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Introduction

A group G is of type FP_ if there is a projective ZG-resolution {P} of Z such
that each P, is finitely generated. G is of type FP if {P} can be chosen so that,
in addition, P =0 for almost all n. Equivalently, G is of type FP if and only if
G is of type FP, and G has finite cohomological dimension. A well-known
necessary condition for this is that G be torsion free. Problem F 11 of [W;
p- 388] asks whether this condition is also sufficient: “Is every torsion-free group
of type FP, also of type FP? Or, on the other hand, can one find an FP_
group with a non-finitely generated free abelian subgroup?” In this paper we
settle this question by showing that a certain group F, previously known to be
finitely presented and torsion-free and to have a free abelian subgroup of
infinite rank, is of type FP,.
The group F is defined by the presentation

-1

Xy X1s Xy oo | X7 X, X=X, 1 for i<n).

n+1

This group has an interesting history. It was discovered by R.J. Thompson in
1965 in connection with his work in logic - see [MT; p. 475ff]. Thompson also
used F in unpublished work as an aid in the construction of some finitely
presented infinite simple groups. [We have been able to deduce from the FP_
property for F that one of these simple groups is also of type FP, ; details will
appear elsewhere.] The group F later appeared independently in homotopy
theory, in connection with the study of homotopy idempotents ([FH], [D,],
[D,]). '

Our proof that F is of type FP_ is motivated by this connection with
homotopy theory. And as a corollary of the proof we obtain new information
about homotopy idempotents, as well as a new proof of the Hastings-Heller
theorem [HH] that homotopy idempotents on finite-dimensional complexes
split. We also obtain homology and cohomology calculations of F, including
the result that H*(F,ZF)=0. F seems to be the first known FP, group with
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this property. [We will show elsewhere that the simple FP_, group mentioned
above also has this property.]

The paper is organized as follows. In §1 we summarize known properties of
F, emphasizing the point of view that F admits the universal example of an
endomorphism which is idempotent up to conjugacy. In §2 we give a heuristic
discussion of the topological analogue of F; this is a space Y admitting the
universal example of a self map which is idempotent up to homotopy. The
rigorous construction of Y is given in § 3. We obtain Y as X/F, where X is a
space with a free right F-action. It is possible to read §3 independently of §2,
but the construction of X will then seem very strange.

We prove in §4 that X is contractible, so that Y is an Eilenberg-MacLane
space K(F,1). In §5 we show that Y has the homotopy type of a complex Z of
finite type, i.e., with only finitely many cells in each dimension. This proves
that F is of type FP . In fact, the cellular chain complex P of the universal
cover of Z is a finite type free resolution of Z over ZF.

We give in §6 a purely algebraic description of this chain complex P. This
description can be read independently of the rest of the paper. But the proof
that P is in fact a resolution relies on the considerations of §§3-5, and we
know of no way to avoid this.

In §7 we use the results of the previous sections to calculate H (F,Z) and
H*(F,ZF). This second calculation depends on a result in our paper [BG,].
Finally, we give in §8 an application of our work to the theory of homotopy
idempotents.

We wish to acknowledge our debt to Jerzy Dydak. In unpublished joint
work of Dydak and one of us (R.G.) in 1980, there appears a complex Z’ of
finite type very similar to the space Z mentioned above. It was conjectured at
that time that Z’ was a K(F,1). The construction of Z' motivated the present
work. (In fact, it follows from the work here that Z’ is a K(F,1).)

This paper and [BG,] together contain proofs of all theorems announced
in [BG,].

Notational conventions

Given elements a, b of a group, we set a®=b"'ab and [a,b]=aba~'b~1.

All group actions in this paper will be right actions. In particular, if G is
the group of homeomorphisms of a space X, then the action of G on X is
denoted (x,g)—xg(xeX,geG), and composition in G is defined by x(gh)
=(xg)h (xeX, g heG).

Given a space Y with basepoint, the composition law in 7,(Y) is defined by
[w] [@]=[we-w], where wow' traverses w’ followed by w. This is consistent
with the convention of the previous paragraph, in the following sense: Suppose
X is the universal cover of Y and G is the group of deck transformations.
Then, under the usual hypotheses of covering space theory, there is an isomor-
phism 7, (Y)—=> G which sends [w] to the element geG such that the lift of w
starting at the basepoint x, of X ends at x,g.
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1. The group F

Everything in this section can be found in one or more of [MT], [FH], [D,],
[D,], [DH], [DS]. For the convenience of the reader, we have included proofs
of all non-obvious results which will be needed later in the paper.

