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1. Predicate Calculus, First-order Logic

Recall: when discussing first-order logic we always assume that we
set a symbol set S.

Axioms. We declare the following valid sentences to be axioms.

(1) All the axioms from propositional logic, e.g. (¬¬φ→ φ), which
now include sentences that did not exist in propositional logic,
e.g., (¬¬(∀x)R(x, y) → (∀x)R(x, y)).

(2) Equality axioms:
(a) (∀x)(x = x).
(b) (∀x)(∀y)(x = y → y = x).
(c) (∀x)(∀y)(∀z)((x = y) ∧ (y = z) → (x = z)).
(d) (∀x))(∀y)((x = y) → (φ → φ′)) where φ′ is obtained from

φ by substituting x for y.
(3) ((∀x)φ→ φ[a

x
]) where φ[a

x
] is the formula obtained by replacing

all the instances of x in φ by a.

1.1. If t is a term and φ is a formula possibly containing the variable
x, then φ[ t

x
] is the result of replacing all instances of x by t in φ. The

convention is that this is done only when x is free. This replacement
results in a formula that logically follows the original one provided that
no free variable of t becomes bound in this process. If some free variable
of t becomes bound, then to substitute t for x it is first necessary to
change the names of bound variables of φ to something other than the
variables of t. Forgetting this condition is a notorious cause of errors.

To see why this condition is necessary, consider the formula φ given
by (∃z)z+z = x. In N the formula φ says that x is even. If we replace
x by y in φ we obtain the formula (∃z)z + z = y which says that y
is even. But if we replace the variable x by z, we obtain the formula
(∃z)z+z = z, which no longer says that z is even; in fact, the resulting
formula is a sentence valid in N (since 0 + 0 = 0).
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First-order Logic: formal proofs. We say that a sequence β̄ of
finitely many sentences, β̄ = (β1, β2, . . . , βn), is a formal proof of a
sentence φ from a set Γ of sentences if βn = φ and for all i, either

(1) βi is an axiom;
(2) βi ∈ Γ;
(3) (mp) βi = γ, and there are j, k < i such that βj = (α → γ)

and βk = α.
(4) βi = (¬(∀x)ψ → ¬ψ( c

x
)) where c is a constant symbol that does

not occur in Γ, nor in ψ, nor in φ, nor in any βj for j < i.

A sentence φ is formally provable or derivable from a set Γ of sentences,
written Γ ⊢ φ, if there exists a formal proof of φ from Γ.

1.2. Remark. If the sentences in Γ∪{φ} are in a language L, and Γ ⊢ φ,
there might be sentences in the proof that are not in L: sometimes we
will have to add symbols to the language for new constants.

1.3. Remark. If Γ ⊢ φ and Γ ⊆ Γ′ then Γ′ ⊢ φ, but maybe with a
slightly different proof: if a proof (β1, . . . , βm) included a step βi =
(¬(∀x)ψ → ¬ψ( c

x
))with a constant symbol c that does not occur in Γ

but does occur in Γ′ we have to replace c with c′ that is not in Γ′ (nor
in ψ nor in βj for j < i).

1.4. Lemma. Generalization on constants. Assume that Γ ⊢ ψ[ c
x
],

where the constant symbol c does not occur in Γ nor in ψ. Then Γ ⊢
(∀x)ψ(x).

Proof.
(¬(∀x)ψ(x) → ¬ψ[ c

x
]) type (4)

((∃x)¬ψ(x) → (ψ[ c
x
] → ⊥)) explain

(((∃x)¬ψ(x) → (ψ[ c
x
] → ⊥)) → (((∃x)¬ψ(x) → ψ[ c

x
]) → ¬(∃x)¬ψ(x))) axiom

(((∃x)¬ψ(x) → ψ[ c
x
]) → ((∃x)¬ψ(x) → ⊥)) mp

(ψ[ c
x
] → ((∃x)¬ψ(x) → ψ[ c

x
])) axiom

ψ[ c
x
] (Γ ⊢ ψ[ c

x
])

((∃x)¬ψ(x) → ψ[ c
x
]) mp

((∃x)¬ψ(x) → ⊥) mp
(∀x)ψ(x) explain

�

1.5. Theorem. Let Γ be a set of sentences in LS and φ a sentence in

LS. If Γ ⊢ φ then Γ |= φ.

Assume Γ ⊢ φ with β = (β1, . . . , βn). We will show that Γ |= φ.
We can assume that if a constant c occurs in the proof β but does

not occur in Γ nor in φ it is new, i.e., not in the symbol set S. If not,
replace c (wherever it occurs) with c′ not in S. Now, every step in the
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proof of type (4) uses a constant that is new to S. Assume that steps
of type (4) are βi1 , . . . , βik with corresponding constants c1, . . . , ck. Set
S ′ = S ∪ {c1, . . . , ck}.

1.6. Claim. Let an S-structure A be a model of Γ. Then there are

elements a1, . . . , ak ∈ A such that the S ′-structure A′ defined as A +
(cA

′

i = ai)1≤i≤k is a model of βj for all 1 ≤ j ≤ n.

