18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. Predicate Calculus, First-order Logic

Recall: when discussing first-order logic we always assume that we set a symbol set S.

Axioms. We declare the following valid sentences to be *axioms*.

- (1) All the axioms from propositional logic, e.g. $(\neg \neg \phi \rightarrow \phi)$, which now include sentences that did not exist in propositional logic, e.g., $(\neg \neg (\forall x)R(x,y) \rightarrow (\forall x)R(x,y))$.
- (2) Equality axioms:
 - (a) $(\forall x)(x = x)$.
 - (b) $(\forall x)(\forall y)(x = y \to y = x).$
 - (c) $(\forall x)(\forall y)(\forall z)((x = y) \land (y = z) \rightarrow (x = z)).$
 - (d) $(\forall x))(\forall y)((x = y) \rightarrow (\phi \rightarrow \phi'))$ where ϕ' is obtained from ϕ by substituting x for y.
- (3) $((\forall x)\phi \to \phi[\frac{a}{x}])$ where $\phi[\frac{a}{x}]$ is the formula obtained by replacing all the instances of x in ϕ by a.

1.1. If t is a term and ϕ is a formula possibly containing the variable x, then $\phi[\frac{t}{x}]$ is the result of replacing all instances of x by t in ϕ . The convention is that this is done only when x is free. This replacement results in a formula that logically follows the original one provided that no free variable of t becomes bound in this process. If some free variable of t becomes bound, then to substitute t for x it is first necessary to change the names of bound variables of ϕ to something other than the variables of t. Forgetting this condition is a notorious cause of errors.

To see why this condition is necessary, consider the formula ϕ given by $(\exists z)z + z = x$. In \mathcal{N} the formula ϕ says that x is even. If we replace x by y in ϕ we obtain the formula $(\exists z)z + z = y$ which says that yis even. But if we replace the variable x by z, we obtain the formula $(\exists z)z + z = z$, which no longer says that z is even; in fact, the resulting formula is a sentence valid in \mathcal{N} (since 0 + 0 = 0).

LIAT KESSLER

First-order Logic: formal proofs. We say that a sequence $\overline{\beta}$ of finitely many sentences, $\overline{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$, is a *formal proof* of a sentence ϕ from a set Γ of sentences if $\beta_n = \phi$ and for all *i*, either

- (1) β_i is an axiom;
- (2) $\beta_i \in \Gamma;$
- (3) (mp) $\beta_i = \gamma$, and there are j, k < i such that $\beta_j = (\alpha \to \gamma)$ and $\beta_k = \alpha$.
- (4) $\beta_i = (\neg(\forall x)\psi \rightarrow \neg\psi(\frac{c}{x}))$ where c is a constant symbol that does not occur in Γ , nor in ψ , nor in ϕ , nor in any β_j for j < i.

A sentence ϕ is formally provable or derivable from a set Γ of sentences, written $\Gamma \vdash \phi$, if there exists a formal proof of ϕ from Γ .

1.2. *Remark.* If the sentences in $\Gamma \cup \{\phi\}$ are in a language \mathcal{L} , and $\Gamma \vdash \phi$, there might be sentences in the proof that are not in \mathcal{L} : sometimes we will have to add symbols to the language for new constants.

1.3. Remark. If $\Gamma \vdash \phi$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash \phi$, but maybe with a slightly different proof: if a proof $(\beta_1, \ldots, \beta_m)$ included a step $\beta_i = (\neg(\forall x)\psi \rightarrow \neg\psi(\frac{c}{x}))$ with a constant symbol c that does not occur in Γ but does occur in Γ' we have to replace c with c' that is not in Γ' (nor in ψ nor in β_i for j < i).

1.4. **Lemma.** Generalization on constants. Assume that $\Gamma \vdash \psi[\frac{c}{x}]$, where the constant symbol c does not occur in Γ nor in ψ . Then $\Gamma \vdash (\forall x)\psi(x)$.

