18.510: INTRODUCTION TO MATHEMATICAL LOGIC AND SET THEORY, FALL 08

LIAT KESSLER

1. Predicate Calculus, First-order Logic

The Completeness Theorem.

1.1. **Theorem** (Model Existence Theorem). If Γ is consistent then it admits a model.

1.2. **Theorem** (Completeness Theorem). If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof. Given $\Gamma \models \phi$. We want to show $\Gamma \cup \{\neg\phi\} \vdash \bot$, which happens iff $\Gamma \vdash \phi$ (check). Suppose by contradiction that $\Gamma \cup \{\neg\phi\}$ is consistent. Then by the Model Existence theorem, there is a structure \mathcal{A} such that $\mathcal{A} \models \Gamma$ and $\mathcal{A} \models \neg \phi$ in contradiction with $\Gamma \models \phi$. \Box

1.3. *Remark.* The Completeness Theorem is about truth in the set of all structures, not about truth in a given structure. For example, it does not answer whether $\mathcal{N} \models \phi$.

Proof of the Model Existence Theorem. A set of sentences Γ contains witnesses if for every formula ϕ with $FV(\phi) = \{x\}$, there is a constant $c \in S$ such that $(\neg(\forall x)\phi \rightarrow \neg\phi[\frac{c}{x}]) \in \Gamma$.

The sentence $\psi = (\neg(\forall x)\phi \rightarrow \neg\phi(\frac{c}{x}))$ is giving a *witness* to the unhappening of the universal sentence $(\forall x)\phi$.

1.4. **Lemma.** If Γ is consistent, $FV(\phi) = \{x\}$, and c is a new constant that does not occur in Γ nor in ϕ then $\Gamma \cup \{(\neg(\forall x)\phi \rightarrow \neg\phi(\frac{c}{x}))\}$ is consistent.

Proof. Suppose for contradiction that $\Gamma \cup \{\psi\} \vdash \bot$ with proof $\beta = (\beta_1, \ldots, \beta_n)$. If the proof does not use ψ then $\Gamma \vdash \bot$ by β , in contradiction with the fact that Γ is consistent.

Assume that ψ is one of the steps in β , justified as an assumption (an element of $\Gamma \cup \{\psi\}$). We can assume that $\beta_1 = \psi$. Then we can write the same proof from Γ , but this time justifying the first line β_1 as a step of type (4). (We assumed that *c* does not occur in Γ , and it definitely does not occur in \bot .) The rest of the lines in the proof β are justified as before and we get a contradiction again.

1

LIAT KESSLER

Notation:

Given S we write $S + = S \cup \{c_1, c_2, \ldots\}$, where $c_i, i \in \mathbb{N}$ are new constant symbols.

1.5. *Remark.* If a symbol set is countable then the set of sentences in the first-order language is countable. We will prove this later.

1.6. Lemma. If Γ is a consistent set of sentences over S then there is $\Gamma \subseteq \overline{\Gamma}$, a set of sentences over S+ that is consistent and contains witnesses.

Proof. By Remark 1.5, we can write all the sentences over S+ as a sequence ϕ_1, ϕ_2, \ldots In each ϕ_i there are at most finitely many constant symbols: there exists n(i) such that for every constant symbol c_j that occurs at $\phi_i, j < n(i)$. Let

$$N(i) = 1 + \max\{n(1), \dots, n(i)\}$$

Then $c_{N(i)}$ does not occur in $\Gamma \cup \{\phi_1, \ldots, \phi_n\}$.

We define sentences ψ_i by induction on *i*. Assume that we defined $\psi_1, \ldots, \psi_{n-1}$ and that there is $m(i) \ge N(i)$ such that if c_j occurs in (at least) one of the sentences $\psi_1, \ldots, \psi_{i-1}$ then j < m(i). Then if $\phi_i = \neg(\forall x)\theta$, we set

$$\psi_i = (\neg(\forall x)\theta \to \neg\theta[\frac{c_{m_i}}{x}]),$$

i.e., ψ_i is a witness for ϕ_i . (If ϕ_i is not of that form, we do not need a witness, set $\psi_i = (\forall x)(x = x)$.) The constant $c_{m(i)}$ in ψ_i is chosen such that it does not appear in \mathcal{S} nor in $\psi_1, \ldots, \psi_{i-1}$.

1.7. Claim. $\Gamma \cup \{\psi_1, \ldots, \psi_i\}$ is consistent.

Proof of the Claim. The proof is by induction on i. In the induction step, we assume that $\Gamma_i = \Gamma \cup \{\psi_1, \ldots, \psi_{i-1}\}$ is consistent, hence by Lemma 1.4 (and the definition of ψ_i), $\Gamma \cup \{\psi_1, \ldots, \psi_i\}$ is also consistent.

We define

$$\bar{\Gamma} = \Gamma \cup \{\psi_1, \psi_2, \ldots\}.$$

We claim that $\overline{\Gamma}$ is consistent. Suppose not, i.e., $\overline{\Gamma} \vdash \bot$. The proof uses a finite number of elements of $\overline{\Gamma}$, all in $\Gamma \cup \{\psi_1, \ldots, \psi_m\}$ (for some $m \in \mathbb{N}$). Hence the same proof of \bot is justified as a proof from $\Gamma \cup \{\psi_1, \ldots, \psi_m\}$, in contradiction with the claim above.

