18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. Predicate Calculus, First-order Logic

Recall: when discussing first-order logic we always assume that we set a symbol set \mathcal{S}.

Axioms. We declare the following valid sentences to be axioms.
(1) All the axioms from propositional logic, e.g. $(\neg \neg \phi \rightarrow \phi)$, which now include sentences that did not exist in propositional logic, e.g., $(\neg \neg(\forall x) R(x, y) \rightarrow(\forall x) R(x, y))$.
(2) Equality axioms:
(a) $(\forall x)(x=x)$.
(b) $(\forall x)(\forall y)(x=y \rightarrow y=x)$.
(c) $(\forall x)(\forall y)(\forall z)((x=y) \wedge(y=z) \rightarrow(x=z))$.
(d) $(\forall x))(\forall y)\left((x=y) \rightarrow\left(\phi \rightarrow \phi^{\prime}\right)\right)$ where ϕ^{\prime} is obtained from ϕ by substituting x for y.
(3) $\left((\forall x) \phi \rightarrow \phi\left[\frac{a}{x}\right]\right)$ where $\phi\left[\frac{a}{x}\right]$ is the formula obtained by replacing all the instances of x in ϕ by a.
1.1. If t is a term and ϕ is a formula possibly containing the variable x, then $\phi\left[\frac{t}{x}\right]$ is the result of replacing all instances of x by t in ϕ. The convention is that this is done only when x is free. This replacement results in a formula that logically follows the original one provided that no free variable of t becomes bound in this process. If some free variable of t becomes bound, then to substitute t for x it is first necessary to change the names of bound variables of ϕ to something other than the variables of t. Forgetting this condition is a notorious cause of errors.

To see why this condition is necessary, consider the formula ϕ given by $(\exists z) z+z=x$. In \mathcal{N} the formula ϕ says that x is even. If we replace x by y in ϕ we obtain the formula $(\exists z) z+z=y$ which says that y is even. But if we replace the variable x by z, we obtain the formula $(\exists z) z+z=z$, which no longer says that z is even; in fact, the resulting formula is a sentence valid in \mathcal{N} (since $0+0=0)$.

First-order Logic: formal proofs. We say that a sequence $\bar{\beta}$ of finitely many sentences, $\bar{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$, is a formal proof of a sentence ϕ from a set Γ of sentences if $\beta_{n}=\phi$ and for all i, either
(1) β_{i} is an axiom;
(2) $\beta_{i} \in \Gamma$;
(3) $(\mathrm{mp}) \beta_{i}=\gamma$, and there are $j, k<i$ such that $\beta_{j}=(\alpha \rightarrow \gamma)$ and $\beta_{k}=\alpha$.
(4) $\beta_{i}=\left(\neg(\forall x) \psi \rightarrow \neg \psi\left(\frac{c}{x}\right)\right)$ where c is a constant symbol that does not occur in Γ, nor in ψ, nor in ϕ, nor in any β_{j} for $j<i$.
A sentence ϕ is formally provable or derivable from a set Γ of sentences, written $\Gamma \vdash \phi$, if there exists a formal proof of ϕ from Γ.
1.2. Remark. If the sentences in $\Gamma \cup\{\phi\}$ are in a language \mathcal{L}, and $\Gamma \vdash \phi$, there might be sentences in the proof that are not in \mathcal{L} : sometimes we will have to add symbols to the language for new constants.
1.3. Remark. If $\Gamma \vdash \phi$ and $\Gamma \subseteq \Gamma^{\prime}$ then $\Gamma^{\prime} \vdash \phi$, but maybe with a slightly different proof: if a proof $\left(\beta_{1}, \ldots, \beta_{m}\right)$ included a step $\beta_{i}=$ $\left(\neg(\forall x) \psi \rightarrow \neg \psi\left(\frac{c}{x}\right)\right)$ with a constant symbol c that does not occur in Γ but does occur in Γ^{\prime} we have to replace c with c^{\prime} that is not in Γ^{\prime} (nor in ψ nor in β_{j} for $j<i$).
1.4. Lemma. Generalization on constants. Assume that $\Gamma \vdash \psi\left[\frac{c}{x}\right]$, where the constant symbol c does not occur in Γ nor in ψ. Then $\Gamma \vdash$ $(\forall x) \psi(x)$.

> Proof.