Recall that F is defined by the presentation

Xy X1, X0, ...| X5 =X, 4 for i<n).

It is immediate from this definition that F admits a “shift” map ¢: F—F such
that ¢(x,)=x,,,; for n=0 and such that ¢*(x)=¢(x)™ for all xeF; thus ¢ is
idempotent up to conjugacy. Moreover, the triple (F,¢,x,) is the universal
example of this situation:

Proposition 1.1. Given a group G, an endomorphism Y: G—G, and an element
2,€G such that Y*(g)=y(g)®° for all geG, there is a unique homomorphism f:
F—G such that f(xy)=g, and fo=yf [

Remark. Let g,=y"(g,) in the situation of 1.1. If g, +g,, it can be shown that
f: F—G is injective, so that the g, generate a copy of F. More generally, it is
known that F admits no nonabelian proper quotients.

Example 1.2. Let g, (n=0) be the piecewise linear homeomorphism of R which
is the identity on (—oo,n], has slope 2 on [n,n+1], and has slope 1 on
[n+1, ). Let S be the homeomorphism of R given by uS=u-+1 (ueR), and
note that gi=g, . ,. The group of homeomorphisms G generated by the g,
therefore admits an endomorphism ¥ given by y(g)=g5 and satisfying ¥(g,)
=g,. 1. Note that g, agrees with S on [1, c0); since ¥(g) has support in [1, c0)
for every gegG, it follows that y?(g)=v(g)° =y /(g)®>. The proposition therefore
yields a homomorphism f: F—G such that f(x,)=g,. [In view of the remark
above, f is in fact an isomorphism. But an independent proof of this fact will
be given below. ]

We will use this homomorphism f to deduce a number of properties of F.

(1.3) Normal forms. The relations defining F allow one to write any xeF in
the form x=x, ...x, x;'...x;" with i, <...<ip, j; £...Zj,, k, m20. More-
over, we can choose this expression for x so that if x; and x; ! both occur for
some i then x;_ ; or x; %y also occurs. [Otherwise there would be a subproduct
of the form x,;¢'*?(y)x;" !, which could be replaced by ¢'**(y).] An expression
of this form is called a normal form for x. We claim that x admits a unique
normal form. : ‘

Proof. It suffices to show that any ge G has a unique normal form in terms of
the g,. Suppose first that g has a normal form g; ...g;, g;'...g;;" as above,
with all subscripts = some integer i. Then the right-hand derivative of g at u=i
is 2", where n is the g-exponent sum in the normal form. In particular, any
other normal form for g with subscripts =i will have the same g;-exponent
sum.
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Suppose now that there are two different normal forms for the same
element of G, and choose such a pair of normal forms of minimal total length.
That total length is necessarily >0. Let i be the smallest subscript occurring in
either normal form. The normal forms cannot both start with g;, since we
could then cancel g;, contradicting the minimality. Similarly, they cannot both
end with g;7'. Since they have the same g;-exponent sum by the previous
paragraph, the only possibility is that one of the normal forms involves both g;
and g7 ' and the other involves neither. The equality between the homeomor-
phisms represented by the normal forms therefore reads g;zg; ' =w, where z is a
normal form with subscripts =i and w is a normal form with subscripts =i+ 1.
Then z=wf=y(w) as homeomorphisms, hence also as formal expressions
by the minimality of our supposed counter-example. But then z involves only
subscripts =i-+2, contradicting the fact that the expression g;zg;”* is a normal
form. O '

As a corollary of the proof, we have:
Corollary 1.4. The homomorphism f: F—G of 1.2 is an isomorphism. []
The group G is torsion-free, and y: G—G is injective. Hence:
Corollary 1.5. F is torsion-free. [
Corollary 1.6. ¢: F—F is injective. [

Once ¢ is known to be injective, we see that F, =image(¢) is a copy of F
with presentation {x, X,, ...|x}=Xx, , for 1<i<n). A glance at the defining
presentation of F now yields:

Proposition 1.7. F is the HNN extension of F, with respect to the monomor-
phism (¢\|F,): F,—F,, with x, as the stable letter. []

Repeating with respect to F,=image (¢?), etc., we see that F is an infinitely
iterated HN N extension.

Proposition 1.8. F contains a free abelian subgroup of infinite rank.

Proof. The elements x,x7',x,x3%,x,x5%,..., represented as homeomor-
phisms of R, have disjoint supports. They therefore commute and are linearly
independent. []

(1.9) Finite presentation. Two finite presentations of F have appeared in the
literature. Both have two generators x, and x,. Let x, for n=2 be the word in
x, and x, defined inductively by x,=x;»7* Then the two presentations are

n
(Xgy X X50=x5, x5 =x,> and {xg, x;|x°=x;, xP=x5D.

