18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. Predicate Calculus, First-order Logic

Semantics.

Homomorphism and Isomorphism. Let \mathcal{A} and \mathcal{B} be \mathcal{S} -structures. A map $h: \mathcal{A} \to \mathcal{B}$ is called an homomorphism from \mathcal{A} to \mathcal{B} if

• For *n*-ary $R \in \mathcal{S}$ and $a_1, \ldots, a_n \in A$,

 $R^{\mathcal{A}}(a_1,\ldots,a_n)$ iff $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n)).$

• For *n*-ary $f \in \mathcal{S}$ and $a_1, \ldots, a_n \in a$,

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(h(a_1),\ldots,h(a_n)).$$

• For $c \in \mathcal{S}$,

$$h(c^{\mathcal{A}}) = c^{\mathcal{B}}.$$

If h is also one-to-one and onto we call it an *isomorphism*, and write $h: A \cong B$. \mathcal{A} and \mathcal{B} are said to be *isomorphic* if there is an isomorphism $h: A \cong B$.

For example, the S_{gr} -structure $(\mathbb{N}, +, 0)$ is isomorphic to the S_{gr} structure $(G, +^G, 0)$ consisting of the even natural numbers with ordinary addition as $+^G$. The map $\pi \colon \mathbb{N} \to G$ mapping $\pi(n) = 2n$ is an isomorphism of $(\mathbb{N}, +, 0)$ onto $(G, +^G, 0)$.

1.1. Lemma (Isomorphism Lemma). If \mathcal{A} and \mathcal{B} are isomorphic \mathcal{S} -structures then for all \mathcal{S} -sentences ϕ

$$\mathcal{A} \models \phi \text{ iff } \mathcal{B} \models \phi.$$

You will prove this lemma in PS4.

1.2. Remark. However, two S-structures might satisfy the same S-sentences but not be isomorphic. We will see an example later in the course.

Let \mathcal{A} and \mathcal{B} be \mathcal{S} -structures. \mathcal{A} is called a *substructure* of \mathcal{B} , written $\mathcal{A} \subset \mathcal{B}$, if $A \subset B$ and the inclusion map $i: A \hookrightarrow B$ (i(a) = a) is an homomorphism.

LIAT KESSLER

For example, $(\mathbb{Z}, +, 0)$ is a substructure of $(\mathbb{Q}, +, 0)$, and $(\mathbb{N}, +, 0)$ is a substructure of $(\mathbb{Z}, +, 0)$ (although $(\mathbb{N}, +, 0)$ is not a subgroup of $(\mathbb{Z}, +, 0)$). Notice that the sentence

$$(\forall x)(\exists y)y + y = x$$

holds in $(\mathbb{Q}, +, 0)$, but not in $(\mathbb{N}, +, 0)$. So sentences might no longer hold when passing to substructures.

1.3. Lemma. Let \mathcal{A} and \mathcal{B} be \mathcal{S} structure with $\mathcal{A} \subset \mathcal{B}$ and let $p: \{v_n\} \rightarrow \mathcal{A}$ be an assignment in \mathcal{A} . Then for every quantifier-free \mathcal{S} -formula ϕ :

$$\mathcal{A} \models \phi(p) \text{ iff } \mathcal{B} \models \phi(p).$$

You will prove this lemma in PS4.