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1. PROPOSITIONAL CALCULUS: EXPOSITION

Propositional Calculus: Semantics. An assignment is a map b
from the set of propositional variables {p1, pa, ...} to {0, 1} that assigns
truth value: 0 if false, 1 if true. The truth value b(«) of a propositional
formula o under the assignment b is defined recursively, (by recursion
on the construction of the formula), as follows.

e h(L)=0;

e b(p;) is given for all propositional variables p;;

o If 7 is of the form (o — (), then, (by the truth table of —),

b(y) = 0if b(e) = 1 and b() = 0; otherwise b(y) = 1.

(Well defined because of Theorem ?7?.)
The truth value b(«) depends only on the assignment of the propo-
sitional variables occurring in the formula a.

1.1. Lemma (Coincidence Lemma of Propositional Logic.). Let « be a
propositional formula and let b and b’ be assignments with b(p) = V' (p)
for all p € pvar(a). Then b(a) =V ().

The proof is by (an easy) induction on the formulas (check).

If b(«) is 1 we say that b is a model of «, or that it satisfies a. The
assignment b is a model of a set A of propositional formulas if b is a
model of each formula in A.

We assume that the set of propositional variables in the alphabet is
countable. We say that a set S is countable if there is a surjective map
« from the set of natural numbers N ={0,1,2,...} to S. We can then
represent S as {a(n) | n € N}, or (if we write the arguments as indices,
as {a, | n € N}.

1.2. Theorem. The set ® of all propositional formulas (in variables
P1, D2, - - ) is countable.
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to be the set of all propositional formulas « for which pvar(a) C
{p1,...,pr} and the symbol — appears ¢ times or less.

1.3. Lemma.
0¥ < (k+1)% - (0 +1)¥

Proof. By induction on ¢ (simultaneously for all k). For £ = 0, ®f =
{L,p1,...,pr}, hence

OF| =k +1=(K+1)% - (0+1)%.

Induction step: If ¢ € @}, ,, then either ¢ € ®f or ¢ = (v — 3) for
a, B € ®F. The number of possible a (3) is |®F|, hence the number of

possible (o — 3) is |®%]%. Therefore
|BF, | < [BFPH(R41) < (k1) (1)) 2+ (k+1) < (k+1)2 7 (42)2 "
The second inequality is by the induction assumption. U

Proof of Theorem 1.2. We notice that for the set ® of all propositional
formulas,

d = Uy, oF.
By Lemma 1.3, ®} is finite for all ¢, k. In particular
N

is finite. Hence we can write ®1 = {¢1,..., ¢n, }, PPl = {dn, 15+, Pryina |
and so on. We get that ® is countable: ® = {¢1,..., dpi1,.. .} O

We denote by B the set of all assignments. Assume that the alphabet
is countable and not finite.

1.4. Theorem. The collection B of assignments, i.e., the maps from
the set of propositional formulas to {0,1} is not countable.

The proof is by a diagonal argument due to Cantor.

Proof. Assume that B is countable, i.e., B = {by,by,...}. Define an
assignment b* as follows: for the variable p;,

b*(pi) =1- bi(pi)7

Le., b"(p:i) = 0 if bi(p;) = 1, and b*(p;) = 1 if b;(p;) = 0.
Then for all : € N, we get b* # b;, since they do not agree for p;, in
contradiction with the assumption. O
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Logical consequence. Let A be a set of propositional formulas, and
let a, 8 be propositional formulas. We say that « is a (logical) con-
sequence of A, and write A |= « if every model of A is a model of «.
When A consists of a single formula ¢ we sometimes abbreviate and
write ¢ = a for {¢} = a.

We say that « is a tautology, and write = «, (or ) | @), if « is true
(i.e., has truth value 1) under all assignments.

We say that A is satisfiable, and write Sat A if there is an assignment
which is a model of A. We say that « is satisfiable if Sat{a}.

We say that o and [ are logically equivalent if = (o — B)A(8 — «).

1.5. Example. For every propositional formula «, the propositional for-
mula

(1) ((=(=e)) = )

is a tautology. Indeed, for every assignment b, if b((a — L) — 1) =1
then, by definition (of an assignment), b(a« — L) = 0, and hence (by
definition) b(a) = 1, therefore by definition b(—(—-a) — «) = 1.



