
18.510: INTRODUCTION TO MATHEMATICAL LOGIC

AND SET THEORY, FALL 08

LIAT KESSLER

1. Predicate Calculus, First-order Logic

Syntax. The alphabet of a first-order language contains the following
symbols:

(1) variables: v1, v2, . . .;
(2) logical symbols: ⊥ (contradiction), → (if-then);
(3) equality symbol: =;
(4) quantifier: ∀ (for all);
(5) ), ( (parentheses);
(6) • for every n ≥ 1, a (possibly empty) set of n-ary relation

symbols Rn
i ;

• for every n ≥ 1, a (possibly empty) set of n-ary function
symbols fn

j ;
• a (possibly empty) set of constants.

In this course, we always assume that the alphabet is countable. We
denote by S the set of symbols listed in item (6). We call it the symbol

set. S may be empty or finite or countably infinite.
Given an alphabet with symbol set S, we define terms and formulas.
We define the terms to be the strings over S which are obtained by

finitely many applications of the following rules:

• Every variable is a term.
• Every constant is a term.
• If the strings t1, . . . , tn are terms and f = fn

j is an n-ary function
symbol in S then f(t1, . . . , tn) is also a term.

We define the formulas to be the strings over S which are obtained
by finitely many applications of the following rules:

(1) If t1 and t2 are terms then t1 = t2 is a formula.
(2) If t1, . . . , tn are terms and R = Rn

i is an n-ary relation symbol
then R(t1, . . . , tn) is a formula.

(3) ⊥ is a formula.
(4) If φ and ψ are formulas then (φ→ ψ) is a formula.
(5) If φ is a formula and x is a variable then (∀x)φ is a formula.
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Formulas derived using item (1) and item (2) are called atomic for-

mulas (because they are not formed combining other formulas). We
denote the set of formulas by L = LS , and call it the first-order lan-

guage associated with the alphabet S.

1.1. Remark. (1) As before, for formulas α, β, we abbreviate ¬α,
(α ∨ β), and (α ∧ β) for the corresponding formulas: (α → ⊥),
((α→ ⊥) → β), and ¬(¬α ∨ ¬β).

(2) We also abbreviate (∃x) for ¬(∀x)¬.
(3) When the choice of the particular variables is unimportant, we

will not specify the choice. Instead we will write, for exam-
ple, (∀x)(φ(x) → ψ(x)), where it is understood that x is some
variable.

The terms and formulas are well defined: each has a unique decom-
position into its constituents. See Theorem II.4.4 in the EFT textbook.
Thus we can give inductive definitions and proofs on (the constructions
of) terms or on formulas.

The set of free variables of a formula φ, denoted by FV(φ), is defined
as follows:

(1) FV(t1 = t2) is the set of all variables occurring in t1, t2.
(2) FV(R(t1, . . . , tn)) is the set of all variables occurring in t1, . . . , tn.
(3) FV(⊥) = ∅.
(4) FV((φ→ ψ)) = FV(φ) ∪ FV(ψ).
(5) FV((∀x)φ) = FV(φ) r {x}.

We set

Ln = LS

n := {φ |φ is an S-formula and FV(φ) ⊆ {v1, . . . , vn}}

Formulas without free variables are called sentences. By definition, if
a formula is a sentence then either it has constants in place of variables,
or its variables are bound, or both. For example, the formulas c1 = c2
and (∀x)R(x) (where R is a unary symbol relation) are sentences.

Semantics. Fix an alphabet with a symbol set S. A structure A of S
consists of the following:

• A nonempty set A: the domain or the universe of A.
• For every n-ary relation symbol Rn

i in S, the structure A asso-
ciates an n-ary relation (Rn

i )A on A, i.e., a subset (Rn
i )A ⊂ An.

• For every n-ary function symbol fn
j in S, the structure A asso-

ciates an n-ary function (fn
j )A onA, i.e., a function (fn

j )A : An →
A.

• For every constant c in S, the structure A associates an element
cA of A.



18.510: INTRODUCTION TO LOGIC, FALL 08 3

1.2. Example. Consider the symbol sets

Sar := {+, ·, 0, 1} and S<
ar := {+, ·, 0, 1, <}

where + and · are binary function symbols, 0 and 1 are constants, and
< is a binary relation symbol.

