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1. PROPOSITIONAL CALCULUS

Deduction Lemma and Modus Ponens in Semantics.

1.1. Lemma (Deduction Lemma in Semantics). Let I" be a set of propo-
sitional formulas, and let 1, ¢ be propositional formulas.

ITU{W} ¢ thenT (1 — 9).

Proof. Let b be a model of I'. If b(x)) = 0 then, in particular, b(yp —
¢) = 1. If b(¢)) = 1 then, bis a model of 'U{#}, hence (by assumption)
b is a model of ¢, i.e., b(¢) = 1; thus b(¢)p — ¢) = 1. O

1.2. Corollary. For all propositional formulas o, 3, the formula

(1) (@ = (8 — o))
15 a tautology.

Proof. Tt is clear that {«, 3} &= «. Hence by the Deduction Lemma,
{a} E (8 — «). Hence, by applying the Deduction Lemma again,
(e — (8 —a)). m

The “opposite” of the Deduction Lemma is also true.

1.3. Lemma (Modus Ponens (mp) in Semantics). For propositional

formulas o, 3, we have {(a — 3), a} | B.

Proof. Assume not, i.e., there is an assignment b such that b(aw — ) =
1 and b(a) = 1 but b(3) = 0. Since, b(a) = 1 and b(3) = 0 we get that
b(aw — ) = 0 in contradiction with our assumption. O

1.4. Lemma. Let I' be a set of propositional formulas, and let v, ¢ be
propositional formulas. If I' = ¢ and T' U {¢} = ¢ then I = 4.

Proof: exercise in PS2.
As a result of the logical Deduction Lemma and Modus Ponens, we

get the following corollary.
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1.5. Corollary. For all propositional formulas c, 3, v, the formula

(2) ((a=(B—=7) = (a—=p)—(a—=7))
1s a tautology.

Proof. Denote

A={la—=(8—=1)) (a—=p), a}.
Then by mp, since {(a — ), a} C A, we have

A= B,

and since {(ov — (8 — 7), a} C A, we have
AE(B—7)

Hence, by Lemma 1.4 and mp, we get

AE".
Therefore, by the Deduction Lemma,

{la = (B —=7)), (=0} F(a—).
Applying the Deduction Lemma again, we get

{la=B=}E(a—=0)—(a—=97)

Therefore (by the same lemma),

0= (= (B—=7) = ((a=pF) = (a—=17)).

Recall that in a previous lecture we saw that
(3) (~ma — a)

is a tautology (for every formula «). A propositional formula of the
form (1), or (2), or (3) will be called an aziom. We have shown that ev-
ery axiom is a tautology. Notice that there are infinitely many axioms,
but also infinitely many tautologies that are not axioms, e.g., a — «.

Propositional Logic: a Sequent Calculus. We say that a sequence
(3 of finitely many formulas, 3 = (81, B2, . . ., 8y), is a formal proof of a
formula ¢ from a set I' of formulas,if 3, = ¢ and for all 7, either

e (3, is an axiom,;

o 5T}

e (mp) f; = 7, and there are j, k < i such that 5; = (& — 7)

and 0, = a.

A formula ¢ is formally provable or derivable from a set I' of formulas,
written I' I ¢, if there exists a formal proof 3 = (34, ..., 3,) of ¢ from
r.
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1.6. Example.
{p}F ((=q) = p).

To see this, write the formal proof 5 = (01, Ba, B3), where

f1=(p— ((mq) = p)) axiom of the type (2)

Ba=p element of {p}

B3 = ((~q) — p) mp, j =1, k=2
1.7. Lemma. For all ' and ¢, if I' & ¢ then there is a finite subset
I'g C T such that 'y - ¢.

Proof. If ' = ¢, then there is a formal proof B=(Bi,...,3,) of ¢ from
I'. Let I'y be the set of elements of 3 that are in I'. Then [I'y| < n, and
Lo F ¢ (with the same formal proof 5 and the same justifications). O

We say that set of formulas I' is consistent, if there is no formal proof
of L from T

1.8. Corollary. For a set of formulas I', if every finite subset of I' is
consistent then so is I.

Proof. Assume that I' is not consistent, i.e., I' F 1, then by Lemma
1.7, there is a finite subset I'y C I" such that I'y F L, i.e., there is a
finite subset of I' that is not consistent. O



