18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08: LECTURE 1

LIAT KESSLER

1. PROPOSITIONAL CALCULUS: EXPOSITION

Consider variables p, q, r. We think of them as elementary propositions. To each of them we can assign a truth value: *true* (denoted by 1) or *false* (0). Consider the connectives: contradiction denoted by \perp (which stands on its own), negation denoted by \neg (not), which is placed in front of a formula, and connectives that are placed between two formulas: disjunction denoted by \vee (or), conjunction denoted by \wedge (and), implication denoted by \rightarrow (if-then). According to our convention, the truth-value of \perp is 0. The truth value of $\neg p$ is 0 if the truth value of p is 1, and 1 if the truth value of p is 0. The truth value of its constituents as follows:

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

The truth table for "and" is:

$$\begin{array}{c|cccc} p & q & p \land q \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

The truth table for "if-then" is:

LIAT KESSLER

We can compound other propositions using the logical connectives and the variables, for example, $\neg((\neg p) \lor (\neg q))$. The truth table of $\neg((\neg p) \lor (\neg q))$ is obtained from the above truth tables:

p	q	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$	$\neg((\neg p) \lor (\neg q))$
0	0	1	1	1	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	0	1

1.1. *Remark.* Notice that the connectives \neg (not), \lor (or) and \land (and) can be defined using only the connectives \bot and \rightarrow .

(1) The truth table for $p \to \perp$ is

$$\begin{array}{c|cccc} p & \bot & p \to \bot \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$$

which is the same as the truth table of $\neg p$, for all p. (2) The truth table for $((p \rightarrow \bot) \rightarrow q)$, i.e., $(\neg p \rightarrow q)$ is

p	q	$\neg p$	q	$(\neg p \rightarrow q)$
0	0	1	0	0
0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

which is the same as the truth table of $p \lor q$ for all p, q.

(3) The truth table for $\neg(\neg p \lor \neg q)$ (which, by parts (1) and (2), can be defined using \bot and \rightarrow), is the same as the truth table for $p \land q$ for all p, q (as we saw above). The equivalence between $p \land q$ and $\neg(\neg p \lor \neg q)$ is called De-Morgan Law.

1.2. *Exercise*. Show that the truth tables of \rightarrow , \wedge and \perp can be obtained as truth tables of propositions compounded by \vee and \neg .

Propositional Calculus: Syntax. We now move to formal notations. Let \mathcal{A} be an *alphabet* consisting of the following symbols:

- (1) \perp (contradiction) (0-ary connective);
- (2) \rightarrow (if-then) (binary connective);
- (3)), ((parentheses: closing parenthesis and opening parenthesis);
- (4) p_1, p_2, \ldots (propositional variables).

Items (1)-(3) are called the *logical symbols*. We assume that the set P of propositional variables is not empty. We also assume that the logical symbols are not elements of P.

1.3. *Remark.* When the choice of a particular variable is not important, we will often not specify the choice and use p, q, r instead.

A propositional formula over \mathcal{A} is defined by the following definition.

- \perp is a propositional formula;
- every propositional variable p_i is a propositional formula;
- if α and β are propositional formulas then $(\alpha \to \beta)$ is also a propositional formula;
- no other string over \mathcal{A} is a propositional formula.

(A propositional formula is obtained by applying the first three rules finitely many times.) For example, $(p_0 \rightarrow (p_1 \rightarrow \bot))$ is a propositional formula. Notice that there are strings over \mathcal{A} that are not propositional formulas, e.g., $\rightarrow p$,) \perp , etc. We sometimes say formulas or propositions instead of propositional formulas.

1.4. Remark. The above definition of a propositional formula is a "definition from above", or *inductive*: we are defining the smallest subset of a fixed set E that includes a given subset and is closed under certain operations defined on E. We have an equivalent definition "from below": this consists in constructing the set one level at a time: the given subset is the lowest level and the elements of level n + 1 are defined to be the images under the given operations of the elements from the lower levels. In our case, the given set is the union of \perp and the set of propositional variables, and the operation is getting ($\alpha \rightarrow \beta$) out of two formulas α and β . For more details, see Theorem 1.3 (p.10) in the Cori-Lascar textbook.

The symbols), (play an important role; thanks to them there is a unique way to obtain a proposition.

1.5. **Theorem** (Unique Decomposition). For any propositional formula ϕ , one and only one of the following three cases can arise:

- (1) $\phi = \bot$.
- (2) ϕ is a propositional variable.
- (3) There is a unique pair of formulas (ϕ_1, ϕ_2) such that $\phi = (\phi_1 \rightarrow \phi_2)$.

Proof: guided exercise in Problem Set 1.

1.6. Remark. By Remark 1.1, for propositional formulas α , β , the propositions $\neg \alpha$, $(\alpha \lor \beta)$, and $(\alpha \land \beta)$ can be written as propositional formulas. We will use the notations $\neg \alpha$, $(\alpha \lor \beta)$, $(\alpha \land \beta)$ as abbreviations for the corresponding propositional formulas.

For a propositional formula α , let $pvar(\alpha)$ be the set of propositional variables occurring in α ,

 $pvar(\alpha) = \{p \mid p \text{ occurs in } \alpha\}.$