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The Geometry of Finitely Presented Infinite Simple Groups
KENNETH S. BROWN

Abstract. Let G be the family of finitely presented infinite simple groups
introduced by Higman, generalizing R.J. Thompson’s group of dyadic home-
omorphisms of the Cantor set. For each G € G and each integer n > 1,
an (n — 1)-connected n-dimensional simplicial complex is constructed, on
which G acts with finite stabilizers and with an n-simplex as fundamen-
tal domain. This yields homological and combinatorial information about
G. As a by-product, one obtains a solution to a problem of Neumann and
Neumann.

Introduction

In 1965 R.J. Thompson gave the first example of a finitely presented
infinite simple group (cf. [7]). It can be described as a group of homeomor-
phisms of the Cantor set or, alternatively, as a certain algebraic automor-
phism group. Higman [6] later introduced an infinite family G of finitely
presented infinite simple groups generalizing Thompson’s example. It is
shown in [4] that each G € G has the homological finiteness property FP,
i.e., that Z admits a resolution by finitely generated free ZG-modules. The
proof is topological; it involves the construction of highly connected simpli-
cial complexes X such that G acts on X with finite stabilizers and compact
quotient. But the complexes X are complicated, and it is difficult to obtain
any information about G from them other than the FP,, property. The
purpose of the present note is to give a better construction. Recall that a
space X is said to be (n — 1)-connected if m;(X) = 0 for ¢ < n.

MAIN THEOREM. For any G € G and any n > 1 there is an (n — 1)-
connected n-dimensional simplicial complex X such that G acts on X with
finite stabilizers and with an n-simplex as fundamental domain.

The term “fundamental domain” here is to be understood in the strong
sense: There is a closed n-simplex A which maps homeomorphically onto
the quotient space X/G. Equivalently, every simplex of X is in the G-orbit
of a unique face of A.

This theorem yields much more homological information about G than I
was able to obtain in [4]. An immediate consequence, for instance, is that G
is Q-acyclic. The theorem also yields interesting combinatorial information
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about G: Take n = 2; then X is simply-connected, and it follows that G is
the direct limit of the diagram

A «— U — B

formed by the stabilizers of the vertices and edges of A, where all maps
are inclusions. Equivalently, G is the free product of the vertex stabilizers
A, B, C, amalgamated along their intersections.

This is interesting for two reasons. First, it settles an old question of
Neumann and Neumann [8] about embeddings of finite amalgams. See §6
below for details. Secondly, it gives examples to illustrate some geomet-
ric notions recently introduced by Gersten and Stallings for “triangles of
groups”. In particular, the triangles that arise in the present paper are
“positively curved”, and they behave quite differently from the triangles of
“non-positive curvature” studied by Gersten and Stallings.

For simplicity, I will prove the theorem and corollaries stated above only
for Thompson’s original group G rather than for an arbitrary G € G. The
interested reader can easily generalize the proofs; this requires more com-
plicated notation, but no new ideas.

The paper is organized as follows. §1 contains a brief treatment of trian-
gles of groups, in order to provide the background for our later combina-
torial study of Thompson’s group G. The definition of G, as an algebraic
automorphism group, is then reviewed in §2. This is followed by an optional
§3, in which the same group is described as a group of homeomorphisms of
the Cantor set. Readers are free to adopt, for the remainder of the paper,
whichever definition they prefer. §4 is devoted to an unpublished result of
Melanie Stein, which yields a contractible complex X on which G acts with
finite stabilizers. It is a subcomplex of a contractible complex that was
used in [4]. The main theorem is then proved in §5; the complexes called
X in the statement of that theorem are obtained by suitably “truncating”
the X of §4. Finally, §§6 and 7 contain corollaries: Combinatorial results
are given in §6 and homological results in §7.

I am grateful to G. Higman for telling me about the problem of Neumann
and Neumann and pointing out that my results solved it.
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1. Triangles of Groups

Recall that the amalgamated free product G = Axy B is defined whenever
one is given a diagram
A—U—B

of groups and monomorphisms. By definition, G is the direct limit of this
diagram. It is well-known that the canonical maps A - G and B — G
are injective. Moreover, if we iden}ify A"’ﬁ’B’ and U with their images in G,
then U = AN B.