The relations may also be written as r, =r,=1 in the first presentation and
r,=ry=1 in the second, where r,=[x,x7% x,], r,=[x;x;% x;], and r,
=[x,x7 ', x;]. These three relators have lengths 10, 18, and 14 when written
out in terms of x, and x;.

It is not difficult to verify directly that the two presentations above define F.
The first presentation will also come out of our work in §5 below, where we
will exhibit a K(F, 1)-complex whose 2-skeleton corresponds to that presen-
tation.
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2. The space Y: heuristics

The topological analogue of a conjugacy idempotent on a group is a homotopy
idempotent on a space, i.e., a based space (Y,y,) together with a basepoint-
preserving mapy: Y—Y and a free homotopy h=(h),<,<; With hy=y* and
h, =\. [“Free” means that h, is not required to preserve the basepoint.] Such a
triple (Y, y, h) gives rise to a conjugacy idempotent ,: n,(Y)—-n,(Y) with
W [0]) =V 4 ([w])*), where o, is the path h(yo) (i.e., t—h,(yo)).

The topological analogue of the group F is the space Y which admits the
universal example of a Y and h as above:

Proposition 2.1. There exists a homotopy idempotent (Y, Y, h) with the following
property: Given any other homotopy idempotent (Y',y', W), there is a unique
basepoint-preserving map f: Y—Y' such that f\y=y'f and fh,=h,f.

Sketch of proof. Start with a point y,. Then attach a 1-cell w, [to be h(y,)]
and infinitely many additional cells w, [to be Y"(w,), n=1]. For each n=0,
attach a 2-cell e, , [to be h(w,), i.e, the 2-cell traced out by h(w,), 0=t=1],
with the attaching map indicated in the following picture:

Yo () Yo
lL’z(""n)=(’-’n+2 V(wp)=wyy
Yo Wo Yo
Fig. 1.

[The horizontal coordinate here is the homotopy parameter ¢.] Then attach
infinitely many additional 2-cells e, , [to be Y™(e, ,), m=1]. It is not hard to
continue in this way; the resulting Y is an infinite-dimensional CW-complex
with one n-cell for every n-tuple of non-negative integers. []

For our purposes it will not be necessary to fill in the details of this sketch,
since it will be more convenient to construct the universal cover X of Y
directly; we will then obtain Y by dividing out by the group of deck transfor-
mations. The rest of this section will be devoted to a heuristic discussion of
what X should look like, in order to motivate the construction of X to be
given in the next section.

Note first that the desired Y has n, =F. In fact, the 1-cell w, corresponds to
the generator x, of F; the 2-cell e, , pictured above corresponds to the relation
X%, =X,,, (n=0); and the 2-cell e, , [=Y™(e, )] corresponds to the relation
X 1= Xpmint2- 50 X admits a free right F-action, and we may identify the
vertex set of X with F.

The 1-cell w, of Y lifts to a 1-cell of X going from the vertex 1 to 1-x,
=x,. Denote the points of this lift by x!, 0<t<1. Then the I-skeleton of X
consists of points x! x, xe F.

The 2-cell e, , pictured above has a lift with lower left-hand corner at 1:
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t
X0Xn+2
Xn+2 Xn+1X0=X0Xn+2

X542 Xp+1Xo0

1 xb Xo

Fig. 2.

Denote the points of this lift by x;x;_ , (¢, s€[0, 1]), with the understanding
that on the right-hand edge t=1 we have x,x,, ,=x]_,x,. Similarly, denote
the points of the lift of e,, , by x!, X}, . ,. Then the 2-skeleton of X consists of
points x;,x5,, .. ,x, m,n=0,t,s€[0,1], xe F.

We could continue in this way with the 3-cells, etc., but we have already
done enough to suggest the following:

(a) The points of X should be represented as products of symbols x! (n=0,
0=<t=1 or t= —1) satisfying relations analogous to those defining F (such as
xg1xix,=x',  for n>0).

(b) The homotopy idempotent y: Y—Y should lift to a map ¢: X—->X

which preserves products and satisfies ¢ (x})=x,, ;.

(c) The homotopy h on Y should lift to a homotopy on X given by (x, t)
xh d2(x) (xe X, 0=<r<1). [Note that this homotopy goes from ¢? to the map
X0 (%) = B (x) Xo.]

