties of
the Tate theory listed in §10.

(11.1) H*(I) =0 if I is torsion-free.

(11.2) One has long exact cohomology sequences, Shapiro's lemma,
restriction and transfer maps, and cup products. Moreover, there is a
'Hochschild-Serre’ spectral sequence associated to a short exact sequence
l] =T"=>T=TI"=-1 of groups of finite virtual cohomological dimension,
provided either I or I'" is torsion-free, If I'" is torsion-free this
takes the form

P = mP(rv, A% = &Y,
and if I' is torsion-free then it takes the form

P9 = BP(r, () = BT,
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(Note, in particular, that the edge homomorphism of the latter spectral

sequence yields an inflation map H*(I'") = H*(I') for any I'"-module

of coefficients in the case where I is torsion-free.)

(11. 3) fI(l", M) =0 if M is an induced module ZT ®ZI" M',
where I is a torsion-free subgroup of finite index and M' isa I''-

module; hence the functors fIl(l", -) are effaceable and co-effaceable.
(11.4) H'=H' for i> n=ved I.

(11. 5) ﬁn(F, M) is isomorphic to the cokernel of the transfer
map Hn(l“', M) = Hn(l", M), where I' is any torsion-free subgroup of

finite index.

Assume now that I’ is a virtual duality group (8§3), let D=Hn(1"‘, ZT),
and let I~Ii(1", M) = Hi(l", D ® M). Then we have:

(11, 6) ﬁ'l(r) is isomorphic to the kernel of the transfer map
H () »f{n(r'), with T' as in 11. 5.

L7 B'=H for i< -1.

n-i-1

(11.8) There is an exact sequence

0—-H —rﬁ »Ho»ﬁo-pﬁn —le-»f{l —b...—#ﬁo—an—bﬁn—)O.

1
To summarize, then, the Farrell cohomology theory {H'] (at

least if I'" is a virtual duality group) consists of the cohomology functors

H' for i> n; the homology functors ﬁi for 1> n; modified H" and

-~ 0 An-1

Hn functors; and n additional functors H°, ..., H ~, which are some

sort of mixture of the functors Hi and ITIi for i =n:

HD Hn—l Hn Hn+1 Hn+2
) . by
. H—3 1'.‘1'2 H-l HO . Hn_ Hn ﬁn+1 Hn+2
N N A 4
Hn+2 Hn+1 Hn Hn—l ot Ho
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Remarks. 1. Properties 11.6-11. 8 generalize to the case where
I' is an arbitrary group of type (VFP); the module D must then be
replace‘d by a suitable complex, cf. §3.

2. There are also Farrell homology groups ﬁ*(I’, M), defined

by

H, (T, M) = H,(P &, M),

r

and having properties analogous to those above. If TI' is a virtual duality

group then one has
Ai N -~
H(T, M) = Hn—i-l(r’ D ® M).
If, in addition, D is Z-free, then
(T, M) ~ A%, Hom(D, M)).

As usual, both of these isomorphisms can be generalized to the case

where I is only assumed to be of type (VFP).

Finally, we mention that the groups ﬁ*(l", M) are torsion groups;
in fact, by transfer theory they are annihilated by the greatest common
divisor d of the indices of the torsion-free subgroups I" of finite index.
One might expect, by analogy with Theorem 7. 2, that they are in fact
annihilated by the least common multiple m of the orders of the finite
subgroups of I, but it is not known whether or not this is true. [Note
that m and d involve the same primes, and mld. ] In view of the theory
of cup products, it would suffice to show that 1 € ﬁo(l“, Z) is annihilated
by m.

Example. Suppose I = SLB(Z). Then d =48 and m = 24, and
the calculations of Soulé [33] show that H*(T, Z) is indeed annihilated
by 24.

§12. Equivariant Farrell cohomology

It has been known for a long time that equivariant cohomology theory
provides a machine for relating the cohomology of a discrete group to the

cohomology of its finite subgroups. In this section we present the Farrell
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cohomology version of this equivariant theory. Thisgeneralizes a theory
introduced by Swan [37] for finite groups. Throughout this section, T’
denotes an arbitrary group of virtually finite cohomological dimension.