In 1948 Hanna Neumann [9] considered a more general situation, where
one is given an arbitrary family of groups A, B,C,... and, between any
two of them, a common subgroup to amalgamate. We will be interested in
the case of three free factors, in which case what we are given is a diagram

4 14 (%)

A «— U — B

of groups and monomorphisms. We call such a diagram a triangle of groups,
and we call A, B,C (resp. U,V,W) the verter groups (resp. edge groups)
of the triangle. Let G be the direct limit of the diagram (x). Unlike the
situation with two free factors, the canonical maps from the vertex groups
to G need not be injective. But if they happen to be injective, and if in
addition the image of each edge group in G is the intersection of the images
of the corresponding vertex groups, then we call the triangle realizable. In
this case G is said to be the free product of A, B, and C, amalgamated
along U, V, and W, and we identify all the groups in (*) with their images
in G. Following Neumann [9], one sometimes uses the term “generalized
amalgamated free product”, to avoid confusion with the classical case where
there are only two free factors.

REMARK. Readers familiar with Bass—Serre theory [11] will note that ()
can be viewed as a graph of groups (where the underlying graph is the
boundary of a 2-simplex). One is therefore tempted to form the funda-
mental group G of this graph of groups. It is well-defined after a choice
of basepoint or maximal tree. One such choice yields the following de-
scription of G: First construct H = A xy B *y C; then G is the HNN
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extension ( H,t;t*W't = W" ), where W’ (resp. W") is the image of W
in A (resp. C). Thus the direct limit G that we are studying is the quotient
of G obtained by introducing the relation ¢ = 1.

Call the triangle (%) fillable if it can be completed to a commutative

diagram
C

7N
W&K/‘V

!
A «— U — B

in which all maps are monomorphisms and each of the three squares‘ has the
following property: The image of K in the vertex group is the intersection of
the images of the two edge groups. As Neumann [9] pointed out, fillability
is a necessary condition for realizability; for if (x) is realizable, then we can
fill the triangle with K = AN BN C. But there are examples in [9] which
show that fillability is not sufficient for realizability.

We turn now to connections with topology. Recall that Serre [11] has
given a topological interpretation of ordinary amalgamated free products,
in terms of group actions on trees with a 1-simplex as fundamental domain.
There is an analogous result, due to Soulé [12] and Behr [1], for general-
ized amalgamated free products. In the case at hand, where there are
three factors, the result is that amalgamated free product decompositions
correspond to group actions on 1-connected 2-dimensional simplicial com-
plexes with a 2-simplex as fundamental domain. More precisely, suppose
G is the amalgamated free product associated to a realizable triangle (x)
as above, and let X be the (essentially unique) simplicial 2-complex such
that G acts on X with a 2-simplex A as fundamental domain and with A,
B, and C as the stabilizers of the vertices of A. Thus the vertex set of X
is G/AIG/BII G/C, and a collection of vertices is a simplex if and only
if the corresponding cosets have a non-empty intersection in G. Then X is
1-connected ([1], Satz 1.2). Conversely, if a group G acts on a 1-connected
simplicial 2-complex with a 2-simplex A as fundamental domain, then G is
the free product of the stabilizers of the vertices of A, amalgamated along
their intersections (cf. [12] or [3]).

We conclude this section by stating some results of Gersten and Stallings
[unpublished] concerning triangles of groups with “non-positive curvature”.
Gersten and Stallings begin by assigning an angle to each of the corners
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of the triangle (). To define the angle at A, for instance, let Y be the
(essentially unique) 1-dimensional simplicial complex such that A actson Y
with an edge e as fundamental domain and with U and W as the stabilizers
of the vertices of e. Let k be the smallest integer > 3 such that Y contains
a k-gon, if such an integer exists; otherwise, let kK = co. Then the angle at
A is defined to be 27 /k. [The motivation for this comes from the fact that
if the triangle is realizable and X is the associated 2-complex, then Y is
the link in X of the vertex of A corresponding to A.]