We claim that Γ contains witnesses. Indeed, if θ is a formula over S+ with $FV(\theta) = \{x\}$. Then for some $i \in \mathbb{N}$, $\phi_i = \neg(\forall x)\theta$. By the construction, ψ_i is a witness for θ .

 $\mathbf{2}$

Proof of a special case of the Model Existence Theorem.

Proof of the Model Existence Theorem for S that has no function nor constant symbols. By Lemma 1.6, there is $\Gamma \subseteq \Gamma_1$ over S+ that is consistent and contains witnesses. Let $\overline{\Gamma}$ be the set of all sentences that can be proven from Γ_1 (in particular, $\overline{\Gamma}$ contains all the axioms over S+). Notice that $\overline{\Gamma}$ is still consistent (If $\overline{\Gamma} \vdash \bot$ then $\Gamma_1 \vdash \bot$ with the same proof.)

We construct a model \mathcal{A} of $\overline{\Gamma}$. The domain A is the set of witnesses, i.e., the different constants c_1, c_2, \ldots in $\mathcal{S}+$. (If $\overline{\Gamma} \vdash (c_i = c_j)$, we declare the constants c_i and c_j to be the same element of A.) We set $c_i^{\mathcal{A}} = c_i$.

 $\overline{\Gamma}$ is consistent in the sense of propositional logic. Hence $\overline{\Gamma}$ admits a model V in the sense of propositional logic:

 $V: \{ propositions \} \rightarrow \{0, 1\}$

is an assignment such that for every proposition $\phi \in \Gamma$, $V(\phi) = 1$.

In particular, if R_l^k is a relation symbol and d_1, \ldots, d_k are elements of A then $R_l^k(d_1, \ldots, d_k)$ is a sentence (over S+) and V assigns it a truth value 0 or 1. We interpret

$$R_l^{k\mathcal{A}} = \{ (d_1, \dots, d_k) \in A^k \, | \, V(R_l^k(d_1, \dots, d_k)) = 1 \}.$$

1.8. Claim. For every sentence ϕ ,

$$\mathcal{A} \models \phi \; iff \, V(\phi) = 1$$

Proof of the claim. The proof is by induction on ϕ .

(1) If ϕ is atomic then $\phi = R_l^k(c_1, \ldots, c_k)$. In this case

- $A \models \phi \Leftrightarrow (c_1, \dots, c_k) \in R_l^k \Leftrightarrow V(R_l^k(c_1, \dots, c_k)) = 1 \Leftrightarrow V(\phi) = 1.$
- (2) If $\phi = (\phi_1 \to \phi_2)$, then by definition of \models ,

 $\mathcal{A} \models \phi \Leftrightarrow$ it is not true that $(\mathcal{A} \models \phi_1 \text{ and } \mathcal{A} \nvDash \phi_2)$,

if and only if (by the induction assumption),

it is not true that $V(\phi_1) = 1$ and $V(\phi_2) = 0 \Leftrightarrow V(\phi) = 1$.

(3) If $\phi = \bot$, then, by definition (of an assignment and of a model), $V(\phi) = 0$ and $\mathcal{A} \nvDash \phi$.

(4) If $\phi = (\forall x)\psi$ with $FV(\psi) = \{x\}$, we need to show

(a) If $V(\phi) = 1$ then $\mathcal{A} \models \phi$.

(b) If $\mathcal{A} \models \phi$ then $V(\phi) = 1$.

To show part (a), we show that for every constant symbol $c_n, n \in \mathbb{N}$, we have $V(\psi[\frac{c_n}{x}]) = 1$. Indeed, we assume that $\overline{\Gamma}$ includes all the axioms, so $(\phi \to \psi[\frac{c_n}{x}]) \in \overline{\Gamma}$ hence $V(\phi \to \psi[\frac{c_n}{x}]) = 1$. Since $V(\phi) = 1$ and by the truth table of \to we get $V(\psi[\frac{c_n}{x}]) = 1$. Hence, by the induction assumption,

LIAT KESSLER

 $\mathcal{A} \models \psi[\frac{c_n}{x}]$. In other words, for every element $a \in A$, $\mathcal{A} \models \psi(\frac{a}{x})$. By definition of \models (for a sentence that begins with $(\forall x)$), $\mathcal{A} \models (\forall x)\psi$, i.e., $\mathcal{A} \models \phi$.

To prove part (b), we will suppose that $V(\phi) = 0$ and show that $\mathcal{A} \nvDash \phi$. Since $V((\forall x)\psi) = 0$, the value $V(\neg(\forall x)\psi) = 1$. Since $\overline{\Gamma}$ contains witnesses, there is a witness c_n such that $(\neg(\forall x)\psi \rightarrow \neg\psi[\frac{c_n}{x}]) \in \overline{\Gamma}$. Then $V(\neg\psi[\frac{c_n}{x}]) = 1$. By the induction assumption, this implies $\mathcal{A} \models \neg\psi[\frac{c_n}{x}]$ hence (by definition of \models) $\mathcal{A} \nvDash (\forall x)\psi$.

In particular, if $\phi \in \Gamma \subseteq \overline{\Gamma}$ then $V(\phi) = 1$ hence (by the claim) $A \models \phi$. Hence the restriction of \mathcal{A} to the symbol set \mathcal{S} of Γ is a model of Γ .