For simplicity, we will define the equivariant cohomology groups
fI’l':(K) only in the case where K is an admissible I'-complex (§8).

Moreover, we will assume that K is finite-dimensional. In this case

we define, for any I'-module M,

ﬁ"f,(K, M) =H*(Homzr(i>, C(K, M))).

A

Here P isa complete resolution for I'; C(K, M) is the cellular cochain
complex of K with coefficients in the underlying abelian group of M, and
C(K, M) is given the diagonal I'-action; and Hom denotes the total
homomorphism complex, i. e. the total complex associated to the double
complex Homzr(f{ , C'(K, M)). As before we will often suppress M
and simply write fif(K). Note that ﬁf(pt.) = fI*(I‘), hence for any K

there is a canonical map
#*(T) » H4.(K),

induced by the map K = pt. of I'-complexes.
We immediately obtain from the above definition two spectral

sequences converging to ﬁ"f,(K). The first has
BN = mP(r, 5l(K),
and the second has

pq _ ~q
= 1 aYr),
erP

where Ep is a set of representatives for the p-cells of K mod I. The

Ez-term of the second spectral sequence is given by
Eb? =wPx/r, {BYT ),

where the right-hand side is to be interpreted as follows. Fix q € Z. To
each cell 7 of K/T' we may associate the group AT = ﬁq(ro), where o
is any cell of K lying over 7; this group is independent of the choice of
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o, up to canonical isomorphism. Given a face relation 7' < 7, we may
choose liftings ¢' and ¢ with ¢' < o, We then have I‘G, 2 1“(I by
admissibility, hence there is a restriction map ﬁq(l"o,) - ﬁq(I‘o) which
yields a well-defined map A - ->AT. These maps satisfy the obvious
compatibility condition whenever 7" < 7'< 7, and hence we have a
'coefficient system' on K/I'. What occurs above, then, is the cohomology

of K/I' with coefficients in this system.

Remarks. 1. A coefficient system of this sort gives rise toa
sheaf which is constant with stalk AT on the interior of 7, and the ,
Ez-term above is isomorphic to the cohomology of K/I'" with coefficients

in this sheaf.

2. The first spectral sequence above lives in the first and second
quadrants, and the second one lives in the first and fourth quadrants.
There is no problem with convergence, however, in view of the finite-

dimensionality of K,

| We record, now, two properties of equivariant Farrell cohomology
which follow easily from the above spectral sequences:

(12.1) If f: K= 1L isa cellular I'-map which induces an isomor-
phism H, K- H,L, then f induces an isomorphism ﬁ*I:(K) & fI"f,(L). In
particular, if K is contractible, then ﬁ’f(K) zﬁ*(l").

(12.2) If K'C K isa I-invariant subcomplex such that I" acts
freely in K - K', then Hi(K) 3 ﬁ*f(K’).

Finally, we call attention to an important special case wheré we
will apply the equivariant Farrell theory. Let X be, as in 2,1, a finite-
dimensional contractible complex on which I' acts properly. Then

ﬁi‘.,(X) ~ ﬁ*(l"), and the second spectral sequence therefore takes the form:
2.3 EM=wPx/r, {B%r) )= B YD),

This spectral sequence relates the Farrell cohomology of I' to the Tate
cohomology of its finite subgroups.
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(12.4) Exercise. Suppose that X has been chosen so that XG

is connected and non-empty for every finite subgroup G & I'; we know

by 2.2 that this is possible. Show that the left-hand edge E: * of the
above spectral sequence can be identified with lim H*(G), where G
ranges over the finite subgroups of I' and the limit is taken with respect
to all maps between finite subgroups given by conjugation by an element

of I. Explicitly, an element of this limit is a compatible family { ug b,
where G ranges over the finite subgroups of T, u, € H*(G), and the
compatibility condition is the following: If G and G' are finite subgroups

maps to u

and 9 is an element of T such that 'yG'y—l C G', then u G

A~ -~ G'
under the map H*(G') = H*(G) induced by conjugation by 1.