The results of Gersten and Stallings concern triangles which are fillable
and have angle sum < 7. Their first theorem is that such a triangle is always
realizable. They go on to prove a number of results about the generalized
amalgamated free product GG and the associated 2-complex X. For example,
they show that X is contractible. In fact, they endow X with a geometric
structure, making it, in some sense, a space of non-positive curvature in
which any two points can be joined by a unique geodesic. They then use this
geometric structure to prove that every bounded subgroup of G is conjugate
to a subgroup of one of the vertex groups A, B,C. “Bounded” here means
that there is an integer n such that every element of the given subgroup
can be expressed as a product ;- -x; with ! <nand x; € AUBUC.

Suppose we add the hypothesis that the vertex groups are finite. Then the
previous paragraph yields, among other things, the following two results:
(a) G has only finitely many conjugacy classes of finite subgroups. (b) Any
torsion-free subgroup of G has cohomological dimension at most 2.

We proceed now to Thompson’s group. As we will see, it is the general-
ized amalgamated free product associated to a realizable triangle of finite
groups. But Thompson’s group has finite subgroups of arbitrarily large or-
der, and it has torsion-free subgroups of infinite cohomological dimension.
Our triangle, then, will necessarily have angle sum greater than .

K %

2. Thompson’s Group

We begin with a very brief review of the definition of Thompson’s group
G as an algebraic automorphism group. See [6] and §4 of [4] for more
details, further references, and historical remarks. See also §3 below for an
alternative treatment, where G is viewed as a group of homeomorphisms of
the Cantor set.



126 K.S. Brown

Consider the algebraic system consisting of a set S together with a bi-
jection o : S — S x S. For lack of a better name, we will simply call S an
algebra in what follows. Let ap and a; be the components of a. They are
unary operators S — S, which we write on the right. Thus « is given by
x +— (zap,za). As an aid to the intuition, we will sometimes call zap and
zo; the two halves of .

Let S be the free algebra on a single generator z. Then S has bases of
arbitrary finite cardinality. For example, it has a 2-element basis {zag, za; }
and a 3-element basis {zapao,zapai, zon}. These examples illustrate a
general method for constructing bases: Given an r-element basis L and an
element y € L, we get an (7 + 1)-element basis M by replacing y by its two
halves yg,y1. One says that M is a simple expansion of L. Conversely, if
we start with a basis M and an ordered pair (yo,y1) of distinct elements
of M, then we obtain a basis L by replacing yo and y1 by ¥ = a~(yo, y1).
The basis L is called a simple contraction of M. Given two bases L, M,
then, M is a simple expansion of L if and only if L is a simple contraction
of M.

We now iterate these constructions: We say that M is an expansion of L
and that L is a contraction of M if there is a sequence L = Lg,...,Lg=M
(d > 0) with L; a simple expansion of L;—; for 1 < ¢ < d. It is shown
in [6] that any two bases have a common expansion. In other words, if
L and M are arbitrary bases, then one can get from L to M by doing
an expansion followed by a contraction. In particular, any basis can be
constructed as a contraction of an expansion of the original basis {z}. Note,
in this connection, that expansions of {z} are very concrete objects; namely,
they correspond to finite, rooted, binary trees. For example, the 3-element
basis given in the previous paragraph is represented by the tree

Thompson’s group G is now defined to be the group of automorphisms
of S. This is the group called G2 in [6] and [4]. To construct exam-
ples of elements of G, choose two expansions L, M of {z} with the same
cardinality, and choose an arbitrary bijection L — M; then this bijection
extends uniquely to an automorphism g of S. Moreover, every g € G can
be described in this way.
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By taking L = M above, we see that G contains, for every positive integer
n, the symmetric group on n letters. Consequently, every finite group can
be embedded in G. In fact, every countable locally finite group can be
embedded in G ([6], Theorem 6.6).

On the other hand, G also contains interesting torsion-free subgroups.
For example, it contains the group F studied in [5] (and called F; in [4]).
In particular, G contains torsion-free subgroups of infinite cohomological
dimension.

3. Dyadic Homeomorphisms of the Cantor Set

This section, which may be omitted, presents an alternative view of
Thompson’s group.

