18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. PROPOSITIONAL CALCULUS

Deduction Lemma and Modus Ponens in Semantics.

1.1. **Lemma** (Deduction Lemma in Semantics). Let Γ be a set of propositional formulas, and let ψ , ϕ be propositional formulas. If $\Gamma \cup \{\psi\} \models \phi$ then $\Gamma \models (\psi \rightarrow \phi)$.

Proof. Let b be a model of Γ . If $b(\psi) = 0$ then, in particular, $b(\psi \rightarrow \phi) = 1$. If $b(\psi) = 1$ then, b is a model of $\Gamma \cup \{\psi\}$, hence (by assumption) b is a model of ϕ , i.e., $b(\phi) = 1$; thus $b(\psi \rightarrow \phi) = 1$.

1.2. Corollary. For all propositional formulas α , β , the formula

(1)
$$(\alpha \to (\beta \to \alpha))$$

is a tautology.

Proof. It is clear that $\{\alpha, \beta\} \models \alpha$. Hence by the Deduction Lemma, $\{\alpha\} \models (\beta \to \alpha)$. Hence, by applying the Deduction Lemma again, $\models (\alpha \to (\beta \to \alpha))$.

The "opposite" of the Deduction Lemma is also true.

1.3. Lemma (Modus Ponens (mp) in Semantics). For propositional formulas α , β , we have $\{(\alpha \rightarrow \beta), \alpha\} \models \beta$.

Proof. Assume not, i.e., there is an assignment b such that $b(\alpha \to \beta) = 1$ and $b(\alpha) = 1$ but $b(\beta) = 0$. Since, $b(\alpha) = 1$ and $b(\beta) = 0$ we get that $b(\alpha \to \beta) = 0$ in contradiction with our assumption.

1.4. Lemma. Let Γ be a set of propositional formulas, and let ψ , ϕ be propositional formulas. If $\Gamma \models \phi$ and $\Gamma \cup \{\phi\} \models \psi$ then $\Gamma \models \psi$.

Proof: exercise in PS2.

As a result of the logical Deduction Lemma and Modus Ponens, we get the following corollary.

LIAT KESSLER

1.5. Corollary. For all propositional formulas α , β , γ , the formula

(2)
$$((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$$

is a tautology.

Proof. Denote

$$\Delta = \{ (\alpha \to (\beta \to \gamma)), \, (\alpha \to \beta), \, \alpha \}.$$

Then by mp, since $\{(\alpha \to \beta), \alpha\} \subset \Delta$, we have

$$\Delta \models \beta,$$

and since $\{(\alpha \to (\beta \to \gamma), \alpha\} \subset \Delta$, we have

$$\Delta \models (\beta \to \gamma).$$

Hence, by Lemma 1.4 and mp, we get

$$\Delta \models \gamma.$$

Therefore, by the Deduction Lemma,

$$\{(\alpha \to (\beta \to \gamma)), \, (\alpha \to \beta)\} \models (\alpha \to \gamma).$$

Applying the Deduction Lemma again, we get

$$\{(\alpha \to (\beta \to \gamma))\} \models ((\alpha \to \beta) \to (\alpha \to \gamma)).$$

Therefore (by the same lemma),

$$\emptyset \models ((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))).$$

Recall that in a previous lecture we saw that

$$(3) \qquad (\neg \neg \alpha \to \alpha)$$

is a tautology (for every formula α). A propositional formula of the form (1), or (2), or (3) will be called an *axiom*. We have shown that every axiom is a tautology. Notice that there are infinitely many axioms, but also infinitely many tautologies that are not axioms, e.g., $\alpha \to \alpha$.

Propositional Logic: a Sequent Calculus. We say that a sequence $\bar{\beta}$ of finitely many formulas, $\bar{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$, is a *formal proof* of a formula ϕ from a set Γ of formulas, if $\beta_n = \phi$ and for all *i*, either

- β_i is an axiom;
- $\beta_i \in \Gamma$;
- (mp) $\beta_i = \gamma$, and there are j, k < i such that $\beta_j = (\alpha \to \gamma)$ and $\beta_k = \alpha$.

A formula ϕ is *formally provable* or *derivable* from a set Γ of formulas, written $\Gamma \vdash \phi$, if there exists a formal proof $\overline{\beta} = (\beta_1, \ldots, \beta_n)$ of ϕ from Γ .

1.6. Example.

 $\{p\} \vdash ((\neg q) \to p).$ To see this, write the formal proof $\bar{\beta} = (\beta_1, \beta_2, \beta_3)$, where $\beta_1 = (p \to ((\neg q) \to p))$ axiom of the type (2) $\beta_2 = p$ element of $\{p\}$ $\beta_3 = ((\neg q) \to p)$ mp, j = 1, k = 2

1.7. **Lemma.** For all Γ and ϕ , if $\Gamma \vdash \phi$ then there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \phi$.

Proof. If $\Gamma \vdash \phi$, then there is a formal proof $\overline{\beta} = (\beta_1, \ldots, \beta_n)$ of ϕ from Γ . Let Γ_0 be the set of elements of $\overline{\beta}$ that are in Γ . Then $|\Gamma_0| \leq n$, and $\Gamma_0 \vdash \phi$ (with the same formal proof $\overline{\beta}$ and the same justifications). \Box

We say that set of formulas Γ is *consistent*, if there is no formal proof of \perp from Γ .

1.8. Corollary. For a set of formulas Γ , if every finite subset of Γ is consistent then so is Γ .

Proof. Assume that Γ is not consistent, i.e., $\Gamma \vdash \bot$, then by Lemma 1.7, there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \bot$, i.e., there is a finite subset of Γ that is not consistent.