§13. Cohomologically trivial modules

I' continues to denote an arbitrary group of finite virtual cohomo-
logical dimension. As an immediate consequence of the equivariant co-

homology spectral sequence 12, 3, we have:

(13.1) Lemma. Let M be a I'-module such that fI*(G, M) =0
for every finite subgroup G € I. Then fI*(I", M) = 0.

We will say that M is cohomologically trivial if, as in the lemma,
fI*(G, M) = 0 for every finite G C I'. It then follows from the lemma
that ﬁ*(ro, M) = 0 for every subgroup I' C T. :

In case I is finite, we have the following characterization of co-

homologically trivial modules, due to Rim [27] (see also [29]):
If T is finite then a I'-module M is cohomologically trivial if and
only if it has finite projective dimension over ZI', and in this case

proj dim_. M =1, If M is Z-free and cohomologically trivial, then

ZT
Zr
We now extend this to the general case. Let ved I' = n.

proj dim_ .M = 0, i.,e. M is ZI-projective.

(13.2) Theorem. A T'-module M is cohomologically trivial if

and only if it has finite projective dimension, and in this case

proj dim_, M =n+1. If M is Z-free and cohomologically trivial then

M =< n,

Zr
ZT

proj dim
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Proof. Clearly projective modules are cohomologically trivial,
hence so is any module of finite projective dimension. Conversely,
suppose M is cohomologically trivial, and assume first that M is
Z-free. I claim that Hom(M, N) is cohomologically trivial for any

I'-module N, where Hom(, )= Hom ) with the diagonal I'-action.

(
Z b
Indeed, it suffices to verify the claim in case I'" is finite, in which case
it follows at once from Rim's theorem. We therefore have

fI*(l“, Hom(M, N)) = 0, hence
ExtiZF(M, N) = H{(T, Hom(M, N)) = 0

for i > n, and proj dimZI‘M =n. Incase M is not Z-free, choose
a surjection P> M with P projective. The kernel M' of this map
will have proj dimZI,M' = n by what we have just proved, hence

proj dim_, .M =n + 1.

ZI
§14, Groups with periodic cohbmology

A group I of finite virtual cohomological dimension will be said
to have periodic cohomology if for some integer d > 0 there is an element
of ﬁd(r, Z) which is invertible in the ring ﬁ*(l", Z). Cup product with

such an element then defines periodicity isomorphisms

alr, m =~ &89, M

for any I'-module M and any integer i. Similarly, one can define
p-periodicity for a fixed prime p in terms of the existence of an inver-
tible element of positive degree in the ring ﬁ*(I‘, Z) ()’ the p-primary
component of H*(I', Z). [One can show by a Bockstein argument that
this is equivalent to the existence of an invertible element of positive
degree in ﬁ*(l“, Z/p). ] Clearly I has periodic cohomology if and only
if it has p-periodic cohomology for every prime p.

One way to prove periodicity (or p-periodicity) is by exhibiting a
finite quotient I' /T which has periodic (or p-periodic) cohomology,
where I'' is torsion-free. This follows from the fact that the inflation
map (11, 2) is a ring homomorphism ﬁ*(l“/l'", Z) = fi*(l“, Z). Similarly,
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if T has periodic or p-periodic cohomology, then so does every sub-
group (because the restriction maps are ring homomorphisms).
The main result on groups with periodic cohomology is the following

theorem:

(14.1) Theorem. Let I be a group such that ved I' < « and let

p be a prime. The following conditions are equivalent:

(1) I has p-periodic cohomology.

(ii) There exist integers i and d with d> 0, such that
H (F M)( )= 1-*-d(I‘ M)( ) for all I'-modules M.
(iii) Every finite subgroup of I' has p-periodic cohomology.

(iv) T does not contain any subgroup isomorphic to Z/p X Z /p.

(v) Every finite p-subgroup of I' is a cyclic or generalized

quaternion group.

