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1. Propositional Calculus

Notation

• For any non-zero natural number k, if φ1, . . . , φk are formulas,
we let φ1∧. . .∧φk represent the formula ((. . . (φ1∧φ2)∧φ3)∧. . .∧
φk) (which begins with k−1 occurrences of the open parenthesis
symbol).

• If I = {i1, . . . , ik} is a non-empty set of indices, and φ1, . . . , φk

are formulas, the formula φi1 ∧ . . . ∧ φik will also be written
∧j∈Iφj. (We ignore the ambiguity relating to the indices in the
set I since we are concerned with semantics, and we have the
commutativity of conjunction up to logical equivalence.)

• We make analogous conventions for disjunction.

Propositional connectives. For n ∈ N, we denote by Bn the set
of assignments of 0/1 value to the propositional variables p1, . . . , pn.
Notice that Bn can be identified with {0, 1}n hence |Bn| = 2n.

A k-place Boolean function, sometimes called a k-place propositional

connective, is a function from Bk into {0, 1}; equivalently, a function
from {0, 1}k into {0, 1}. We permit 0 and 1 themselves as 0-place
Boolean functions. For each n ∈ N there are 22n

n-place Boolean
functions. From a propositional formula α with pvar α ⊆ {p1, . . . , pn}
we define an n-place Boolean function Bn

α, the Boolean function realized

by α, by

Bn
α(b) = b(α), for b ∈ Bn.

1.1. Lemma. Let n ∈ N. For every n-place Boolean function f : Bn →
{0, 1}, there is a formula φ with pvar(φ) ⊆ {p1, . . . , pn} such that f is

realized by φ, i.e.,

f(b) = b(φ), for all b ∈ Bn.

Of course the formula φ that realizes f is not unique; any logically
equivalent formula will also realize the same function.
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Proof. Step 1. Special case: there is exactly one b∗ ∈ Bn for which

f(b∗) = 1; for Bn ∋ b 6= b∗, f(b) = 0. Set

qi =

{

pi if b∗(pi) = 1;

¬pi if b∗(pi) = 0.

Define
φ = ∧n

i=1qi.

We claim that for all b ∈ Bn, f(b) = b(φ). Indeed, for b∗, we have
f(b∗) = 1 = b∗(φ) by definition of φ (for all qi, b∗(qi) = 1, hence
b∗(∧n

i=1qi) = 1). If b 6= b∗, there is (at least) one pi such that b(pi) 6=
b∗(pi), hence b(pi) = 0, therefore b(φ) = b(∧n

i=1qi) = 0 = f(b).
Step 2. Special case: for all b ∈ Bn, f(b) = 0. Then for

φ = ⊥,

or
φ = (p1 ∧ ¬p1)

(if n ≥ 1), b(φ) = 0 = f(b) for all b ∈ Bn.
Step 3. General case. First enumerate the elements of Bn from 1 to

2n to get a list (b1, b2, . . . , b2n). Given f : Bn → {0, 1}, for 1 ≤ j ≤ 2n,
set fj : Bn → {0, 1} as follows:

fj(b) =

{

f(b) if b = bj ;

0 otherwise.

Apply the special cases to find φj such that fj(b) = b(φj) for all b ∈ Bn.
Now set

φ = ∨2n

j=1φj .

For bk, the value bk(φ) = ∨2n

j=1bk(φj) is 1 if 1 = bk(φk) = fk(bk) = f(bk),
and 0 if 0 = bk(φk) = fk(bk) = f(bk) (notice that for j 6= k, bk(φj) = 0).
In other words, b(φ) = 1 if and only if there is 1 ≤ k ≤ 2n such that
fk(b) = 1 if and only if f(b) = 1.

Notice that we can omit the φj’s that equal ⊥ (unless they all do).
�

1.2. A formula φ is in a disjunctive normal form (DNF) if and only if
there exist

• an integer m ≥ 1,
• integers k1, . . . , km ≥ 1,
• for every i ∈ {1, . . . , m}, ki propositional variables pi1 , . . . , pik

and ki elements δi1 , . . . , δiki
in {0, 1} such that

φ = ∨m
i=1(δi1pi1 ∧ . . . ∧ δiki

piki
),
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where by 1p we mean p and by 0p we mean ¬p.

