18.510: INTRODUCTION TO MATHEMATICAL LOGIC
AND SET THEORY, FALL 08

LIAT KESSLER

1. PREDICATE CALCULUS, FIRST-ORDER LOGIC

Recall: when discussing first-order logic we always assume that we
set a symbol set S.

Axioms. We declare the following valid sentences to be azioms.

(1) All the axioms from propositional logic, e.g. (=—¢ — ¢), which
now include sentences that did not exist in propositional logic,
(2) Equality axioms:
(a) (Va)(z = 2).
(b) (Vz)(Vy)(z =y — y = z).
(e) (Vo) (Vy)(V2)((x =y) A (y = 2) — (z = 2)).
(d) (Vz))(Vy)((x = y) — (¢ — ¢')) where ¢ is obtained from
¢ by substituting x for y.
(3) ((Vz)¢ — ¢[%]) where ¢[%] is the formula obtained by replacing
all the instances of x in ¢ by a.
1.1. If t is a term and ¢ is a formula possibly containing the variable
x, then ¢[L] is the result of replacing all instances of by ¢ in ¢. The
convention is that this is done only when x is free. This replacement
results in a formula that logically follows the original one provided that
no free variable of t becomes bound in this process. If some free variable
of t becomes bound, then to substitute ¢ for x it is first necessary to
change the names of bound variables of ¢ to something other than the
variables of t. Forgetting this condition is a notorious cause of errors.
To see why this condition is necessary, consider the formula ¢ given
by (32)z+ 2z = z. In N the formula ¢ says that z is even. If we replace
x by y in ¢ we obtain the formula (3z)z + z = y which says that y
is even. But if we replace the variable x by z, we obtain the formula
(32)z+ 2z = z, which no longer says that z is even; in fact, the resulting
formula is a sentence valid in N (since 0 + 0 = 0).
1
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First-order Logic: formal proofs. We say that a sequence (3 of
finitely many sentences, 3 = (81,52, ...,0,), is a formal proof of a
sentence ¢ from a set I' of sentences if 3, = ¢ and for all 7, either
(1) B; is an axiom;
(2) BieTy
(3) (mp) B; = 7, and there are j, k < i such that 5; = (& — 7)
and 0, = a.
(4) B = (=(Vx)yp — —9(£)) where c is a constant symbol that does
not occur in I', nor in ¢, nor in ¢, nor in any 3; for j < i.
A sentence ¢ is formally provable or derivable from a set I" of sentences,
written [' F ¢, if there exists a formal proof of ¢ from T'.

1.2. Remark. If the sentences in 'U{¢} are in a language £, and I - ¢,
there might be sentences in the proof that are not in £: sometimes we
will have to add symbols to the language for new constants.

1.3. Remark. f T' + ¢ and I' C IV then I" + ¢, but maybe with a
slightly different proof: if a proof (fi,...,5,) included a step §; =
(=(Yx)Y — =¢(£))with a constant symbol ¢ that does not occur in I
but does occur in IV we have to replace ¢ with ¢’ that is not in IV (nor
in ¢ nor in 3; for j < i).

1.4. Lemma. Generalization on constants. Assume that T' = 9[<],
where the constant symbol ¢ does not occur in I' nor in . Then I' F

(V)p(x).

Proof.
(=(Va)(z) — ~[2]) type (4)
(Fr)=(x) — (Y[5] — 1)) explain
((Fr)p(z) — (¥[5] = 1)) = (Cr)~¥(x) — P[5]) = ~(Fz)=e)(2))) axiom
((Fz)=p(z) — v[7]) = ((Fr)—ep(x) — L) mp
(W[5] = ()~ (x) — ¥[Z]) axiom
Y[g] (T F[<])
((Fz)=(z) — 9l5]) mp
((Fz)=(z) — 1) mp
(Vz)y(x) explain

O

1.5. Theorem. Let I' be a set of sentences in Ls and ¢ a sentence in
Ls. IfT'F ¢ thenT | ¢.

Assume I' - ¢ with 8 = (B4, ..., 3,). We will show that I" = ¢.

We can assume that if a constant ¢ occurs in the proof 3 but does
not occur in I' nor in ¢ it is new, i.e., not in the symbol set S. If not,
replace ¢ (wherever it occurs) with ¢ not in S. Now, every step in the
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proof of type (4) uses a constant that is new to S. Assume that steps
of type (4) are ;,, ..., 3;, with corresponding constants ci, ..., cg. Set
S’ :SU{Cl,...,Ck}.

1.6. Claim. Let an S-structure A be a model of I'. Then there are
elements ay,...,a, € A such that the S'-structure A’ defined as A +
(¢ = a;)1<i<k is a model of B3; for all 1 < j < n.