Proof. Trivially (i)wé (ii). To prove (ii)= (iii), note first that
if (ii) holds for some i then it holds for all i by a standard 'dimension
shifting' argument. Also, (ii) holds for any subgroup of I' by Shapiro's
lemma. In particular, if G C T is finite then fId(G, Z) (p) ~ fio(G, Z) (D)’
and this is well-known to imply that G has p-periodic cohomology, as
required (cf. [16]). The equivalences (iii)<> (iv) < (v) are well-known
from the theory of finite groups with periodic cohomology [16]; so it
remains to prove (iii)= (i).

We recall first that a weaker version of this implication was proved
by Venkov ([41], [42]), although he did not use the language of Farrell
cohomology theory. (He spoke, rather, of periodicity in the ordinary
cohomology of I' in sufficiently high dimensions.) Restated in terms of
Farrell cohomology, his result is the following: If there exists an element
ueH (P Z)( ) (d > 0) whose restriction to H*(G Z)( ) is invertible
for every finite G € I', then u is invertible and hence I' has p-periodic
cohomology. This result of Venkov is easily deduced from the multiplica-
tive structure in the equivariant cohomology spectral sequence 12, 3,

localized at p:

st s+t

At
E=H (X/r {H (ro)} (r)(p)

’(p)
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Indeed, one need only observe that multiplication by u induces an iso-
morphism on E ) and hence also on the abutment,

To prove (iii)= (i), then, it suffices to prove that (iii) implies the
existence of such an element u. This again follows from the multiplica-
tive structure in the above spectral fequence. For let us be an inver-
tible element of positive degree in H*(G, Z)(p), where G ranges over

the finite subgroups of I'. Raising u_. to a power, if necessary, we

may assume that {uG} isa compatibcie family in the sense of 12. 4, so
that {uG} represents an element of the edge Eg* It now follows by an
argument of Quillen ([25], proof of Prop. 3.2) that some power of {uG}
is a permanent cycle in the spectral sequence and hence is the image of

some element u € ﬁ*(I‘, Z) under the edge homdmorphism
14,2 Ax(T, Z),_, = lim A*@G, 2), . .

( ) (r, )(p) 1m (G, )(p)

This completes the proof.

Remark. In the language of Quillen [25], the above proof is based
on the fact that the map 14,2 is an 'F-isomorphism'. It should be noted
that Quillen's methods yield the much stronger result (for any group T
with ved I' < «) that the map

H*(T, Z) () = lim f*@A, 7)

is an F-isomorphism, where A ranges over the elementary abelian

p-subgroups of T,

§15. The ordered set of finite subgroups

I" continues to denote an arbitrary group of finite virtual cohomo-
logical dimension. As in 88, if I' operates on a partially ordered set
S then we set

Hx(8) = BEEK(E) .

As usual it is understood here that there is an arbitrary I'-module M of

coefficients., In this section we will prove analogues in Farrell cohomology
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of Theorems 8. 3 and 8. 4.
Recall that, for any finite-dimensional admissible I'-complex K,
there is a canonical map H*(T) - ﬁf.\(K).

(15.1) Theorem. Let F be the set of non-trivial finite subgroups

of T, Then the canonical map

fi+(D) =+ H$(5)

is an isomorphism.

Proof. Let X and X 0 be as in 89, proof of Theorem 8.3, Then

HX(T) =~ B3(X)  byl2.1
~H{(X)) by 12.2
& H’f,(ﬂ‘) by 12.1 and 9. 5.

It is easy to check that this composite isomorphism is in fact given by
the canonical map H*(T) - I:If,(ﬁ).

Next we prove the analogue of 9, 6:

(15.2) Proposition. Let K be a finite-dimensional admissible

I'-complex and let p be a prime such that K‘H is contractible for every

non-trivial p-subgroup H € I'. Then

=0 ) = HE B -

Proofz. Let T C Fp C I' be as in the proof of 7.1. Since
(T I‘p) is relatively prime to p, we may use restriction and transfer
maps in the usual way to obtain, for any finite-dimensional admissible
P-c?mplex L, a natural embedding of ﬁ’i:(L) (@) as a direct summand
of Hf, (L). Applying thisto L =K and L = pt., we see that the

p ~ -
canonical map H*(I‘)(p) - H’f(K)(p) is a direct summand of the canonical

map ﬁ*(rp) - ﬁ"l‘, (K). It therefore suffices to prove that the latter is an
‘ P

2 Tam grateful to D, Quillen for a suggestion which simplified my

original proof.
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isomorphism. Just as in the proof of 9. 6, we now apply the method of
proof of Theorem 15.1 to (I‘p, X X K) and (Pp, X) to deduce

% o ~ H*
iy (K) = fig, (5) ~HYT),
p p

where & is now the set of non-trivial finite subgroups of I‘p. It is

easily checked that the composite isomorphism is given by the canonical

map, whence the proposition.