A formula φ with pvar(φ) ⊆ {p1, . . . , pn} is in a canonical disjunctive

normal form (CDNF) if and only if there exists a nonempty subset X
of {0, 1}n such that

φ = ∨(δ1,...,δn)∈X(∧n
i=1δipi).

(Notice that CDNF is a special case of DNF where each ki is equal
to n, for each i ∈ {1, . . . , n} and j ∈ {1, . . . , n}, pij = pj, and the m
n-tuples δi1 , . . . , δiki

are pairwise distinct; note that this forces m to be

≤ 2n.)
By interchanging the symbols for disjunction and conjunction in the

definitions of DNF and CDNF we obtain the definition of a formula be-
ing in conjunctive normal form (CNF) and a formula being in canonical

conjunctive normal form (CCNF). (A propositional formula is in con-
junctive normal form (CNF) if it is a conjunction of disjunctions of
propositional variables or negated propositional variables.)

By examining the proof of Lemma 1.1 we see that given an n-place
Boolean function f : Bn → {0, 1} distinct from the zero mapping, there
is a formula φ in CDNF such that f is realized by φ. We conclude as well
a uniqueness for canonical disjunctive normal forms, in the sense that
two canonical disjunctive normal forms which are logically equivalent
can differ only in the “order of their factors”. More precisely if the
formulas ∨(δ1,...,δn)∈X(∧n

i=1δipi) and ∨(ǫ1,...,ǫn)∈Y (∧n
i=1ǫipi) are logically

equivalent, then the subsets X and Y of {0, 1}n are identical.
The advantages of formulas in DNF stem from the fact that they

explicitly list the truth assignments satisfying the formula: define an as-
signment bδ1,...,δn

∈ Bn by bδ1,...,δn
(pi) = δi; the formula ∨(δ1,...,δn)∈X(∧n

i=1δipi)
is satisfied by the truth assignments bδ1,...,δn

for which (δ1, . . . , δn) ∈ X
and only by these.

The analogous facts are true for conjunctive normal forms.

1.3. Theorem (Theorem on the Disjunctive Normal Form). Every

propositional formula is logically equivalent to a formula in disjunc-

tive normal form. Every propositional formula that is not logically

equivalent to ⊥ is logically equivalent to a unique formula in CDNF.

Uniqueness here is understood as up to the order of the factors. An
analogous theorem for CNF is also true. Every formula that is not a
tautology is logically equivalent to a unique formula in CCNF.

Proof. Let α be a propositional formula. Let n be such that pvar(α) ⊆
{p1, . . . , pn}. Define f : Bn → {0, 1} by f(b) = b(α). By Lemma 1.1,
there is a DNF formula φ with pvar(φ) ⊆ {p1, . . . , pn} such that f(b) =
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b(φ), for all b ∈ Bn; If f is not the zero function, φ in CDNF. Since
α and φ agree for every 0/1-assignment to the propositional variables
occurring in them, they are logically equivalent. �

Because every k-th place Boolean function, for k ≥ 1, can be realized
by a propositional formula using only the connective symbols {∨,∧,¬},
we say that the set {∨,∧,¬} is complete. The completeness of {∨,∧,¬}
can be improved using De Morgan’s Law |= β ∨ γ ↔ ¬(¬β ∧ ¬γ) to
get that both {∨,¬} and {∧,¬} are complete. By our definition of
propositional formulas (and Remark 1.1 in Lecture 1), the set {⊥,→}
is complete. In fact, because with this set we can realize even the two 0-
place Boolean functions, it is supercomplete. Once we have a complete
set of connectives we know that any formula is logically equivalent to
one all of whose connectives are in that set. (For given any formula φ,
we can make α using those connectives and realizing Bφ. Then α and
φ are logically equivalent.

For a propositional formula φ, given an assignment b of truth values
to the propositional variables, it is “easy” to check whether b is a model
of φ: the number of required steps is a linear function of n = | pvar(φ)|.
It is also possible to check whether there is a model of φ, i.e., whether
Satφ, by finding the truth table of φ. Notice that this requires ∼ 2n

steps. This problem is NP-complete.


