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Recall that a group I'is said to be of type FP, if the ZI-module Z admits a pro-
jective resolution which is finitely generated in dimensions <n# (cf. [3] or [6]). For
example, I'is of type FP, if and only if it is finitely generated, and I"is of type FP,
if it is finitely presented. (The converse of the last assertion is not known.) Stallings
[10] gave the first example of a group of type FP, but not FP;, and Bieri [3, §2.6]
extended this to a sequence of groups 7,, of type FP,_; but not FP,. Further ex-
amples of this type can be found in [2], [7], and [12]. The latter shows that such
sequences are not particularly exotic; indeed, Stuhler’s groups are S-arithmetic
groups Sl, (&), where S is a finite set of primes in a function field and Oy is the
ring of S-integers.

We show here that similar sequences of S-arithmetic groups exist over number
fields. Instead of Sl ,, however, we must necessarily use a non-reductive algebraic
group; for Borel and Serre [5] showed that, in the reductive case, S-arithmetic
groups over number fields are always of type FP,, i.e., they admit projective
_resolutions as above which are finitely generated in a// dimensions.

Our examples are in fact solvable groups. They are of interest for two reasons.
First, the question as to which solvable groups are of type FP, has been quite fruit-
ful and has led to important results about non-solvable groups (cf. Bieri-Neumann-
Strebel, ‘‘A geometric invariant of discrete groups’’, preprint). But the question is
still wide open, and new examples are needed. Second, our technique of proof
relates the question to the Bruhat-Tits building; this may well be the right approach
for a systematic investigation.. ‘

We now describe our examples. For n=1 and p a prime number, let
I,CGl,,,(Z[1/p]) be the group of wupper triangular matrices g with
&11=&n+1,n+1=1. For instance,
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Note that I, is an S-arithmetic subgroup of G,(Q), where G,CGL, ., is the
solvable algebraic matrix group defined by the same equations as 7,,, and S = { p}.

Theorem A. I, is of type FP,_, but not FP,; for n=3 it is finitely presented.

The negative result (that I, is not of type FP,) is known and will not be reproved
here (cf. [4, Corollary 2 and Proposition]; see also [2]). The finite presentation for
n=3 is also known, as is the FP,_; property for n=<4 ([11, [9], [11]). So the new
result is that I, is of type FP,_, for n=5. But our proof of this includes the
previously known positive results with no extra effort.

In view of well-known results about finiteness properties (cf. [7]), the positive part
of Theorem A follows from:

Theorem B. There is a simplicial action of I'=1I, on a simplicial complex X with
the following properties:
(@) X is (n—2)-connected.
(b) The isotropy group of every simplex is finitely presented and of type FP,,.
(c) X is finite mod I

The remainder of the paper, therefore, will be devoted to Theorem B. In Section
1 we define the complex X; it is a subcomplex of the Bruhat-Tits building associated
to the group Gl and the p-adic valuation of Q). In Section 2 we prove (b) and
(c) and in Section 3 we prove (a).

Our proof of Theorem B is very specific to the groups /. An alternate proof,
which is somewhat longer but uses more general methods, will be given in [7]. This
alternate proof also yields a new proof that 7}, is not of type FP,.

1. The complex X

1.1. Notation :
K=a field with discrete valuation v.
A =the valuation ring.
7 =a generator of the maximal ideal of A4.
V=K"*', n=0.

A lattice L in V'is a finitely generated A4-submodule of V spanning V as a vector
space over K. Equivalently, L is a free A-submodule of ¥ with an A-basis which
is also a vector space basis of V. The set & of lattices in V is the set of vertices of
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an n-dimensional simplicial complex W defined as follows: A simplex in Wis a finite
subset {Ly,...,L,} of & such that

Lo<L;< - <L,<n 'Ly.

For any subset &’ of £ we will denote by W | £’ the full subcomplex of W with |
vertex set £’.

1.2. Assume n=1 and let ey,...,e, be the standard basis of V. Let i:K— V be
the inclusion of the first factor, i(a)=wae,, and let p: V= K be the projection
onto the last factor, p(La;v;)=a,. Let Z,={LeZ:i '(L)=A} and let Z,=
{LeZ:p(L)y=A}.Let W;=W |¥,, j=1,2. W, and W, are both isomorphic to the
Bruhat-Tits building corresponding to our situation, cf. [8, pp. 77 and 75]. In par-
ticular, they are n-dimensional and contractible. Let X= W, N W,. It is not hard to
show that X is (n — 1)-dimensional, but we will not need this. For K=Q and v the
p-adic valuation, we will show in Sections 2 and 3 that the simplicial complex X has
the properties claimed in Theorem B.