Let C be the Cantor set of infinite sequences a = (a;);>1 with a; € {0,1}.
It is topologized as the product of infinitely many discrete two-point spaces.
Note that there is a decomposition C' = Cy II Cy, where C; is the set of
sequences a with a; = i. Each C; is canonically homeomorphic to C, so we
can iterate the process, thereby expressing C as the union of n copies of
itself for any positive integer n. For example, we can partition Cj into two
Cantor sets Cpp and Cp; to get

C =Cyo I Cp; I Ch.

Finite partitions of C obtained in this way will be called standard partitions.
There is one such partition for every finite, rooted, binary tree. Thus
standard partitions correspond to expansions of {z} in the notation of §2.
The number of subspaces occurring in a partition will be called its rank.
This is the same as the cardinality of the associated basis of S. It is also
the same as the number of leaves of the associated tree, where a leaf is a
node with no descendants.

Suppose now that we are given two standard partitions L = (L;);er
and M = (M;);cs with the same rank. For example, we could take L =
{000,001,01} and M = {C(),Clo,cll}. Choose a bijection between I
and J. Then we can construct a homeomorphism g : C' — C which maps
each L; to the corresponding M; by the canonical homeomorphism. This
makes sense because each L; is canonically homeomorphic to C, as is each

M;. Any g constructed in this way will be called a dyadic homeomorphism
of C.
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The dyadic homeomorphisms form a group under composition, and this
group G is Thompson’s finitely presented infinite simple group, as described
for instance in [7]. It is not hard to see that G is isomorphic to the group
called G in §2, but we will not make any use of this isomorphism.

We close this section by discussing partitions of C' more general than the
standard ones. These play the role of bases of S more general than those
which are expansions of {x}. We will need a precise definition of the word
“partition”, which we have been using informally up to now: A partition of
C of rank n is a pair (L, H), where L is a collection of n pairwise disjoint
subspaces of C' whose union is C, and H is a collection of homeomorphisms
h : C — D, one for each D € L. Roughly speaking, then, a partition
exhibits C' as the disjoint union of finitely many copies of itself. We will
often suppress H from the notation and simply say that L is a partition.

Note that the standard partitions discussed earlier yield partitions in
the present sense, since each subspace occurring in a standard partition is
canonically homeomorphic to C. We wish to extend to arbitrary partitions
the subdivision process used earlier to construct standard partitions.

Given a partition L and an element D € L, we can write D = hCy 1 hC},
where h : C — D is the homeomorphism associated to D. Then each
hC; is canonically homeomorphic to C, so we obtain a new partition M
by replacing D by its two “halves” hCy and hC;. We say that M is a
simple expansion of L. Conversely, given a partition M and an ordered pair
(Do, D;) of distinct elements of M, we can construct a simple contraction
L of M by replacing Dy and D; by D = Dy Il Dy, which is canonically
homeomorphic to C. As in §2, we can iterate these constructions to obtain
more general notions of expansion and contraction.

In contrast to the situation of §2, two partitions need not have a common
expansion. We remedy this by restricting attention to a subset of the set of
all partitions: A partition is called admissible if it is a contraction of some
standard partition. It is easy to check that any two admissible partitions
have a common expansion. The interested reader can now construct a
bijection between the set of admissible partitions of C and the set of bases
of S.

Finally, we wish to define an action of G on the set of admissible parti-
tions. Note first that the full homeomorphism group of C acts on the set of
all partitions: Given a partition (L, H) and a homeomorphism g : C — C,
there is a new partition (gL,gH), where gL = {gD : D € L} and
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gH = {gh:h € H}. Here gh is to be interpreted as the composite
C D —g'—D> g
This action has the property that the stabilizer of a rank n partition is
isomorphic to the symmetric group on n letters.
One can now verify:

PROPOSITION. A partition is admissible if and only if it is in the G-orbit
of a standard partition. In particular, the set of admissible partitions is
invariant under the action of G. O

4. A contractible space for G

Our starting point is the set B of bases of S. [Readers of §3 may, if
they wish, work instead with the set of admissible partitions of the Cantor
set.] As in [4], we view B as a poset, where L < M if M is an expansion
of L. This poset structure is compatible with the obvious action of G on B,
i.e., G acts by poset automorphisms. Let |B| be the simplicial complex
associated to B; its simplices are the finite chains Ly < --- < L, in B. This
is the G-complex with finite stabilizers which was used in [4] to study G.
Since B is a directed set, |B| is contractible. The purpose of the present
section is to present a result of Melanie Stein [unpublished], which provides
a contractible G-invariant subcomplex of |B|.