(2

Proof. By induction on j. Assume that there is an S U {¢y,..., ¢ 1}-
structure A’_; in which there is an interpretation to the constants
c1, ..., cq such that A5 | = 6, for all 1 <i < (j — 1), and d(p1) <
(j — 1) <ig. Then
(1) if 8; € I' then A = 3; (since A = I') hence also A)_; |= 3 (the
new constants have nothing to do with f;).
(2) if §; is an axiom it is true in every structure (of S C §'), and
does not contain any of the new constants, hence it is true in
!/
-
(3) if ]ﬁj was obtained by mp, we use the fact that mp preserves =,
as proved in pset.
(4) If B; = Bi, = (=(Vx)Y — —p(%)) then either
o A5 | = (Vx)v, and then we can interpret ¢, as we wish; for
every interpretation a, of ¢, it is true that A} = A’ ;| +
(e = ar) | (~(Va) — (%)),
e Or A, F(Vx)y, ie., not for every assignment p: {z} — A
we have A’ ;| = ¥(p). Therefore there is an assignment p
such that p(z) = aand A)_| = —[5]. Weset Aj = A} |+

(¢, = a). Then, Al = (%) hence A = (—(Va)y —

()
In particular, A, = 5, = ¢. O
Now, notice that since none of the new constants cq,..., ¢, occur

in ¢ their interpretation does not matter to determine whether an S-
structure is a model of ¢. We deduce that A |= ¢. This completes the
proof of the theorem.

Embedding of propositional logic in first-order logic. Set a
symbol-set & and let Lgs be the first-order language associated with
S.

1.7. Question. How can we see a sentence in Ls as a proposition in
propositional logic?

In propositional logic there are only the logic symbols 1, — (and
propositional variables). So we will think of sentences involving other
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symbols as propositional variables. For example

(Vo) R(x,z) — —(Yy)S(y))

is read as (p — —¢), where p stands for (Va)R(z,z) and ¢ stands for
(Vy)S(y). When the same expression occurs again we read it the same
way. For example, ((Vz)R(z,x) — (Vz)R(z,x)) is read (p — p).

From the point of view of propositional logic, every first-order atomic
sentence is read as a propositional variable, and every sentence that
starts with (Vz) is read as a propositional variable.

Notice that every axiom and inference-rule of propositional logic hold
in first-order logic. In particular, if ' is a set of first-order sentences
and is consistent in first order logic, then it is consistent (when read as
a set of propositions) in propositional logic.

1.8. Question. How do we think about a first-order structure A as an
assignment in propositional logic?

For every “propositional variable” (see above) ¢ we define

Va(6) = {1 A

0 otherwise.

Notice that every sentence ¢ has a truth-value according to A and
according to Vy, and they are the same (by definition, and since both
are determined by the truth-tables of — and ).

A first-order sentence is called a tautology if its translation to propo-
sitional logic is a tautology. The set of tautologies is a proper subset of
the set of valid sentences. Notice that in every structure A, a tautology
1 is assigned truth value 1 in A since V4(¢) = 1.

1.9. Remark. We will show later that if the symbol-set S is countable
then the set of first-order sentences over § is countable. In particular,
the set of propositional variables in the translation to propositional
logic is countable.

1.10. Lemma (First-order Deduction Lemma (in proofs)). Let I' be
a set of sentences, and let ¢, be sentences. If T'U {¢} + 1 then

I'E(¢p— ).

Proof. We assume that there exists a proof o = (aq, ..., ay,) of ¢ from
I'U{¢}. Denote by
A = {Oéil, .. .,Oéin}

the set of lines «; that are justified as axioms or as type (4) .

1.11. Claim. AUT U {¢} F ¥ when embedded in propositional logic.
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Proof. The proof « is justifies as a proof of ¢ from A UT U {¢} in
propositional logic:
(1) If o is justified by mp then it is justified by mp in propositional
logic.
(2) If «; is justified as an assumption (i.e., an element of I' U {¢})
it is justified as an assumption in propositional logic.
(3) If o is justified as an axiom or as type (4), then it is justified
as an element of A in propositional logic.

O

Now, by the Deduction Lemma in propositional logic, AUT - (¢ —
). Let 8 = (B1,...,0k) be a proof of (¢ — ) from AUT in
propositional logic. Then («;,, ..., , 51, ..., Bx) is a proof of (¢ — )
from I in first-order logic. (Every ay; is justified as an axiom or as type
(4).)

O

1.12. Lemma. Contraposition Lemma. I'U{a} - =8 < TU{S} F —a.

Proof: Exercise (pset).