We close this section by recalling the proof in [8] that the Bruhat-Tits building
(in the form of W, or W, above) is contractible. We will need a generalization of
this (1.3 and 1.4 below), for which the same proof works. Consider first W,. It is
an ordered simplicial complex, with the vertices ordered by inclusion. The real line
R is the geometric realization of an ordered simplicial complex, R say, with Z as
vertex set and the usual ordering. We can therefore form the product W, XR,
which is an ordered simplicial complex whose geometric realization |W,XR| is
|W,| X R. Letting L, be an arbitrary basepoint in W,, one now defines a simplicial
map F: W, X R~ W, by

L"I“T[_nLo, nSO,

F.m)= €L0+ n"L, n=0,

Le¥%,, neZ. It is a routine matter to verify that the function F so defined on ver-
tices does indeed extend to a simplicial map. For any vertex L we have F(L, n)=L
for n<0 and F(L, n)=L, for n>>0. It follows easily that W, is contractible. See
[8] for more details.

The same proof shows:

1.3. Proposition. Let &’ be a non-empty subset of & such that for every two lattices
L, L,e ¥’ we have

M) L,+L,e¥’, and

2) if Ly,CLCL,, then Le¥'.
Then W | %' is contractible.

A similar proof, using intersections instead of sums, shows that W] is contracti-
ble, and, more generally:
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1.4. Proposition. Let £’ be a non-empty subset of & such that for every two lattices
Li,L,e¥’ we have

M L,NL,e¥’, and

(2)if LyCLCL,, then Le¥’.
Then W | £’ is contractible.

Note that our complex X = W, N W, does not satisfy the hypotheses of either 1.3
or 1.4; but we will need to apply 1.4 to certain subcomplexes of X in Section 3.

2. The action of I': Orbits and isotropy groups

Let B be the upper triangular subgroup of GL, .,
B={geCl,,,:g;=0 for i>j}.

2.1. Proposition. (a) The subgroup B(K) of CBLL,,“(K ) acts transitively on the set
Z of lattices in V=K"*".

(b) For K=Q and v the p-adic valuation, the subgroup B(Z[1/p]) of GL, . (Q)
acts transitively on &.

Proof. (a) A basis vy, ..., v, of V will be called triangular (with respect to the stan-
dard basis ey, ..., e,) if there is a matrix ¢ € B(K) such that v;= Y, o;; ¢; for every
J. A restatement of (a) is that every lattice has a triangular basis. We will prove this
by induction on n. If n=0 this follows immediately from the fact that every lattice
in K has the form 7™ A. For the inductive step, let ¥’ be the vector space spanned
by eg,...,e,_; and let L’=LNV’. By induction, L’ has a triangular basis with
respect to ey, ...,e,_;. Let p: V— K be the projection onto the last factor and
choose v, € L such that p(v,) generates the rank-1 lattice p(L) in K. Then vy, ..., v,
is a triangular basis for L.

(b) Suppose K=Q and v is the p-adic valuation. We have to show that the
triangular basis above can be chosen so that a;;€ Z[1/p]. If n=0 this follows from
the proof of (a). For the inductive step, the proof of (a) shows that we may take
v, of the form p®-e,+v’, aeZ, v’ € V’'. We may change v’ by adding a vector in
L’. So it suffices to show that V'=L'+¥._, ,Z[1/ple;. By the inductive
hypothesis we may apply a matrix in Gl ,(Z[1/p]) to transform L’ to the standard
lattice },_,_, Ae;. So we may assume L’ is the standard lattice, and we are re-
duced to the well-known (and easy) fact that Q=4+ Z[1/p].

Proof of Theorem B(c). 2.1(b) implies immediately that /" acts transitively on the
set of vertices of X. Since X is locally finite, (c) follows.

Proof of Theorem B(b). For the standard lattice Ly= Y. .__Ae; the isotropy group

i=n
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I3, is of finite index in the triangular group B(Z). The latter has a subgroup of
finite index which is finitely generated and nilpotent, hence it is finitely presented
and of type FP,, . Since the isotropy group I} of every vertex L is conjugate to I,
(cf. proof of Theorem B(c) above), the same is true of /;. Finally, the isotropy
group I of a simplex & is of finite index in the isotropy group of any of its vertices
by local finiteness, so I, is also finitely presented and of type FP,.

3. Proof of Theorem B(a): X is (n—2)-connected

We will prove a slightly more general result. Let K be as in Section 1, let p: V- Q
be a surjective linear map of K-vector spaces, and let U be a subspace of ker p. Let
L’ and L"” be lattices in U and Q, respectively, and let Z(L’, L") be the set of lattices
L in V such that LN U=L' and p(L)=L".

3.1. Proposition. Suppose dim Q=1 and let r=dim V-dimU-1. Then
W|%(L', L") is (r—1)-connected.

Note that in the situation of Theorem B we have X=W|%(L’, L"), with
dim U=dim Q=1 and r—1=n-2; so 3.1 does indeed yield Theorem B(a). The rest
of this section will be devoted to the proof of 3.1. The dimension restriction on Q
is not needed for the first lemma:

3.2. Lemma. Let M be a finitely generated A-submodule of V such that (a)
MNUCL’ and (b) p(M)CL". Then there is a lattice in £(L’, L") containing M.