We define the following structures.

(1) The Sar-structure

N := (N,+N, ·N, 0N, 1N)

where +N and ·N are the usual addition and multiplication on
N and 0N and 1N are the numbers zero and one, respectively.

(2) The S<
ar-structure

N< := (N,+N, ·N, 0N, 1N, <N)

where <N is the usual ordering on N. Similarly
(3)

R := (R,+R, ·R, 0R, 1R)

(4)

R< := (R,+R, ·R, 0R, 1R, <R).

(We will often omit the superscripts N, R when discussing these struc-
tures.)

1.3. Remark. In formulas of L the variables refer to the elements of the
domain of a structure. Given a structure, we often call elements of its
domain A first-order objects while subsets of A are called second-order

objects. Since L only has variables for first-order objects, we call L a
first order language.

The satisfaction relation. For a formula φ, a structure A, and an as-
signment p : FV(φ) → A we say that A is a model of φ with respect

to the assignment p, or φ is true in A with respect to p, denoted by
A |= φ(p), if the following holds.

(1) If φ = (t1 = t2), then

A |= φ(p) if t1
A(a1, . . . , ak) = t2

A(a1, . . . , ak),

where ai = p(xi), xi ∈ FV(φ).
(2) If φ = Rk

i (t1, . . . , tk) then

A |= φ(p) if (b1, . . . , bk) ∈ Rk
i ,

where bi = tAi (a1, . . . , ak), ai = p(xi), xi ∈ FV(φ).
(3) If φ = ⊥ then there is no structure A such that A |= ⊥.
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(4) If φ = (φ1 → φ2) and p : FV(φ) → A, set p1 to be the restriction

p1 = p|FV(φ1) : FV(φ1) → A

and

p2 = p|FV(φ2) : FV(φ2) → A.

By the induction assumption, the truth value of φ1(p1) and of
φ2(p2) in A is already defined. We define the truth value of
φ(p) in A according to the truth table of →:

A |= φ1(p1) A |= φ2(p2) A |= (φ1 → φ2)(p)
0 0 1
0 1 1
1 0 0
1 1 1

(5) If φ = (∀x)ψ and p : FV(φ) → A, then p is not a full assignment
for FV(ψ) = FV(φ) ∪ {x}. However, for every a ∈ A we define
an assignment pa : FV(ψ) → A:

pa(y) =

{

p(y) if y ∈ FV(φ);

a if y = x.

We say that

A |= φ(p) if for every a ∈ A, A |= ψ(pa).

In particular, if φ is a sentence, i.e., FV(φ) = ∅ then the definition
of A |= φ requires no assignment.

1.4. Example. Consider R< = {R,+, ·, 0, 1, <}. Set

φ(x1, x2) = (∃x1)(∀x2)(x1 · x1 + x2 · x2 > 1)

(FV(φ) = ∅). We find the truth value of φ in A in a recursive process:

(1) For φ1 = (x1 ·x1+x2 ·x2 > 1), FV(φ1) = {x1, x2}, an assignment
p : {x1, x2} → R is a choice of a point (a1, a2) ∈ R

2. R< |= φ1(p)
if (and only if) this point is out of the unit circle.

(2) For φ2 = (∀x2)(x1 · x1 + x2 · x2 > 1), FV(φ2) = {x1}, an
assignment p : {x1} → R is a choice of a point a1 ∈ R. Then
R< |= φ2(p) iff for all a2 ∈ R, (a1, a2) is out of the unit circle
in R

2. Hence R< |= φ2(p) iff p sends x1 to a point out of the
interval [−1, 1] in R, i.e., to a point from the right of 1 and the
left of −1, (not including 1 and −1).

(3) For φ3 = ¬(∀x2)(x1 · x1 + x2 · x2 > 1) = (φ2 → ⊥) and an
assignment p : {x1} → R, the truth value of φ3(p) is by the
truth table of ⊥ and →:
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R< |= φ2(p1) R< |= ⊥ R< |= φ3(p)
0 0 1
1 0 0

Therefore, R< |= φ3(p) iff R< is not a model of φ2(p), i.e.,
iff p sends x1 to a point in the interval [−1, 1] (including the
endpoints).