Let Cﬁp be the set of non-trivial elementary abelian p-subgroups
of T. As in §9 (proof of Theorem 8. 4), we may apply 15. 2 with
K= K(@p) to obtain:

(15.3) Theorem. For any prime p,

H*(T), , = H (G .

( )(p) I p)(p)

This theorem gives information about I'-\I*,(l") (®) in terms of the elementary
abelian p-subgroups and their normalizers, cf. [14], Prop. 2. Incase T
contains no elementary abelian p-group of rank 2 (i.e. if I' has p-periodic

cohomology), this information takes the following simple form:

(15.4) Corollary. If I contains no subgroup isomorphic to
Z/p % Z /p, then

ﬁ*(r)(p) ~ 11 ﬁ*(N(P))(p) ,

where P ranges over the subgroups of I' of order p, up to conjugacy.

In [14], 86, we applied the corollary with T’ = SLB(Z) “to calculate
the 3-primary component of I:I*(SLB(Z)), from which we obtained 4
H*(SLB(Z), Z) and H*(SLB(Z), St) modulo 2-torsion. Here St denotes
the Steinberg module, cf. 3. 3. (Of course, these calculations have been
subsumed in the work of Soule [33].) We now give another example in
which Theorem 15, 3 yields concrete information relating ﬁ*(I‘) to the
cohomology of the normalizers of the elementary abelian p—sﬁbgroups of T.

Let T' = SLB(Z[% ]). We will apply Theorem 15, 3 with p = 2. Note
first that every elementary abelian 2-subgroup of I' is diagonalizable and
hence has rank = 2; thus K(@z) is a graph. Let 'PO be the group of
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order 2 generated by

-1 0 ©
0 -1 0
0 0 1

and let P1 be the group of order 4 consisting of the matrices

+1 0 0
0 =1 0
0 0 =1

in SL3' Then Po C P1 so there is an edge of K(@z) with vertices P0
and Pl, and it is easy to see that this edge is a fundamental domain for
the actionof T" on K(@Z). The isotropy groups of the vertices P0 and
Pl are the normalizers N(Po) and N(Pl). Explicitly, N(Po) is iso-
morphic to GL2(= GLZ(Z[%])), embedded in SL3 in the usual way,
0
N

Ab -
0 ¢ ‘ det A~

and N(Pl) is ‘the group SM3 of monomial matrices in SL,. The iso-
tropy group of the edge (Po’ Pl) is GL2 n SM3 =M, the group of
2 X 2 monomial matrices. The second spectral sequence of equivariant
cohomology fheory (§12) therefore yields a 'Mayer-Vietoris' sequence
relating ﬁ*r((xtz) to ﬁ*(GLz)’ fl*(SMB), and ﬁ*(Mz), so we have by
Theorem 15, 3 a Mayer-Vietoris sequence

.=t »flsL)), G, efilsm,), ~EliM

2°(2) 37(2) 2'(2) 3 2

(2) Yoy

The result can be stated more precisely, as follows. Let

f“ = GLz*M SM3 and consider the canonical map I‘ = I'. One can show
2

that K((iz) is connected, whence this map is surjective and its kernel
is isomorphic to the free group nl(K(@z)), cf. [31], ch. I, 5.4, Ex. 3,
There is therefore an inflation map (11. 2)

H*(I) = BX(T) ,
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and our result is that this induces an isomorphism on 2-primary com-
ponents, with any I'-module of coefficients. In particular, since
ved I’ = 5 by Borel-Serre [9], we have

i, 2 ol
H(T) H (1“)(2)

for i> 5.
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