$$Proof.$$

$$(\neg(\forall x)\psi(x) \to \neg\psi[\frac{c}{x}]) \qquad \text{type } (4)$$

$$((\exists x)\neg\psi(x) \to (\psi[\frac{c}{x}] \to \bot)) \rightarrow (((\exists x)\neg\psi(x) \to \psi[\frac{c}{x}]) \to \neg(\exists x)\neg\psi(x))) \qquad \text{explain}$$

$$(((\exists x)\neg\psi(x) \to \psi[\frac{c}{x}]) \to ((\exists x)\neg\psi(x) \to \bot)) \qquad \text{mp}$$

$$(\psi[\frac{c}{x}] \to ((\exists x)\neg\psi(x) \to \psi[\frac{c}{x}])) \qquad ((\Box x)\neg\psi(x) \to \bot)) \qquad \text{mp}$$

$$((\exists x)\neg\psi(x) \to \psi[\frac{c}{x}]) \qquad (\Gamma \vdash \psi[\frac{c}{x}]) \qquad \text{mp}$$

$$((\exists x)\neg\psi(x) \to \psi[\frac{c}{x}]) \qquad \text{mp}$$

$$(\forall x)\psi(x) \qquad \square$$

1.5. **Theorem.** Let Γ be a set of sentences in $\mathcal{L}_{\mathcal{S}}$ and ϕ a sentence in $\mathcal{L}_{\mathcal{S}}$. If $\Gamma \vdash \phi$ then $\Gamma \models \phi$.

Assume $\Gamma \vdash \phi$ with $\beta = (\beta_1, \dots, \beta_n)$. We will show that $\Gamma \models \phi$.

We can assume that if a constant c occurs in the proof β but does not occur in Γ nor in ϕ it is new, i.e., not in the symbol set S. If not, replace c (wherever it occurs) with c' not in S. Now, every step in the

 $\mathbf{2}$

proof of type (4) uses a constant that is new to S. Assume that steps of type (4) are $\beta_{i_1}, \ldots, \beta_{i_k}$ with corresponding constants c_1, \ldots, c_k . Set $S' = S \cup \{c_1, \ldots, c_k\}$.

1.6. Claim. Let an S-structure \mathcal{A} be a model of Γ . Then there are elements $a_1, \ldots, a_k \in A$ such that the S'-structure \mathcal{A}' defined as $\mathcal{A} + (c_i^{\mathcal{A}'} = a_i)_{1 \leq i \leq k}$ is a model of β_j for all $1 \leq j \leq n$.

Proof. By induction on j. Assume that there is an $S \cup \{c_1, \ldots, c_{\ell-1}\}$ structure \mathcal{A}'_{j-1} in which there is an interpretation to the constants $c_1, \ldots, c_{\ell-1}$ such that $\mathcal{A}'_{j-1} \models \beta_i$, for all $1 \le i \le (j-1)$, and $i_{(\ell-1)} \le (j-1) < i_{\ell}$. Then

- (1) if $\beta_j \in \Gamma$ then $\mathcal{A} \models \beta_j$ (since $\mathcal{A} \models \Gamma$) hence also $\mathcal{A}'_{j-1} \models \beta_j$ (the new constants have nothing to do with β_j).
- (2) if β_j is an axiom it is true in every structure (of $S \subseteq S'$), and does not contain any of the new constants, hence it is true in \mathcal{A}'_{i-1} .
- (3) if β_j was obtained by mp, we use the fact that mp preserves \models , as proved in pset.
- (4) If $\beta_j = \beta_{i_\ell} = (\neg(\forall x)\psi \to \neg\psi(\frac{c_\ell}{x}))$ then either
 - $\mathcal{A}'_{j-1} \models (\forall x)\psi$, and then we can interpret c_{ℓ} as we wish; for every interpretation a_{ℓ} of c_{ℓ} , it is true that $\mathcal{A}'_{j} = \mathcal{A}'_{j-1} + (c_{\ell}\mathcal{A}'_{j} = a_{\ell}) \models (\neg(\forall x)\psi \rightarrow \neg\psi(\frac{c_{\ell}}{x})).$
 - Or $\mathcal{A}'_{j-1} \nvDash (\forall x) \psi$, i.e., not for every assignment $p: \{x\} \to A$ we have $\mathcal{A}'_{j-1} \models \psi(p)$. Therefore there is an assignment psuch that p(x) = a and $\mathcal{A}'_{j-1} \models \neg \psi[\frac{a}{x}]$. We set $\mathcal{A}'_j = \mathcal{A}'_{j-1} + (c_{\ell}^{\mathcal{A}'_j} = a)$. Then, $\mathcal{A}'_j \models \neg \psi(\frac{c_{\ell}}{x})$ hence $\mathcal{A}'_j \models (\neg (\forall x)\psi \to \neg \psi(\frac{c_{\ell}}{x}))$.

In particular, $\mathcal{A}_n \models \beta_n = \phi$.