Proof. Replacing M by M+ L’ if necessary, we may assume (a’) MNU=L'. We
may also assume M is a lattice in V. For we can choose in p~'(L”) a basis T for
a complement of spang (M) in V, and then the lattice M+ span, (T') still satisfies
(a’) and (b).

Assume now that M is a lattice satisfying (a’) and (b). Let w=dim Q and let
T={t,...,t,} be any subset of M mapping to a basis of the lattice p(M). Then
M=(MNker p) ®spany(T). Let S={sy,...,5,} be a basis of L”, and let
a € ClL,(K) be the matrix such that s;=}.; a;; p(¢;). Then

(M N ker p) @ spany {Z o t,}

j=1,...,w

is a lattice containing M [because &' has entries in A] and lying in Z(L’, L”). O

Now suppose dim Q=1 and let L”=Aw,. Let H be the affine hyperplane
p'l(wo) in V.

3.3. Lemma. W[Q(L’, L") is homotopy equivalent to the simplicial complex %



82 H. Abels, K.S. Brown
whose simplices are the finite subsets o of H such that spany(c)NUCL’.

Proof. For any veH let £,={Le%(L',L"): vel} and let Z,=W|%,. Then
WL, L")= UueH Z,. It is easy to see that &, satisfies the hypotheses of 1.4,
as does any non-empty intersection of #,’s. Hence Z,, as well as any non-empty
intersection of Z,’s, is contractible. Consequently, W | %(L’, L") has the homotopy
type of the nerve of the cover {Z,},. y (see, for instance, [8], 1.9). But 3.2 implies
that this nerve is precisely 2. O

It will be convenient to enlarge > to the complex 3 whose simplices are the finite
subsets 7 of H such that the r-skeleton of 7 is contained in X. [Here r is as in 3.1
and the r-skeleton of 7 consists of all subsets o of 7 such that # o <r+ 1.] Note that
Z and 2 have the same r-skeleton. To complete the proof of 3.1, then, it suffices
to prove:

3.4. Proposition. = is contractible.

It is easy to see intuitively why 3.4 should be true: Since r+1 is the codimension
of Uin V, ‘most’ subsets o of H with #o=<r+ 1 will satisfy spang(c) N U=0; in
particular, they will be simplices of 2. Hence any subset 7 of H ‘in general position’
will be a simplex of £. This suggests that 'is, up to small perturbation, the same
as the obviously contractible complex consisting of a/l finite subsets of H. We now
make these ideas precise.

We will say that a subset o of H is independent if it is linearly independent as a
subset of V, or, equivalently, if it is affinely independent as a subset of H. We will
say that o is independent mod U if it maps to an independent set in V/U, i.e., if
Y ,co AvV€ U implies A4,=0 for all v. Finally, we say that a subset S of H is in
general position mod U if the following equivalent conditions hold:

(1) Every subset ¢ of S with #o=<r+1 is independent mod U.

(2) Every subset ¢ of S with #o=<r+1 is independent and satisfies
spang(g)NU=0.

For any subset S of H, let X|S (resp. 2| S) denote the full subcomplex of X (resp.
2) with vertex set S.

3.5. Lemma. Let S; be a finite subset of H. There is a finite subset S, of H with
the following properties:

(a) S, is in general position mod U.

(b) There is a simplicial map ¢: 2|8, — 2|S, such that ¢ U po is a simplex of %
Sor every simplex o of 2|S;.

3.5 implies 3.4. First note that every finite subset S of H in general position is a
simplex in X by condition (2) above, hence 2| S is contractible. Now 3.5(b) implies
that the inclusion of 2| S; into 2 is homotopic to a map which factors through the
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contractible complex | S,. Thus every finite subcomplex of 2 is null-homotopic in
%, so £ is contractible.

Proof of 3.5. For each simplex o of X we can find a lattice L, in V such that
spany(g)C L, and UNL,CL’ (cf. 3.2). Taking the intersection of the L, for all o
in X | S,, we obtain a lattice L in V such that UN(L +spany(c))CL’ for all
simplices ¢ of X|S;. Write S; = {vy, ..., v;}. We will define S,={wy,...,w,} CH in
general position mod U, with w;ev;+ L, and we will set ¢(v;)=w;. The conditions
of 3.5 will then be satisfied. Assume inductively that w; has been defined for j<i.
In view of condition (1) in the definition of ‘general position mod U’, we must find
w; € (v;+ L) N H such that w; is not contained in any of the subspaces U + spang(o)
for aC{w,...,w;_} with #o=<r. This is possible because (U+ spang(c)) N H is a
proper affine subspace of H, and a finite set of proper affine subspaces of H cannot
cover (v;+L)NH.
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