With this motivation, we now proceed to the rigorous construction of X
and Y.

3. The space X

Let us identify F with the group of homeomorphisms of R called G in 1.2 (cf.
1.4). For 0=t=1 and nz0, let x!, be the piecewise linear homeomorphism of R
which is the identity on (— oo, n], has slope 2‘ on [n, n+1], and has slope 1 on
[n+1, o). Let M be the monoid generated by F and the x; it is a submonoid
of the group of homeomorphisms of R.

One easily checks:

143 -1t e L
Proposition 3.1. x; " x,x;=x_ . [

Proposition 3.2. The shift map ¢: F—>F extends to a monoid monomorphism
¢: M—M given by ¢ (x)=x5, where S is as in 1.2; ¢(xt)=x,,,. O

A normal form for xeM is an expression of x as a product
xpLxfexs b xs !t where iy i, ... S0y, jy S0 S, 0<1, 21, satisfying:

" Jm
(1) among all occurrences of a given x; with positive exponent, at most one
has non-integral exponent and this one occurs first (leftmost);

(ii) if x}' and x; ' both occur, then x!,, also occurs for some t with
O<tZlort=-—1.
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The proof of the normal form theorem for F (cf. 1.3) goes through without
essential change to yield:

Theorem 3.3. If xeM admits a normal form, then it admits a unique normal

form. [

The integer k+m above is called the length of x and is denoted I(x).
Now let X be the smallest subset of M which contains 1, is closed under ¢,
is closed under right multiplication by F, and satisfies

xeX = xhp*(x)eX for 0Ze<1.

[See the end of §2 for the motivation for this.] Equivalently, X can be
described as the set of all products x}'...x;*x, with q,=20, q;, ,=¢;+2,
0=t,<1, and xeF. It is easy to see that every element of X admits a normal
form and hence a unique normal form. v

We wish to give X a CW-complex structure. For each n-tuple q=
(44 ---»4,) as above and each xeF, let qx={x}...x»x|0<t;<1}. Call qx an
n-cube. Thus X is the union of cubes. The cubes have faces. We obtain the A;-
face [resp. the Bi-face] of qx (1<i<n) by freezing the exponent of x, at 0
[resp. at 1]. Thus (using 3.1)

Ai(qia (RS qn)xz(qln LR qi—l, qi+1= srey qn)x
Bi(q1s - a)X=(q1> > Gi_ 1> Qi1 — 1 s @ — 1) X, X

Associated to each n-cube qx is a map f: I"—qx, f(t,...,1,)=x; ... X7 x.
By repeated use of Theorem 3.3 the reader can easily check: (i) f|I" is 1 —1. (ii)
X is the disjoint union of the images f(I"), where qx ranges over all the cubes
of X. (iif) The restriction of f to a codimension 1 face of I" is the map
associated to an (n —1)-cube of X.

From (i)-(iii) one can deduce:

Proposition 3.4. X admits a CW-complex structure with the maps f: I"->X as
characteristic maps for the cells. []

F acts by right multiplication on X as a group of homeomorphisms which
freely permute the cubes. It follows that the quotient map X —X/F is a regular
covering map (cf. [Br; § 1.4, Exercise 2]).

Remark. It is more or less obvious from what we did above that X is the
geometric realization of an abstract semi-cubical complex. But in fact much
more is true. One can show that each characteristic map f is 1—1 and that
any two cubes intersect in a (possibly empty) common face. So X is a cubical
complex, i.e., the cubical analogue of a simplicial complex.

Finally, we complete the circle of ideas begun in §2 by noting that X can
be used to give a rigorous proof of 2.1. Let Y=X/F, let y: Y—Y be the map
induced by ¢: X—X, and let h: Y—>Y be induced by x+-x}¢*(x). Let the
basepoint y, of Y be the unique vertex. Then it is easily verified that (Y, y, h)
has the universal property required in 2.1. Indeed, the construction of f: YY"’
reduces to the construction of a map f: X —Y’ satisfying (i) f(1)=y,; (i) f(xg)
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=f(x) for xe X, geF; (iii) f($(x))=y'(f (x)); and (iv) 7 (xf, ¢*(x))=h;(f(x)). The
existence and uniqueness of f(x) is easily proved by induction on the length of
the normal form of x, and the continuity of f on a cube {x...xin x} follows
trivially from (ii)~(iv) by induction on n.

4. Contractibility of X

Let M be the monoid considered in §3 and let M, be the set of elements of M
which admit a normal form. For each xe M, we will construct a path t+—w,(¢)
in M, 0=t=< o0, such that »,(0)=x and w,(t)=1 for sufficiently large t. [Note:
We have not topologized M, so there is no question of continuity here.]

