18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. Propositional Calculus: Exposition

Propositional Calculus: Semantics. An assignment is a map b from the set of propositional variables $\left\{p_{1}, p_{2}, \ldots\right\}$ to $\{0,1\}$ that assigns truth value: 0 if false, 1 if true. The truth value $b(\alpha)$ of a propositional formula α under the assignment b is defined recursively, (by recursion on the construction of the formula), as follows.

- $b(\perp)=0$;
- $b\left(p_{i}\right)$ is given for all propositional variables p_{i};
- If γ is of the form $(\alpha \rightarrow \beta)$, then, (by the truth table of \rightarrow), $b(\gamma)=0$ if $b(\alpha)=1$ and $b(\beta)=0$; otherwise $b(\gamma)=1$.
(Well defined because of Theorem ??.)
The truth value $b(\alpha)$ depends only on the assignment of the propositional variables occurring in the formula α.
1.1. Lemma (Coincidence Lemma of Propositional Logic.). Let α be a propositional formula and let b and b^{\prime} be assignments with $b(p)=b^{\prime}(p)$ for all $p \in \operatorname{pvar}(\alpha)$. Then $b(\alpha)=b^{\prime}(\alpha)$.

The proof is by (an easy) induction on the formulas (check).
If $b(\alpha)$ is 1 we say that b is a model of α, or that it satisfies α. The assignment b is a model of a set Δ of propositional formulas if b is a model of each formula in Δ.

We assume that the set of propositional variables in the alphabet is countable. We say that a set S is countable if there is a surjective map α from the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ to S. We can then represent S as $\{\alpha(n) \mid n \in \mathbb{N}\}$, or (if we write the arguments as indices, as $\left\{\alpha_{n} \mid n \in \mathbb{N}\right\}$.
1.2. Theorem. The set Φ of all propositional formulas (in variables $\left.p_{1}, p_{2}, \ldots\right)$ is countable.

Set
to be the set of all propositional formulas α for which $\operatorname{pvar}(\alpha) \subseteq$ $\left\{p_{1}, \ldots, p_{k}\right\}$ and the symbol \rightarrow appears ℓ times or less.

1.3. Lemma.

$$
\left|\Phi_{\ell}^{k}\right| \leq(k+1)^{2^{\ell}} \cdot(\ell+1)^{2^{\ell}}
$$

Proof. By induction on ℓ (simultaneously for all k). For $\ell=0, \Phi_{0}^{k}=$ $\left\{\perp, p_{1}, \ldots, p_{k}\right\}$, hence

$$
\left|\Phi_{0}^{k}\right|=k+1=(K+1)^{2^{0}} \cdot(0+1)^{2^{0}} .
$$

Induction step: If $\phi \in \Phi_{\ell+1}^{k}$, then either $\phi \in \Phi_{0}^{k}$ or $\phi=(\alpha \rightarrow \beta)$ for $\alpha, \beta \in \Phi_{l}^{k}$. The number of possible $\alpha(\beta)$ is $\left|\Phi_{\ell}^{k}\right|$, hence the number of possible $(\alpha \rightarrow \beta)$ is $\left|\Phi_{\ell}^{k}\right|^{2}$. Therefore
$\left|\Phi_{l+1}^{k}\right| \leq\left|\Phi_{l}^{k}\right|^{2}+(k+1) \leq\left((k+1)^{2^{\ell}} \cdot(\ell+1)^{2^{\ell}}\right)^{2}+(k+1) \leq(k+1)^{2^{\ell+1}} \cdot(\ell+2)^{2^{\ell+1}}$.
The second inequality is by the induction assumption.
Proof of Theorem 1.2. We notice that for the set Φ of all propositional formulas,

$$
\Phi=\cup_{k=1}^{\infty} \Phi_{k}^{k}
$$

By Lemma 1.3, Φ_{ℓ}^{k} is finite for all ℓ, k. In particular

$$
\Phi_{k}^{k} \backslash \Phi_{k-1}^{k-1}
$$

is finite. Hence we can write $\Phi_{1}^{1}=\left\{\phi_{1}, \ldots, \phi_{n_{1}}\right\}, \Phi_{2}^{2} \backslash \Phi_{1}^{1}=\left\{\phi_{n_{1}+1}, \ldots, \phi_{n_{1}+n_{2}}\right\}$, and so on. We get that Φ is countable: $\Phi=\left\{\phi_{1}, \ldots, \phi_{n+1}, \ldots\right\}$.

We denote by \mathcal{B} the set of all assignments. Assume that the alphabet is countable and not finite.
1.4. Theorem. The collection \mathcal{B} of assignments, i.e., the maps from the set of propositional formulas to $\{0,1\}$ is not countable.

The proof is by a diagonal argument due to Cantor.
Proof. Assume that \mathcal{B} is countable, i.e., $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots\right\}$. Define an assignment b^{*} as follows: for the variable p_{i},

$$
b^{*}\left(p_{i}\right)=1-b_{i}\left(p_{i}\right),
$$

i.e., $b^{*}\left(p_{i}\right)=0$ if $b_{i}\left(p_{i}\right)=1$, and $b^{*}\left(p_{i}\right)=1$ if $b_{i}\left(p_{i}\right)=0$.

Then for all $i \in \mathbb{N}$, we get $b^{*} \neq b_{i}$, since they do not agree for p_{i}, in contradiction with the assumption.

Logical consequence. Let Δ be a set of propositional formulas, and let α, β be propositional formulas. We say that α is a (logical) consequence of Δ, and write $\Delta \models \alpha$ if every model of Δ is a model of α. When Δ consists of a single formula ϕ we sometimes abbreviate and write $\phi \models \alpha$ for $\{\phi\} \models \alpha$.

We say that α is a tautology, and write $\models \alpha$, (or $\emptyset \models \alpha$), if α is true (i.e., has truth value 1) under all assignments.

We say that Δ is satisfiable, and write Sat Δ if there is an assignment which is a model of Δ. We say that α is satisfiable if $\operatorname{Sat}\{\alpha\}$.

We say that α and β are logically equivalent if $\models(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$.
1.5. Example. For every propositional formula α, the propositional formula

$$
\begin{equation*}
((\neg(\neg \alpha)) \rightarrow \alpha) \tag{1}
\end{equation*}
$$

is a tautology. Indeed, for every assignment b, if $b((\alpha \rightarrow \perp) \rightarrow \perp)=1$ then, by definition (of an assignment), $b(\alpha \rightarrow \perp)=0$, and hence (by definition) $b(\alpha)=1$, therefore by definition $b(\neg(\neg \alpha) \rightarrow \alpha)=1$.

