18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. PROPOSITIONAL CALCULUS: EXPOSITION

Propositional Calculus: Semantics. An *assignment* is a map b from the set of propositional variables $\{p_1, p_2, \ldots\}$ to $\{0, 1\}$ that assigns truth value: 0 if false, 1 if true. The truth value $b(\alpha)$ of a propositional formula α under the assignment b is defined recursively, (by recursion on the construction of the formula), as follows.

- $b(\perp) = 0;$
- $b(p_i)$ is given for all propositional variables p_i ;
- If γ is of the form $(\alpha \to \beta)$, then, (by the truth table of \to), $b(\gamma) = 0$ if $b(\alpha) = 1$ and $b(\beta) = 0$; otherwise $b(\gamma) = 1$.

(Well defined because of Theorem ??.)

The truth value $b(\alpha)$ depends only on the assignment of the propositional variables occurring in the formula α .

1.1. **Lemma** (Coincidence Lemma of Propositional Logic.). Let α be a propositional formula and let b and b' be assignments with b(p) = b'(p) for all $p \in pvar(\alpha)$. Then $b(\alpha) = b'(\alpha)$.

The proof is by (an easy) induction on the formulas (check).

If $b(\alpha)$ is 1 we say that b is a model of α , or that it satisfies α . The assignment b is a model of a set Δ of propositional formulas if b is a model of each formula in Δ .

We assume that the set of propositional variables in the alphabet is countable. We say that a set S is *countable* if there is a surjective map α from the set of natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ to S. We can then represent S as $\{\alpha(n) \mid n \in \mathbb{N}\}$, or (if we write the arguments as indices, as $\{\alpha_n \mid n \in \mathbb{N}\}$.

1.2. **Theorem.** The set Φ of all propositional formulas (in variables p_1, p_2, \ldots) is countable.

 Set

to be the set of all propositional formulas α for which $pvar(\alpha) \subseteq \{p_1, \ldots, p_k\}$ and the symbol \rightarrow appears ℓ times or less.

1.3. Lemma.

$$|\Phi_{\ell}^{k}| \le (k+1)^{2^{\ell}} \cdot (\ell+1)^{2^{\ell}}$$

Proof. By induction on ℓ (simultaneously for all k). For $\ell = 0$, $\Phi_0^k = \{\perp, p_1, \ldots, p_k\}$, hence

$$|\Phi_0^k| = k + 1 = (K+1)^{2^0} \cdot (0+1)^{2^0}.$$

Induction step: If $\phi \in \Phi_{\ell+1}^k$, then either $\phi \in \Phi_0^k$ or $\phi = (\alpha \to \beta)$ for $\alpha, \beta \in \Phi_l^k$. The number of possible α (β) is $|\Phi_\ell^k|$, hence the number of possible $(\alpha \to \beta)$ is $|\Phi_\ell^k|^2$. Therefore

$$|\Phi_{l+1}^k| \le |\Phi_l^k|^2 + (k+1) \le ((k+1)^{2^\ell} \cdot (\ell+1)^{2^\ell})^2 + (k+1) \le (k+1)^{2^{\ell+1}} \cdot (\ell+2)^{2^{\ell+1}}$$

The second inequality is by the induction assumption.

Proof of Theorem 1.2. We notice that for the set Φ of all propositional formulas,

$$\Phi = \cup_{k=1}^{\infty} \Phi_k^k.$$

By Lemma 1.3, Φ_{ℓ}^k is finite for all ℓ , k. In particular

$$\Phi_k^k \smallsetminus \Phi_{k-1}^{k-1}$$

is finite. Hence we can write $\Phi_1^1 = \{\phi_1, \ldots, \phi_{n_1}\}, \Phi_2^2 \smallsetminus \Phi_1^1 = \{\phi_{n_1+1}, \ldots, \phi_{n_1+n_2}\},$ and so on. We get that Φ is countable: $\Phi = \{\phi_1, \ldots, \phi_{n+1}, \ldots\}$. \Box

We denote by \mathcal{B} the set of all assignments. Assume that the alphabet is countable and not finite.

1.4. **Theorem.** The collection \mathcal{B} of assignments, i.e., the maps from the set of propositional formulas to $\{0,1\}$ is not countable.

The proof is by a diagonal argument due to Cantor.

Proof. Assume that \mathcal{B} is countable, i.e., $\mathcal{B} = \{b_1, b_2, \ldots\}$. Define an assignment b^* as follows: for the variable p_i ,

$$b^*(p_i) = 1 - b_i(p_i),$$

i.e., $b^*(p_i) = 0$ if $b_i(p_i) = 1$, and $b^*(p_i) = 1$ if $b_i(p_i) = 0$.

Then for all $i \in \mathbb{N}$, we get $b^* \neq b_i$, since they do not agree for p_i , in contradiction with the assumption.

Logical consequence. Let Δ be a set of propositional formulas, and let α , β be propositional formulas. We say that α is a (logical) *consequence* of Δ , and write $\Delta \models \alpha$ if every model of Δ is a model of α . When Δ consists of a single formula ϕ we sometimes abbreviate and write $\phi \models \alpha$ for $\{\phi\} \models \alpha$.

We say that α is a *tautology*, and write $\models \alpha$, (or $\emptyset \models \alpha$), if α is true (i.e., has truth value 1) under all assignments.

We say that Δ is *satisfiable*, and write Sat Δ if there is an assignment which is a model of Δ . We say that α is *satisfiable* if Sat{ α }.

We say that α and β are logically equivalent if $\models (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$.

1.5. *Example*. For every propositional formula α , the propositional formula

(1)
$$((\neg(\neg\alpha)) \to \alpha)$$

is a tautology. Indeed, for every assignment b, if $b((\alpha \to \bot) \to \bot) = 1$ then, by definition (of an assignment), $b(\alpha \to \bot) = 0$, and hence (by definition) $b(\alpha) = 1$, therefore by definition $b(\neg(\neg \alpha) \to \alpha) = 1$.