(4) For φ4 = (∀x1)¬(∀x2)(x1 · x1 + x2 · x2 > 1) = (∀x1)(φ2 → ⊥) =
(∀x1)φ3. Then R< |= φ if for every a ∈ R, R< |= φ3(pa) where
pa(x1) = a. Therefore R< is not a model of φ4 (since, e.g., for
a = 2, (∀x2)(2 · 2 + x2 · x2 > 1)).

(5) For φ = ¬φ4 = ¬(∀x1)¬(∀x2)(x1 · x1 + x2 · x2 > 1), R< |= φ iff
R<

2φ4. Therefore R< |= φ.

For a set of sentences Γ we say that a structure A is a model of Γ,
and write A |= Γ if A |= ψ for every ψ ∈ Γ.

1.5. Example. A group is a structure (G, ◦G, eG) in the symbol set Sgr :=
{◦, e}, where ◦ is a binary function, and e is a constant, that is a model
of the set of sentences Φgr:

(1) (∀x)(∀y)(∀z)(x ◦ y) ◦ z = x ◦ (y ◦ z)
(2) (∀x)x ◦ e = x

(3) (∀x)(∃y)x ◦ y = e

1.6. Example. An equivalence structure is a structure (A,RA) in the
symbol set Seq := {R}, where R is a binary relation, that is a model
of the set of sentences:

(1) (∀x)xRx
(2) (∀x)(∀y)(xRy → yRx)
(3) (∀x)(∀y)(∀z)((xRy ∧ yRz) → xRz)

1.7. Example. PA: Consider the structure N s := (N,+, ·, 0, s), where
we interpret s as the successor function s(n) = n + 1 for n ∈ N. The
structure N s satisfies the Peano axiom system ΦPA:

(1) (∀x1)(∀x2)((s(x1) = s(x2)) → (x1 = x2)) (i.e., s is one-to-one).
(2) • (∀x)(¬(x = 0) → (∃y)(s(y) = x)) (i.e., every element in N

that is not 0 is a successor of another element).
• ¬(∃y)(s(y) = 0) (i.e., there is no element of N such that 0

is its successor).
(3) • (∀y)(0 + y = y)

• (∀x)(∀y)(s(x) + y = s(x+ y)
(4) • (∀y)(0 · y = 0)

• (∀x)(∀y)(s(x) · y = x · y + y)
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(5) Induction principle: for all x, y1, . . . , yn and φ with FV(φ) =
{x, y1, . . . , yn},

(∀ȳ)([φ(0, ȳ) ∧ (∀z)(φ(z, ȳ) → φ(s(z), ȳ))] → (∀x)φ(x, ȳ)),

where ȳ = {y1, . . . , yn} and (∀ȳ) = (∀y1) . . . (∀yn).

The consequence relation.

• For a set of sentences Γ and a sentence φ we say that φ is a
consequence of Γ, and write Γ |= φ if every structure that is a
model of Γ is a model of φ. (If Γ = {ψ} then we write ψ |= φ

instead of {ψ} |= φ.)
• For a set of sentences Γ and a formula φ with FV(φ) = (x1, . . . , xn)

we say that φ is a consequence of Γ, and write Γ |= φ if
Γ |= (∀x1) . . . (∀xn)φ.

• A formula φ is valid, written |= φ, if ∅ |= φ.
• Formulas φ1, φ2 are logically equivalent if |= (φ1 → φ2) and
|= (φ2 → φ1).

To show that a formula φ is not a consequence of a set of sentences
Γ, it is sufficient to give a structure and an assignment which satisfy
every sentence of Γ but fails to satisfy φ.

1.8. Example. Let Γ = Φgr (see Example 1.5 above). Then if G =
(G, ◦, e) is not Abelian, G2(∀x)(∀y)(x ◦ y = y ◦ x) and G |= Φgr, hence
Φgr2(∀x)(∀y)(x◦y = y◦x). Analogously, one can use an Abelian group
to show that Φgr2¬(∀x)(∀y)(x ◦ y = y ◦ x)

The above example shows that in first-order logic (as in propositional
logic), it might be that Γ2φ and Γ2¬φ.