The idea behind the definition of w, is to move x to 1 step by step, where
each step consists of (a) decreasing the first exponent in the normal form to 0
or (b) increasing it to 1 and reducing to normal form. We always choose (b) if
possible (i.e., if increasing the first exponent to 1 results in an unreduced
expression); and in considering this possibility, we allow ourselves to first
augment the normal form by adjoining a factor x? if that is convenient.
[Example: If x=x,x5 ", then the first leg of w, is tr>x] x5!, 0<t<1, going
from x,x5' to xp'. But if x=x,x5'=x3x,x5", then the first leg of w, is
t—-xhx, x5!, 0=56<1, going from x,x5! to x4x,x5'=x,.] The precise defini-
tion is as follows.

Let w,(t)=1 for all t. For x=+1, assume inductively that w, has been
defined for all ye M, with I(y) <I(x). Suppose there is an integer i=0 such that
x=x{p"*2(z)x; ' w, where 0<s< 1, zeMy, and w=x; " ... x;;* (0<j, <...<j,, <1,
m=0). Choose the smallest such i and let y=x,¢'*2(z)x; ' w=¢'* }(z)w. Then
I(y)<l(x) and we set

= STt ()x7'w 0=Zt<1-s
D= w,(t—(1~5)) 1-s<st£ 0.

If there is no such i, then the normal form of x necessarily starts with xj for
some j=0, 0<s<1. Write x=x}y and set ‘

s—t

o.(0)= xi7'y 0<t<s
¥ w,(t—s) s=t=oo.

We will use the paths w, to prove:
Theorem 4.1. The space X constructed in §3 is contractible.

Proof. It suffices to show for any cube C of X that w,(t)e X for all (z,t)e C
x [0, co] and that the resulting map C x [0, co]—X is continuous. Let C=qx,
where q=(q,, ..., q,) and xe F. We will argue by induction on [(C)=n+I(x).
We may assume that [{C)>0 and that the result has been proved for cubes
C’ with [(C)<I(C). We may also assume (by applying ¢~ if necessary) that C
is not in im(¢), i.e, that either g, =0 or else the normal form of x involves x,
or x5 '. Given (¢,,...,t,)el", write y=y(t,, ..., t)=x7 ..xzx. We must show
that w,(¢) is in X and varies continuously as a function of the n+1 variables
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t,ty,...,t,. Let i be the smallest integer such that either x;** occurs in x or x;"*
fails to occur in x. There are two cases, each with two subcases.

Casel. n=0ori<gq,.

Subcase (a). x;}' occurs in x. Write x as a reduced product x;w (ie., the
normal form of x is x; followed by the normal form of w). The normal form of
w involves no x;' with j<i and every xj' with j<i. Then y=x;y’, where
Y =X 41...X 44w, and one checks that

o.(f)= xtty' 0st1
y w,(t—1) 1=t=o00.

Note that y' is in the n-cube C'=(q,+1,...,q,+1)w and that x; ') is in the
(n+1)-cube k(C)=(,q,+1, ..., q,+1)w. Since I(C')=I(C)—1, the induction hy-
pothesis implies that w,(¢) is in X and is continuous in ¢, ¢y, ..., t,. [For future
reference we note that C=B,k(C) and that C’ is the opposite face A4, k(C).

Our “flow” w for 0=<¢t<1 moves C across k(C) to C'.]

Subcase (b). x;*' does not occur in x. Then the normal form of x involves x;*
for all j<i and no other xj' with j<i. Moreover, our assumptions (including
the assumption C ¢im(¢)) imply i=1. One checks that

xXi_ 1y 0=st=1
)=
@, (0 {a)y/(t—l) 1<t£ 0,
where y'=x;_, y=x} _;...x" _;x;_;x. NotethatyeC'=(q,—1,...,q,—1)x;_, x
and that x{_,yek(C)=(—-1,q4,...,4,)x. Since [(C)=I(C)—1, the desired
result follows from the induction hypothesis. [Note that this time C=A4,k(C)
and C'=B, k(C); w for 0=t<1 moves C across k(C) to C', as in (a).]

/

Case 2. n>0 and i=g,. Thus x involves x; ! and omits x; * for all j<gq,.