Now, notice that since none of the new constants c_1, \ldots, c_k occur in ϕ their interpretation does not matter to determine whether an Sstructure is a model of ϕ . We deduce that $\mathcal{A} \models \phi$. This completes the proof of the theorem.

Embedding of propositional logic in first-order logic. Set a symbol-set S and let \mathcal{L}_{S} be the first-order language associated with S.

1.7. Question. How can we see a sentence in $\mathcal{L}_{\mathcal{S}}$ as a proposition in propositional logic?

In propositional logic there are only the logic symbols \perp , \rightarrow (and propositional variables). So we will think of sentences involving other

symbols as propositional variables. For example

$$((\forall x)R(x,x) \to \neg(\forall y)S(y))$$

is read as $(p \to \neg q)$, where p stands for $(\forall x)R(x,x)$ and q stands for $(\forall y)S(y)$. When the same expression occurs again we read it the same way. For example, $((\forall x)R(x,x) \to (\forall x)R(x,x))$ is read $(p \to p)$.

From the point of view of propositional logic, every first-order atomic sentence is read as a propositional variable, and every sentence that starts with $(\forall x)$ is read as a propositional variable.

Notice that every axiom and inference-rule of propositional logic hold in first-order logic. In particular, if Γ is a set of first-order sentences and is consistent in first order logic, then it is consistent (when read as a set of propositions) in propositional logic.

1.8. Question. How do we think about a first-order structure \mathcal{A} as an assignment in propositional logic?

For every "propositional variable" (see above) ϕ we define

$$V_{\mathcal{A}}(\phi) = \begin{cases} 1 & \text{if } \mathcal{A} \models \phi; \\ 0 & \text{otherwise.} \end{cases}$$

Notice that every sentence ϕ has a truth-value according to \mathcal{A} and according to $V_{\mathcal{A}}$, and they are the same (by definition, and since both are determined by the truth-tables of \rightarrow and \perp).

A first-order sentence is called a *tautology* if its translation to propositional logic is a tautology. The set of tautologies is a proper subset of the set of valid sentences. Notice that in every structure \mathcal{A} , a tautology ψ is assigned truth value 1 in \mathcal{A} since $V_{\mathcal{A}}(\psi) = 1$.

1.9. *Remark.* We will show later that if the symbol-set S is countable then the set of first-order sentences over S is countable. In particular, the set of propositional variables in the translation to propositional logic is countable.

1.10. Lemma (First-order Deduction Lemma (in proofs)). Let Γ be a set of sentences, and let ϕ, ψ be sentences. If $\Gamma \cup {\phi} \vdash \psi$ then $\Gamma \vdash (\phi \rightarrow \psi)$.

Proof. We assume that there exists a proof $\alpha = (\alpha_1, \ldots, \alpha_m)$ of ψ from $\Gamma \cup \{\phi\}$. Denote by

$$\Delta = \{\alpha_{i_1}, \ldots, \alpha_{i_n}\}$$

the set of lines α_i that are justified as axioms or as type (4).

1.11. Claim. $\Delta \cup \Gamma \cup \{\phi\} \vdash \psi$ when embedded in propositional logic.

Proof. The proof α is justifies as a proof of ψ from $\Delta \cup \Gamma \cup \{\phi\}$ in propositional logic:

- (1) If α_i is justified by mp then it is justified by mp in propositional logic.
- (2) If α_i is justified as an assumption (i.e., an element of $\Gamma \cup \{\phi\}$) it is justified as an assumption in propositional logic.
- (3) If α_i is justified as an axiom or as type (4), then it is justified as an element of Δ in propositional logic.

Now, by the Deduction Lemma in propositional logic, $\Delta \cup \Gamma \vdash (\phi \rightarrow \psi)$. Let $\beta = (\beta_1, \ldots, \beta_k)$ be a proof of $(\phi \rightarrow \psi)$ from $\Delta \cup \Gamma$ in propositional logic. Then $(\alpha_{i_1}, \ldots, \alpha_{i_n}, \beta_1, \ldots, \beta_k)$ is a proof of $(\phi \rightarrow \psi)$ from Γ in first-order logic. (Every α_{i_j} is justified as an axiom or as type (4).)

1.12. Lemma. Contraposition Lemma. $\Gamma \cup \{\alpha\} \vdash \neg \beta \Leftrightarrow \Gamma \cup \{\beta\} \vdash \neg \alpha$.

Proof: Exercise (pset).