Given a basis L of S, an elementary expansion of L is a basis M obtained
by choosing a subset L’ C L and replacing each y € L’ by its two halves
Yo,y1. Thus we can get from L to M by a sequence of simple expansions,
where at each stage we expand some y € L rather than one of the halves
introduced by an earlier expansion. We write L < M if M is an elementary
expansion of L, and we write L < M if, in addition, L # M. [Warning:
The relations “<” and “<” are not transitive.]

Call a simplex Ly < --- < L, elementary if Ly < L,. This implies that
L; X L; for i < j. Hence any face of an elementary simplex is elementary,
and the elementary simplices form a (G-invariant) subcomplex X C |B|.

THEOREM 1 (M. STEIN). The complex X of elementary simplices is con-
tractible.

We will use, in the proof, the standard notation for intervals in a poset.
For example, the open interval (L, M) is defined by

(L,M)={NeB:L<N<M}
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The closed interval [L, M| and the half-open intervals [L, M) and (L, M]
are defined similarly. The following lemma is the key step in the proof.

LEMMA. If M is a non-elementary expansion of L, then ](L, M )[ is con-
tractible.

PRrROOF: For any expansion N of L, let Ny be the largest element of [L, N]
such that L < Np; it is obtained by taking L', in the definition of “elemen-
tary expansion”, to consist of all elements y € L which get expanded in the
passage from L to N. Note that we have Ny € (L, M) for any N € (L, M].
The inequalities N > Ny < M, now yield a “conical” contraction of (L, M),
cf. [10], 1.5. O

Note that the complexes |[L,M]|, |[L,M)|, and |(L, M]| are also con-
tractible, for trivial reasons, since the intervals in question all have a largest
or smallest element.

PROOF OF THEOREM 1: Since |B| is already known to be contractible, it
suffices to show that we can obtain |B| from X by a sequence of adjunctions
which do not change the homotopy type. To this end, we construct |B| by
successively adjoining the subcomplexes ][L, M ]| with M a non-elementary
expansion of L. We do these adjunctions by induction on r(M) — r(L),
where () denotes the cardinality of a basis. Thus the part of I[L, M]|
already present at the time of the adjunction is |[L, M) U (L, M]|, which is
the suspension of |(L, M )] and hence is contractible by the lemma. Since
I[L, M ]I is also contractible, we conclude that the adjunction has no effect
on the homotopy type. U

REMARK. Everything in this section goes through without change if we fix
an integer r and replace B by the set of bases of cardinality > r.

5. Proof of the Main Theorem

Recall from the introduction that our goal is to construct for any n > 1
an (n — 1)-connected n-dimensional simplicial complex on which G acts
with finite stabilizers and with an n-simplex as fundamental domain. We
will do this by “truncating” the complex X of elementary simplices. Given
integers p, g with 1 < p < g, let X}, ;, be the full subcomplex of X generated
by the vertices L with p < r(L) < ¢q. Here, as above, r() denotes the
cardinality of a basis. Note that X, , is G-invariant. Note also that the
dimension of X, ; satisfies dim X, ; < g — p, with equality if ¢ < 2p.
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Now fix an integer n > 1, and consider the G-complex X, ,1.,, for p > n.
It is n-dimensional. Associated to any simplex Ly < --- < L,, of this
complex is a sequence of integers r(Lg) < --- < (L), called the type of
the simplex. It is easy to check that two simplices are G-equivalent if and
only if they have the same type. Since every n-simplex has exactly one face
of each possible type, we conclude that the action of G on X p4» admits
an n-simplex as fundamental domain. The main theorem now follows from:

THEOREM 2. There is an integer pg (dependmg on n) such that Xp pyn is
(n — 1)-connected for p > po.