Subcase (a). x,,x is reduced. Then B, C=(q,—1,...,49,—1)x,, x is a cube of
the type considered in 1(a) above, and C=k(B; C). Hence w begins by collaps-
ing C onto its face A, C:

xiixz L oxinx 0=St=t,

o X XX, ‘
() {a)y«(t——tl) t,St= o,

)
where y'=x2...x 2 xe A; C=(q,, .., g,)x. Since [(4, C)=I(C) —1, the result fol-
"lows from the induction hypothesis.

Subcase (b). x,, x is not reduced. Then 4, C=(q,, ..., q,)x is a cube of the type
considered in 1(b), and C=k(A,;C). Hence w begins by collapsing C onto
B,C:

q1 q2°

@, (&t —(1—ty)) 1—t,St= 00,

t1+t L2 t
xiFixtz  xinx 0ZtZ1-—t
a)y(t)={ n - = 1
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where

/ 12 tn v — yf2 In = —_ —
V=X, X2 X x=x2_q..xn X, x€B, C=(q,—1,...,49,—1)x, x.

Since I(B, C)=1(C)—2, the proof is complete. []
Corollary 4.2. The quotient complex Y=X/F is a K(F, 1)-complex. [

5. Proof that Y has finite type

The K(F,1)-complex Y=X/F that we have just constructed has one n-cell for
every n-tuple q=(q,,...,q,) of integers with ¢,=20 and gq;,,=¢q;+2 for
i=1,...,n—1. We denote that n-cell by q. The face operators on the cubes of X
induce operators on the cells of Y:

Ai(q1: "'7qn)=(q1: ey qi,_la qi+17 srey qn)

B;@y, -, q,)=1> > ;1> 4Gy1— 1.0, q,—1),
i=1,...,n

The interested reader can check that the 2-skeleton of Y is the 2-complex
associated to the defining presentation of F: The unique O-tuple ( ) is the only
vertex; the 1-cell (n) corresponds to the generator x, of F; and the 2-cell
(i,n+1) for i<n corresponds to the relation x;'=x,, .

The first finite presentation of F given in 1.9 suggests that the only “essen-
tial” cells in dimensions 1 and 2 are the cells (0), (1), (0, 3), and (1, 4). The other
1-cells are “redundant”, as are the other 2-cells, except for the 2-cells (g, g +2),
q=0; these correspond to the definitions x,, ,=x;4,; in 1.9. Note that if we
start with the unique vertex of Y and the two essential 1-cells and then
successively adjoin the 2-cells (g, g+2), g=0, 1, ..., then each such adjunction is
an elementary expansion in the usual sense of simple homotopy theory. We
therefore call (g, ¢ +2) a “collapsible” 2-cell and the face A,(q, g+2)=(q+?2) its
“free face”.

We now extend these ideas to higher dimensions and use them to prove
that Y has the homotopy type of a complex with only two cells in each
positive dimension.

Fix n>0. The two n-cells (0,3,6,...,3n—3) and (1,4,7,...,3n—2) are
called essential. An n-cell q is called collapsible if there is an i (1 <i<n) such
that ¢;, ; —¢;=+3 and, for the largest such i, g, , —g;=2; the face A,q for this
largest i is called the free face of q. Those n-cells which are neither essential
nor collapsible are called redundant. ;

The following two lemmas are easily checked.

Lemma 5.1. The free face of a collapsible n-cell is redundant. All of the other
faces are either collapsible or else precede the free face in the lexicographic
ordering of the (n—1)-cells. []

Lemma 5.2. The function which sends a collapsible n-cell to its free face is a
bijection between the collapsible n-cells and the redundant (n —1)-cells. [1]

We can now prove the main result of this section.
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Theorem 5.3. Y is homotopy equivalent to a CW-complex with one vertex and
with exactly two cells in each positive dimension.

Proof. Let Y" be the n-skeleton of Y. Let Y°=Y?=Y?. For n>0, define

Y" =Y"~ ! U(essential n-cells)

Y =Y" u(redundant n-cells) u(collapsible (n + 1)-cells).

Thus Y*»"'cY"cY"<Y". We claim that Y" can be obtained from Y" by a
transfinite sequence of elementary expansions. Indeed, we need only adjoin the
redundant n-cells in lexicographic order and, along with each redundant n-cell
q, the unique collapsible (n+1)-cell q' of which q is the free face. [Note:
Adjoining cells “in lexicographic order” makes sense because the lexicographic
ordering is a well-ordering.] By 5.1 all the faces of ¢ other than q have been
previously adjoined, so the adjunction of q and q' is an elementary expansion,
as claimed.