$\left(\neg(\forall x) \psi(x) \rightarrow \neg \psi\left[\frac{c}{x}\right]\right)$
type (4)
explain
axiom
mp
axiom
$\left(\Gamma \vdash \psi\left[\frac{c}{x}\right]\right)$
$\left((\exists x) \neg \psi(x) \rightarrow \psi\left[\frac{c}{x}\right]\right)$
mp
mp
$(\forall x) \psi(x)$
explain
1.5. Theorem. Let Γ be a set of sentences in $\mathcal{L}_{\mathcal{S}}$ and ϕ a sentence in $\mathcal{L}_{\mathcal{S}}$. If $\Gamma \vdash \phi$ then $\Gamma \models \phi$.

Assume $\Gamma \vdash \phi$ with $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$. We will show that $\Gamma \models \phi$.
We can assume that if a constant c occurs in the proof β but does not occur in Γ nor in ϕ it is new, i.e., not in the symbol set \mathcal{S}. If not, replace c (wherever it occurs) with c^{\prime} not in \mathcal{S}. Now, every step in the
proof of type (4) uses a constant that is new to \mathcal{S}. Assume that steps of type (4) are $\beta_{i_{1}}, \ldots, \beta_{i_{k}}$ with corresponding constants c_{1}, \ldots, c_{k}. Set $\mathcal{S}^{\prime}=\mathcal{S} \cup\left\{c_{1}, \ldots, c_{k}\right\}$.
1.6. Claim. Let an \mathcal{S}-structure \mathcal{A} be a model of Γ. Then there are elements $a_{1}, \ldots, a_{k} \in A$ such that the \mathcal{S}^{\prime}-structure \mathcal{A}^{\prime} defined as $\mathcal{A}+$ $\left(c_{i}^{\mathcal{A}^{\prime}}=a_{i}\right)_{1 \leq i \leq k}$ is a model of β_{j} for all $1 \leq j \leq n$.

Proof. By induction on j. Assume that there is an $\mathcal{S} \cup\left\{c_{1}, \ldots, c_{\ell-1}\right\}$ structure $\mathcal{A}_{j-1}^{\prime}$ in which there is an interpretation to the constants $c_{1}, \ldots, c_{\ell-1}$ such that $\mathcal{A}_{j-1}^{\prime} \models \beta_{i}$, for all $1 \leq i \leq(j-1)$, and $i_{(\ell-1)} \leq$ $(j-1)<i_{\ell}$. Then
(1) if $\beta_{j} \in \Gamma$ then $\mathcal{A} \models \beta_{j}$ (since $\mathcal{A} \models \Gamma$) hence also $\mathcal{A}_{j-1}^{\prime} \models \beta_{j}$ (the new constants have nothing to do with β_{j}).
(2) if β_{j} is an axiom it is true in every structure (of $\mathcal{S} \subseteq \mathcal{S}^{\prime}$), and does not contain any of the new constants, hence it is true in $\mathcal{A}_{j-1}^{\prime}$.
(3) if β_{j} was obtained by mp, we use the fact that mp preserves \models, as proved in pset.
(4) If $\beta_{j}=\beta_{i_{\ell}}=\left(\neg(\forall x) \psi \rightarrow \neg \psi\left(\frac{c_{\ell}}{x}\right)\right)$ then either

- $\mathcal{A}_{j-1}^{\prime} \models(\forall x) \psi$, and then we can interpret c_{ℓ} as we wish; for every interpretation a_{ℓ} of c_{ℓ}, it is true that $\mathcal{A}_{j}^{\prime}=\mathcal{A}_{j-1}^{\prime}+$ $\left(c_{\ell}^{\mathcal{A}_{j}^{\prime}}=a_{\ell}\right) \models\left(\neg(\forall x) \psi \rightarrow \neg \psi\left(\frac{c_{\ell}}{x}\right)\right)$.
- Or $\mathcal{A}_{j-1}^{\prime} \not \not \vDash(\forall x) \psi$, i.e., not for every assignment $p:\{x\} \rightarrow A$ we have $\mathcal{A}_{j-1}^{\prime} \models \psi(p)$. Therefore there is an assignment p such that $p(x)=a$ and $\mathcal{A}_{j-1}^{\prime} \models \neg \psi\left[\frac{a}{x}\right]$. We set $\mathcal{A}_{j}^{\prime}=\mathcal{A}_{j-1}^{\prime}+$ $\left(c_{\ell}{ }^{A_{j}^{\prime}}=a\right)$. Then, $\mathcal{A}_{j}^{\prime} \models \neg \psi\left(\frac{c_{\ell}}{x}\right)$ hence $\mathcal{A}_{j}^{\prime} \models(\neg(\forall x) \psi \rightarrow$ $\left.\neg \psi\left(\frac{c_{\ell}}{x}\right)\right)$.
In particular, $\mathcal{A}_{n} \models \beta_{n}=\phi$.
Now, notice that since none of the new constants c_{1}, \ldots, c_{k} occur in ϕ their interpretation does not matter to determine whether an \mathcal{S} structure is a model of ϕ. We deduce that $\mathcal{A} \models \phi$. This completes the proof of the theorem.

