18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. PROPOSITIONAL CALCULUS

Propositional Logic: a Sequent Calculus. Recall: we say that a sequence $\bar{\beta}$ of finitely many formulas, $\bar{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$, is a *formal* proof of a formula ϕ from a set Γ of formulas, if $\beta_n = \phi$ and for all i, either

- β_i is an axiom;
- $\beta_i \in \Gamma;$
- (mp) $\beta_i = \gamma$, and there are j, k < i such that $\beta_j = (\alpha \to \gamma)$ and $\beta_k = \alpha$.

A formula ϕ is *formally provable* or *derivable* from a set Γ of formulas, written $\Gamma \vdash \phi$, if there exists a formal proof $\overline{\beta} = (\beta_1, \ldots, \beta_n)$ of ϕ from Γ .

1.1. **Lemma.** Let ψ be a formula. Then $\emptyset \vdash (\psi \rightarrow \psi)$.

Proof: exercise in PS2.

1.2. **Lemma.** Let Γ be a set of formulas, and let ψ be a formula. If ϕ is an axiom, then $\Gamma \vdash (\psi \rightarrow \phi)$.

Proof. The sequence $\bar{\beta}$: $\beta_1 = (\phi \to (\psi \to \phi))$ axiom $\beta_2 = \phi$ axiom $\beta_3 = (\psi \to \phi)$ mp, j = 1, k = 2is a formal proof of $(\psi \to \phi)$ from Γ .

1.3. **Lemma.** Let Γ be a set of formulas, and let ψ be a formula. If $\phi \in \Gamma$, then $\Gamma \vdash (\psi \rightarrow \phi)$.

Proof. The same $\overline{\beta}$ as in the proof of Lemma 1.2 will work, but the justification for β_2 now is that $\phi \in \Gamma$.

1.4. **Lemma** (Deduction Lemma). Let Γ be a set of propositional formulas, and let ψ , ϕ be propositional formulas. If $\Gamma \cup \{\psi\} \vdash \phi$ then $\Gamma \vdash (\psi \rightarrow \phi)$. *Proof.* Assume that there is a proof $\overline{\beta} = (\beta_1, \ldots, \beta_\ell)$ of ϕ from $\Gamma \cup \{\psi\}$. We will show by induction on $i = 1, 2, \ldots, \ell$ that

(1)
$$\Gamma \vdash (\psi \to \beta_i)$$

for all *i*. For $i = \ell$, we get $\Gamma \vdash (\psi \rightarrow \beta_{\ell})$, i.e., $\Gamma \vdash (\psi \rightarrow \phi)$.

- If β_i is an axiom, then (1) follows from Lemma 1.2.
- If $\beta_i \in \Gamma$, then (1) follows from Lemma 1.3.
- If $\beta_i = \psi$, then (1) follows from Lemma 1.1.
- (mp) If there are j, k < i such that

$$\beta_j = (\alpha \to \gamma),$$
$$\beta_k = \alpha,$$

and

$$\beta_i = \gamma,$$

then by the induction assumption

$$\Gamma \vdash (\psi \to (\alpha \to \gamma))$$

and

 $\Gamma \vdash (\psi \to \alpha).$

Let

 $(\delta_1, \dots, \delta_m)$ be a proof of $(\psi \to (\alpha \to \gamma))$ from Γ , and let

 $(\epsilon_1,\ldots,\epsilon_n)$

be a proof of $(\psi \to \alpha)$ from Γ . Set

$$\delta_{m+i} = \epsilon_i.$$

Then δ_1

$$\begin{array}{l} \vdots \\ \delta_m = (\psi \to (\alpha \to \gamma)) \\ \delta_{m+1} \\ \vdots \\ \delta_{m+n} = (\psi \to \alpha) \\ \delta_{m+n+1} = ((\psi \to (\alpha \to \gamma)) \to ((\psi \to \alpha) \to (\psi \to \gamma)) \\ \delta_{m+n+2} = ((\psi \to \alpha) \to (\psi \to \gamma)) \\ \delta_{m+n+3} = (\psi \to \gamma) \\ Now, \ (\delta_1, \dots, \delta_{m+n+3}) \text{ is a proof of } (\psi \to \beta_\ell) \text{ from } \Gamma \text{ as claimed.} \end{array}$$

The deduction Lemma is not itself formulated with propositional calculus: it is not a theorem of propositional calculus, but a theorem about propositional calculus. In this sense, it is a meta-theorem, comparable to theorems about the soundness or completeness of propositional calculus.

1.5. Corollary.

$$\{(p \to q), (q \to r)\} \vdash (p \to r)$$

Proof. It follows from the Deduction Lemma with $\Gamma = \{(p \to q), (q \to r)\}$ and $\psi = p$.

1.6. Corollary (Contraposition). $\Gamma \cup \{\phi\} \vdash \neg \psi \text{ iff } \Gamma \cup \{\psi\} \vdash \neg \phi$.

Proof: exercise in PS2.

The Completeness Theorem.

1.7. **Theorem** (Completeness Theorem). Let Γ be a set of formulas, and let ψ be a formula. Then

$$\Gamma \vdash \psi$$
 if and only if $\Gamma \models \psi$.

We will prove the \Rightarrow direction directly.

Proof that if $\Gamma \vdash \psi$ then $\Gamma \models \psi$. Let $\overline{\beta} = (\beta_1, \ldots, \beta_n)$ be a proof of ψ from Γ . We will show by induction on $i = 1, \ldots, n$ that $\Gamma \models \beta_i$ and conclude that $\Gamma \models \beta_n$ since $\beta_n = \psi$.

- If β_i is an axiom then $\models \beta_i$ (as we saw before), hence $\Gamma \models \beta_i$.
- If $\beta_i \in \Gamma$, then, by definition, $\Gamma \models \beta_i$.
- (mp) If there are j, k < i such that $\beta_j = (\alpha \to \gamma), \beta_k = \alpha$ and $\beta_i = \gamma$, then by induction assumption, $\Gamma \models (\alpha \to \gamma)$, and $\Gamma \models \alpha$. By Modus Ponens in Semantics, this implies $\Gamma \models \gamma$.