The proof will make use of a family of simplicial complexes K, (r > 2),
defined as follows: The vertices of K, are the ordered pairs (a,b) with
a,b € {1,...,r} and a # b; a collection {(ao,bg),...,(am,bm)} of such
vertices is a simplex if {a;,b;} N {a;,b;} = 0 for i # j. The complexes K,
appeared in [4], where it was shown that the connectivity of K, tends to
oo with r (cf. [4], Lemma 4.20). In other words:

LEMMA. There is an integer ro (depending on n) such that K, is (n — 1)-
connected for r > ry. O

Proor oF THEOREM 2: Fix p and consider the sequence of inclusions

Xpp+n C Xpptnt1 C Xppiny2 C -

The union is the full subcomplex of X generated by the vertices L with
r(L) > p. This union is contractible by the remark at the end of §4. So
Xp,ptn Will be (n — 1)-connected if the inclusion X, 4 < X q+1 induces an
isomorphism 7;(Xp 4) —— m(Xp q41) for all i < n and all ¢ > p+n. Now
this inclusion is obtained by adjoining, for each basis M with r(M) = ¢+1,
a cone over the link of M in X, ;. Fix M and let Y be this link. Its vertices
are the bases L with L < M and r(L) > p, and its simplices are the chains
Ly < --- < Ly, of such bases.

We can describe a basis L < M by specifying the pairs of elements of M
which are contracted to get L. Thus Y has one vertex for every non-empty
set P C M x M satisfying:

(1) If (a,b) € P, then a # b.
(2) {a,b} N{c,d} = 0 for any two distinct pairs (a,b), (c,d) € P.
(3) P has cardinality <g+1—p
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And the simplices of Y correspond to chains Py C --- C P, of such sets P.
Now sets P satisfying (1) and (2) are the same as simplices of the complex
K41 defined above. And condition (3) says that the simplex has dimension
at most ¢ —p. So our complex Y, which consists of chains of such simplices,
is the barycentric subdivision of the (¢ — p)-skeleton of K,41. The lemma
now implies that Y is (n — 1)-connected if g+ 1> rp and ¢ —p > n.

This last inequality is vacuous, since we are only considering integers
q > p+n. And the first will be satisfied for all ¢ > p + n provided
p+n+1 2> rg. Soif we take pg = rg—n—1 and p > pg, then the complexes
Y that arise above will all be (n — 1)-connected. Attaching a cone over
such a Y does not affect m; for ¢ < n; hence Xp ptn is (n — 1)-connected,
as required. O

REMARK. K. Vogtmann [private communication] has shown that one can
take ro = 3n + 2, which gives po = 2n + 1. Thus X34 is connected, X5 7
is 1-connected, X7 10 is 2-connected, etc. Here is a proof of Vogtmann’s
result for the case n = 2:

We must show that K, is l-connected for » > 8. It is trivial to verify
that K, is connected, so the content of the assertion is that any closed
edge path is null-homotopic. To prove this, it suffices to show that any
edge path of length 3 is homotopic, relative to its endpoints, to a shorter
path. Let vg,v1,vs,vs be the vertices of an edge path of length 3. If v
and v are joined by an edge in K, (i.e., if the corresponding 2-element
subsets of {1,...,r} are disjoint), then the first three vertices of our path
are the vertices of a 2-simplex, and the path can be shortened to vg, v2, vs.
A similar remark applies to v; and v3. So we may assume that vg and ve
have an element of {1,...,r} in common, and similarly for v; and vs. But
then the entire edge path involves at most 6 elements of {1,...,7}. Since
r > 8, we can now find a vertex v such that the given path is in the star
of v, hence it is homotopic to vy, v, vs. ‘

6. A Combinatorial Description of G

We specialize now to the case n = 2. As we have just proved, the 2-
complex X, p+2 is 1-connected for any p > 5, and G acts on it with a
2-simplex A as fundamental domain. Take p = 5, for instance. Then the
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vertices of A can be written in the form

Ls = {a,b,c,d, e}
L6 - {aab3 (O d) 60781}
L7 - {a'7 b7 c, d07 d17 60,61},

where d; = do; and e; = ea;. The stabilizers of these vertices are iso-
morphic to X5, ¥g, and X7, respectively, where X, is the symmetric group
on r letters. It is a simple matter to work out the intersections of these
stabilizers. The results stated in §1 now yield:

THEOREM 3. There is a realizable triangle of groups

X7
7N
23 X 22 25
/ N\

g — Yy — g
whose amalgamated free product is Thompson’s infinite simple group. [

The maps in this triangle can be described as follows. Regard ¥, as the
group of permutations of {1,...,7}. The maps ¥4 — X, (r = 5,6) are
then the standard inclusions, obtained by letting X4 permute {1,2,3,4} C
{1,...,r}. Similarly, the maps X5 — X, (r = 6,7) are obtained by letting
Y5 permute {1,2,3,7 — 1,7}. Finally, ¥3 x X5 is embedded in X5 in the
standard way, with the first factor acting on {1, 2,3} and the second factor
acting on {4, 5}; but the embedding ¥3 x ¥5 — 37 is not of the standard
type. The first factor permutes {1,2, 3}, but the non-trivial element of the
second factor, instead of mapping to a transposition, maps to the product
(46)(57) of two transpositions.

REMARK. It is easy to describe links of vertices in X5 7, from which one
can compute the Gersten—Stallings angles of the triangle above (cf. §1).
These angles turn out to be 7/3, 7/2, and 7/3 at the vertices stabilized by
Y5, Xg, and X7, respectively. Note that the sum of these angles is greater
than .

Finally, we explain how Theorem 3 settles a question of Neumann and
Neumann [8]. Let A, B, C denote the vertex groups in the triangle above,
and let H be their union AUBUC in G. We view H as a set with a partially
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defined multiplication, where the product of two elements is defined if at
least one of the groups A, B, C contains both of them. In the language of
[8], H is an amalgam of the groups A, B,C. In general, an amalgam of
groups need not be embeddable in a group; but our amalgam is embedded
in Thompson’s group, by construction.

The question posed in [8], p. 255, is the following: If an amalgam of
groups is finite and is embeddable in a group, is it necessarily embeddable
in a finite group? The following corollary of Theorem 3 shows that the
answer is “no”:

COROLLARY. The finite amalgam H is not embeddable in a finite group.

PRrROOF: Since G is the amalgamated free product of A, B, C, it follows that
the inclusion H — G is the universal homomorphism from H to a group.
So if H could be embedded in a finite group, then it would embed in a
finite quotient of G. But G is infinite and simple, so its only finite quotient
is the trivial group. O

Note that this is not just an isolated example. For we could replace 5
by any p > 5 above, thereby getting infinitely many triangles with similar
properties. Moreover, as stated in the introduction, we could replace G by
any member of Higman’s family of finitely presented infinite simple groups.

7. Homology Calculations

THEOREM 4. Thompson’s group G is Q-acyclic, i.e., H;(G,Q) = 0 for all
1> 0.

PROOF: Fix n, and let Y = X, 5., for large p. Consider the equivari-
ant homology HE(Y,Q), as defined for instance in [2], §VIL7. Since the
stabilizer of every simplex of Y is finite, this homology is isomorphic to
H.(Y/G) (cf. [2], §VIL.7, Exercise 2). But Y/G is a simplex, so we have
HE(Y,Q) = 0 for i > 0. On the other hand, Y is (n — 1)-connected, so
the canonical map HZ(Y) — H;(G) is an isomorphism for ¢ < n and an
epimorphism for ¢ = n (cf. [2], VIL.7.2). Hence H;(G,Q) = 0 for ¢ < n.
Since n is arbitrary, this completes the proof. O

REMARK. There is some evidence to suggest that G might be Z-acyclic.
For example, I have proven the following:

(1) H;(G) =0 for i = 1,2, 3. In particular, the Schur multiplier of G is
trivial.
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(2) Let X, be embedded in G as the stabilizer of an r-element basis, and
let k¥ be any field. Then the induced map H;(X,,k) — H;(G,k) is
the zero map for all 7 > 0.

(3) Let F be the torsion-free subgroup of G mentioned at the end of §2.
Then the inclusion F' < G induces the zero map H;(F) — H;(G)
for all ¢ > 0.

Assertion (1) is proved by spectral sequence computations. The proofs of
(2) and (3), however, are more interesting; they are based on the fact that
there is an embedding G x G — G, which induces a ring structure on
H,(G). Details will be given elsewhere. '
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