The theorem now follows at once. For future reference, we spell out in
detail how the argument above yields a CW-complex Z homotopy equivalent
to Y, with only two n-cells for n>0. Let Z°=Y°. For n>0, assume Z"~! has
been constructed along with a homotopy equivalence ="~ ': Y7~ !—>Z"=1 Let
Z"=27Z""'yehuet, where the attaching maps for e? and e" are obtained by
composing with n"~! the attaching maps for the essential n-cells of Y. Then
7"~ ! extends in an obvious way to a homotopy equivalence Y"—Z" and this
in turn is extended to a homotopy equivalence n": Y} —Z" via the retraction
Y:—Y" associated to the elementary expansions above. Passing to the union,
we obtain the desired Z and homotopy equivalence n: Y—Z. [

Corollary 5.4. The group F is of type FP,. [

6. A finite type resolution

In this section we record an algebraic description of the resolution obtained
from the proof in § 5. We begin by giving a direct construction, independent of
the previous sections, of a chain complex P={P,d,},., of free right ZF-
modules, augmented over Z. Let P, be free of rank 1, with basis element e°.
For n>0 let P, be free of rank 2 with basis e, e].

Proposition 6.1. There are unique Z-linear maps 0={0,: BL—>PF_,}, ¢=
{Y,: B—>P}, h=1{h,: PbL—>P, .}, and &: Py—Z with the following properties:

(1) @ and ¢ are F-linear; Y is ¢-semi-linear (i.e., Y(cx)=y(c)p(x) for ceP
and xe F, where ¢: F—F is the shift map); and h is ¢>-semi-linear.

(i) 0*=0, ¢8=0, and &(e®)=1.

(iii) ¥ is a chain map satisfying y(e®)=e® and Y(ep)=e} for n>0.

(iv) Let p, : P—P be right multiplication by x,. Then h is a chain homotopy
from Y to p,  satisfying h(e®)=eg, h(e})=e4™" for n>0, and h*=0.
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Proof. For uniqueness, note first that we must have

ee®)=1, 0(%=0, yY(%)=e h(%)=¢;;
Y(ep)=e7 for n>0;
h(e?)=0, h(e})=eyt?  for n>0.
Next note that d(e?) and Y¥(e}) are determined inductively. Indeed, using 0h
+hdo=p, ¥ —y¥?* we find:
Sh(ey =y yxo =y ) ~haler ") n
d(eg)= 0 0
Oh(e®)=(e%)x, —Y?(e®)=e"(x,—1) n
9(e7) =0y (ep) =y 0(ep)
Y(eh) =y (o) = (et) xo —ha(e) = e} x, —ha(ey).
This completes the proof of uniqueness. For existence, use the formulas above

to define the desired maps on basis elements, extend them so that (i) holds, and

check that (ii)-(iv) hold. Alternatively, existence will follow from the proof of
6.2 below. [

Theorem 6.2. The augmented complex P is a free resolution of Z over ZF.

Y
)

Proof. Consider the augmented cellular chain complex P of X. It is a free
resolution of Z over ZF with one basis element for every cube of X of the
form q - 1. Denote this basis element by q. The boundary operator in P is given

by the usual formula from cubical homology theory, d=) (—1)'(4;—B).
1

[Note: A, and B, are the face operators in X as defined in §3, not those in Y.]
The shift map ¢: X—»X induces a chain map y: P—P which is ¢-semi-linear
and satisfies ¥(qy, ..., 4,)=(q; +1, ..., g, +1). The homotopy I x X—X given by
(t, x)>x% ¢2(x) induces a chain homotopy A: P— P which is ¢2-semi-linear and
satisfies A(qy, ..., 4,)=(0,4,+2, ..., g,+2). One has dh+ho=p, J —y>*

Now let P’ be the cellular chain complex of the universal cover of the
complex Z constructed in the proof of Theorem 5.3. It is a resolution which is
a quotient complex of P. The proof of 5.3 shows that P’ has a right Z F-basis
given by the images e, and e7] of the n-tuples (0,3, ...) and (1,4, ...) for n>0
and the image e° of the O-tuple ( ) for n=0. Moreover, the kernel of the
quotient map P—P’ is the ZF-sub-chain complex generated by those basis
elements q of P corresponding to the collapsible cells of Y. It follows easily
that ¥y and /i induce maps  and h on P’ and that properties (i)-(iv) of 6.1 are
satisfied. Hence P’ can be identified with P, which is therefore a resolution. []

Remark. 1t is possible to give a purely algebraic proof of the acyclicity of P.
One need only go through the proofs of 4.1 and 5.3 and recast them in terms
of the chain complex P, thereby proving that P is acyclic and that there is a
chain homotopy equivalence P—P. On the other hand, we do not know of any
direct proof of the acyclicity of P, either algebraic or topological, that avoids
consideration of the “big” resolution P (or, equivalently, the big K(F, 1)-
complex Y).
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7. Homology and cohomology of F

Theorem 7.1. H,(F,Z)~Z®Z for all n=1, and the shift map ¢: F—F induces a
rank 1 idempotent operator on H,(F,Z).