Proof. By induction on j. Assume that there is an S ∪ {c1, . . . , cℓ−1}-
structure A′

j−1 in which there is an interpretation to the constants
c1, . . . , cℓ−1 such that A′

j−1 |= βi, for all 1 ≤ i ≤ (j − 1), and i(ℓ−1) ≤
(j − 1) < iℓ. Then

(1) if βj ∈ Γ then A |= βj (since A |= Γ) hence also A′
j−1 |= βj (the

new constants have nothing to do with βj).
(2) if βj is an axiom it is true in every structure (of S ⊆ S ′), and

does not contain any of the new constants, hence it is true in
A′

j−1.
(3) if βj was obtained by mp, we use the fact that mp preserves |=,

as proved in pset.
(4) If βj = βiℓ = (¬(∀x)ψ → ¬ψ( cℓ

x
)) then either

• A′
j−1 |= (∀x)ψ, and then we can interpret cℓ as we wish; for

every interpretation aℓ of cℓ, it is true that A′
j = A′

j−1 +

(cℓ
A′

j = aℓ) |= (¬(∀x)ψ → ¬ψ( cℓ

x
)).

• Or A′
j−12(∀x)ψ, i.e., not for every assignment p : {x} → A

we have A′
j−1 |= ψ(p). Therefore there is an assignment p

such that p(x) = a and A′
j−1 |= ¬ψ[a

x
]. We set A′

j = A′
j−1+

(cℓ
A′

j = a). Then, A′
j |= ¬ψ( cℓ

x
) hence A′

j |= (¬(∀x)ψ →
¬ψ( cℓ

x
)).

In particular, An |= βn = φ. �

Now, notice that since none of the new constants c1, . . . , ck occur
in φ their interpretation does not matter to determine whether an S-
structure is a model of φ. We deduce that A |= φ. This completes the
proof of the theorem.

Embedding of propositional logic in first-order logic. Set a
symbol-set S and let LS be the first-order language associated with
S.

1.7. Question. How can we see a sentence in LS as a proposition in

propositional logic?

In propositional logic there are only the logic symbols ⊥, → (and
propositional variables). So we will think of sentences involving other
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symbols as propositional variables. For example

((∀x)R(x, x) → ¬(∀y)S(y))

is read as (p → ¬q), where p stands for (∀x)R(x, x) and q stands for
(∀y)S(y). When the same expression occurs again we read it the same
way. For example, ((∀x)R(x, x) → (∀x)R(x, x)) is read (p→ p).

From the point of view of propositional logic, every first-order atomic
sentence is read as a propositional variable, and every sentence that
starts with (∀x) is read as a propositional variable.

Notice that every axiom and inference-rule of propositional logic hold
in first-order logic. In particular, if Γ is a set of first-order sentences
and is consistent in first order logic, then it is consistent (when read as
a set of propositions) in propositional logic.

1.8. Question. How do we think about a first-order structure A as an

assignment in propositional logic?

For every “propositional variable” (see above) φ we define

VA(φ) =

{

1 if A |= φ;

0 otherwise.

Notice that every sentence φ has a truth-value according to A and
according to VA, and they are the same (by definition, and since both
are determined by the truth-tables of → and ⊥).

A first-order sentence is called a tautology if its translation to propo-
sitional logic is a tautology. The set of tautologies is a proper subset of
the set of valid sentences. Notice that in every structure A, a tautology
ψ is assigned truth value 1 in A since VA(ψ) = 1.

1.9. Remark. We will show later that if the symbol-set S is countable
then the set of first-order sentences over S is countable. In particular,
the set of propositional variables in the translation to propositional
logic is countable.

1.10. Lemma (First-order Deduction Lemma (in proofs)). Let Γ be

a set of sentences, and let φ, ψ be sentences. If Γ ∪ {φ} ⊢ ψ then

Γ ⊢ (φ→ ψ).

Proof. We assume that there exists a proof α = (α1, . . . , αm) of ψ from
Γ ∪ {φ}. Denote by

∆ = {αi1 , . . . , αin}

the set of lines αi that are justified as axioms or as type (4) .

1.11. Claim. ∆ ∪ Γ ∪ {φ} ⊢ ψ when embedded in propositional logic.
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Proof. The proof α is justifies as a proof of ψ from ∆ ∪ Γ ∪ {φ} in
propositional logic:

(1) If αi is justified by mp then it is justified by mp in propositional
logic.

(2) If αi is justified as an assumption (i.e., an element of Γ ∪ {φ})
it is justified as an assumption in propositional logic.

(3) If αi is justified as an axiom or as type (4), then it is justified
as an element of ∆ in propositional logic.

�

Now, by the Deduction Lemma in propositional logic, ∆∪Γ ⊢ (φ→
ψ). Let β = (β1, . . . , βk) be a proof of (φ → ψ) from ∆ ∪ Γ in
propositional logic. Then (αi1 , . . . , αin, β1, . . . , βk) is a proof of (φ→ ψ)
from Γ in first-order logic. (Every αij is justified as an axiom or as type
(4).)

�

1.12. Lemma. Contraposition Lemma. Γ∪{α} ⊢ ¬β ⇔ Γ∪{β} ⊢ ¬α.

Proof: Exercise (pset).