Embedding of propositional logic in first-order logic. Set a symbol-set \mathcal{S} and let $\mathcal{L}_{\mathcal{S}}$ be the first-order language associated with \mathcal{S}.
1.7. Question. How can we see a sentence in $\mathcal{L}_{\mathcal{S}}$ as a proposition in propositional logic?

In propositional logic there are only the logic symbols \perp, \rightarrow (and propositional variables). So we will think of sentences involving other
symbols as propositional variables. For example

$$
((\forall x) R(x, x) \rightarrow \neg(\forall y) S(y))
$$

is read as $(p \rightarrow \neg q)$, where p stands for $(\forall x) R(x, x)$ and q stands for $(\forall y) S(y)$. When the same expression occurs again we read it the same way. For example, $((\forall x) R(x, x) \rightarrow(\forall x) R(x, x))$ is read $(p \rightarrow p)$.

From the point of view of propositional logic, every first-order atomic sentence is read as a propositional variable, and every sentence that starts with $(\forall x)$ is read as a propositional variable.

Notice that every axiom and inference-rule of propositional logic hold in first-order logic. In particular, if Γ is a set of first-order sentences and is consistent in first order logic, then it is consistent (when read as a set of propositions) in propositional logic.
1.8. Question. How do we think about a first-order structure \mathcal{A} as an assignment in propositional logic?

For every "propositional variable" (see above) ϕ we define

$$
V_{\mathcal{A}}(\phi)= \begin{cases}1 & \text { if } \mathcal{A} \models \phi \\ 0 & \text { otherwise }\end{cases}
$$

Notice that every sentence ϕ has a truth-value according to \mathcal{A} and according to $V_{\mathcal{A}}$, and they are the same (by definition, and since both are determined by the truth-tables of \rightarrow and \perp).

A first-order sentence is called a tautology if its translation to propositional logic is a tautology. The set of tautologies is a proper subset of the set of valid sentences. Notice that in every structure \mathcal{A}, a tautology ψ is assigned truth value 1 in \mathcal{A} since $V_{\mathcal{A}}(\psi)=1$.
1.9. Remark. We will show later that if the symbol-set \mathcal{S} is countable then the set of first-order sentences over \mathcal{S} is countable. In particular, the set of propositional variables in the translation to propositional logic is countable.
1.10. Lemma (First-order Deduction Lemma (in proofs)). Let Γ be a set of sentences, and let ϕ, ψ be sentences. If $\Gamma \cup\{\phi\} \vdash \psi$ then $\Gamma \vdash(\phi \rightarrow \psi)$.

Proof. We assume that there exists a proof $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of ψ from $\Gamma \cup\{\phi\}$. Denote by

$$
\Delta=\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{n}}\right\}
$$

the set of lines α_{i} that are justified as axioms or as type (4).
1.11. Claim. $\Delta \cup \Gamma \cup\{\phi\} \vdash \psi$ when embedded in propositional logic.

Proof. The proof α is justifies as a proof of ψ from $\Delta \cup \Gamma \cup\{\phi\}$ in propositional logic:
(1) If α_{i} is justified by mp then it is justified by mp in propositional logic.
(2) If α_{i} is justified as an assumption (i.e., an element of $\Gamma \cup\{\phi\}$) it is justified as an assumption in propositional logic.
(3) If α_{i} is justified as an axiom or as type (4), then it is justified as an element of Δ in propositional logic.

Now, by the Deduction Lemma in propositional logic, $\Delta \cup \Gamma \vdash(\phi \rightarrow$ $\psi)$. Let $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ be a proof of $(\phi \rightarrow \psi)$ from $\Delta \cup \Gamma$ in propositional logic. Then $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{n}}, \beta_{1}, \ldots, \beta_{k}\right)$ is a proof of $(\phi \rightarrow \psi)$ from Γ in first-order logic. (Every $\alpha_{i_{j}}$ is justified as an axiom or as type (4).)
1.12. Lemma. Contraposition Lemma. $\Gamma \cup\{\alpha\} \vdash \neg \beta \Leftrightarrow \Gamma \cup\{\beta\} \vdash \neg \alpha$.

Proof: Exercise (pset).