Proof. Let P be the complex P® ,zZ of free Z-modules, where P is the
resolution given in §6, and let ¥ be the endomorphism ¥ ®id, of P. Then

H (F,Z)=H (P), and ¢.: H (F,Z)—>H,(F,Z) is the map induced by W (cf.
[Br §11.6]). The theorem now follows from the formulas given in the proof of
6.1, which show that the boundary operator in P is zero and that ¥ is a rank 1
1dempotent in each dimension. []

Theorem 7.2. H*(F,ZF)=0 for all n.

Proof. Recall from 1.7 that F is an HNN extension with base group F,~F
and associated subgroup F;. We therefore have a Mayer-Vietoris sequence

— H"~'(F,)— H"(F)— H"(F,)— H"(F)) > ...

with an arbitrary F-module of coefficients. It follows from [BG,] that, because
F, is of type FP_, o is a monomorphism for all n whenever the coefficient
module is free over ZF. Now assume inductively that H"~!(F, L)=0 when L is
a free ZF-module. Then H"~!(F;, L)=0 since L is also free over ZF,, s
H*(F, Ly~kera=0. []

Remarks. 1. F seems to be the first FP_ group known to have H*(F, Z F)=0.

2. If Z is a K(F, 1) complex of finite type, such as described in the proof of
5.3, the contractible universal cover Z has locally finite skeleta. By a theorem
in [M], Z" is simply connected at oo, for n=2. The geometrical meaning of
Theorem 7.2 is that Z" is homologically (n —1)-connected at oo: see [GM]. The
Hurewicz Theorem for pro-homotopy then implies that Z" is (n —1)-connected
at 0. ZxR® is an R®-manifold [H], so Z xR®, being contractible, is ho-
meomorphic to R®. Thus F acts freely on R® equivariantly filtered by finite-
dimensional locally finite complexes Z"xI" which are (n—1)-connected and
(n—1)-connected at oo. (The relevant infinite-dimensional topology is in [HT]
and works referenced there.) It would be interesting to have an explicit de-
scription of such an action of F on R®.

8. Homotopy idempotents

In this brief section we record a consequence of the fact that the universal
homotopy idempotent (cf. 2.1 and end of §3) lives on a K(F, 1)-complex.

Let K be a connected, pointed CW-complex and let e: K—K be a ho-
motopy idempotent. Then e, : n,(K)—n,(K) is a conjugacy idempotent, so we
get a homomorphism p: F—x,(K) by 1.1. The idempotent e is said to be

splittable if there exist a complex L and maps K#L such that du~id; and

ud~e. It is known that this happens if and only if ker p+ {1} (see, for instance,
[DS]). In other words, unsplittable idempotents are characterized by the fact
that they give rise to a copy of F in «,(K).
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The canonical example of an unsplittable idempotent is the map
u: K(F,1)->K(F, 1) induced by ¢: F->F. We now know that this -canonical
example is also the universal example in a sense which we made precise in 2.1.
As a consequence, we can show that every unsplittable idempotent e essentially
contains a copy of u.

To make this precise, we first pass to the covering space K of K corre-
sponding to image (p). Then e lifts to an idempotent é: K—K, and n,(K) can
be identified with F (assuming e is unsplittable). We can now state:

Theorem 8.1. Let e: K—K be an unsplittable homotopy idempotent and let
&: K—K be as above. Then there is a homotopy commutative diagram

K(F,1)——R—" S K(F 1)
K(F,1)——R—L S K(F 1)

such that Ba~idgy ;-

Proof. Taking our space Y=X/F as the model for K(F,1), 2.1 gives us a
making the left hand square commute. We get § from the fact that n,(K)=F,
and the right hand square commutes up to homotopy because the induced
diagram of fundamental groups commutes. Finally, fa~idg ;, for a similar
reason. [

Since F has infinite cohomological dimension, K cannot be finite-dimen-
sional in 8.1. Hence we have recovered the following theorem of Hastings and
Heller [HH]:

Corollary 8.2. Any homotopy idempotent on a finite-dimensional complex splits. []
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