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1. PREDICATE CALCULUS, FIRST-ORDER LOGIC

The Completeness Theorem.

1.1. Theorem (Model Existence Theorem). If I is consistent then it
admits a model.

1.2. Theorem (Completeness Theorem). If I' = ¢ then I' - ¢.

Proof. Given I' = ¢. We want to show I' U {—=¢} - L, which happens
iff I = ¢ (check). Suppose by contradiction that I'U{—¢} is consistent.
Then by the Model Existence theorem, there is a structure A such that
AET and A = —¢ in contradiction with ' = ¢. O

1.3. Remark. The Completeness Theorem is about truth in the set of
all structures, not about truth in a given structure. For example, it
does not answer whether N |= ¢.

Proof of the Model Existence Theorem. A set of sentences I'
contains witnesses if for every formula ¢ with FV(¢) = {x}, there is
a constant ¢ € S such that (=(Vr)¢ — —¢[Z]) € T

The sentence ¢ = (—(Vz)¢ — —¢(%)) is giving a witness to the
unhappening of the universal sentence (Vz)e.

1.4. Lemma. IfT" is consistent, FV(¢) = {x}, and ¢ is a new constant
that does not occur in T' nor in ¢ then I' U {(=(Vx)p — —¢(%))} is
consistent.

Proof. Suppose for contradiction that I' U {¢p} F L with proof g =
(81, ..., By). If the proof does not use ¢ then I' = L by [, in contra-
diction with the fact that I' is consistent.

Assume that 1 is one of the steps in 3, justified as an assumption
(an element of I'U {¢}). We can assume that £ = 1. Then we can
write the same proof from I', but this time justifying the first line 3,
as a step of type (4). (We assumed that ¢ does not occur in I', and it
definitely does not occur in L.) The rest of the lines in the proof (3 are

justified as before and we get a contradiction again.

O
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Notation:
Given S we write S+ = S U {c1, o, ...}, where ¢;, i € N are new
constant symbols.

1.5. Remark. If a symbol set is countable then the set of sentences in
the first-order language is countable. We will prove this later.

1.6. Lemma. If I' is a consistent set of sentences over S then there
is I' C T, a set of sentences over S+ that is consistent and contains
witnesses.

Proof. By Remark 1.5, we can write all the sentences over S+ as a
sequence ¢1, ¢g, ... In each ¢; there are at most finitely many constant
symbols: there exists n(i) such that for every constant symbol ¢; that
occurs at ¢;, j < n(i). Let

N(i) =14 max{n(1),...,n(i)}.

Then cy(;y does not occur in I'U {¢1, ..., ¢n}.

We define sentences 1; by induction on 7. Assume that we defined
Y1, ..., 1,1 and that there is m(i) > N(7) such that if ¢; occurs in
(at least) one of the sentences q,...,1;_1 then j < m(i). Then if
¢; = (V)0 we set

¥ = (V)8 — —6[=)),

i.e., ¥; is a witness for ¢;. (If ¢; is not of that form, we do not need a
witness, set ¢; = (Va)(x = x).) The constant c,,;) in ¢; is chosen such
that it does not appear in & nor in ¥y, ..., ;1.

1.7. Claim. I'U {4y, ..., ¢;} is consistent.

Proof of the Claim. The proof is by induction on ¢. In the induction
step, we assume that I'; = T'U {41, ...,1;_1} is consistent, hence by
Lemma 1.4 (and the definition of ¢;), TU{#1, ..., 4;} is also consistent.

O
We define
F:FU{wl,wg,...}.
We claim that I is consistent. Suppose not, i.e., [ - L. The proof
uses a finite number of elements of I', all in I' U {¢,..., ¢} (for

some m € N). Hence the same proof of L is justified as a proof from
CU{¢1,...,¥%n}, in contradiction with the claim above.

We claim that I' contains witnesses. Indeed, if # is a formula over
S+ with FV(0) = {z}. Then for some i € N, ¢, = —=(Vz)f. By the
construction, v; is a witness for 6. U
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Proof of a special case of the Model Existence Theorem.

Proof of the Model Existence Theorem for S that has no function nor constant symbols.
By Lemma 1.6, there is I' C I'y over S+ that is consistent and contains
witnesses. Let I be the set of all sentences that can be proven from
I'; (in particular, I' contains all the axioms over S+). Notice that T is
still consistent (If I' = L then T'; = L with the same proof.)
We construct a model A of I'. The domain A is the set of witnesses,
i.e., the different constants ci, ¢y, ...in S+. (If T F (¢; = ¢;), we declare
the constants ¢; and ¢; to be the same element of A.) We set et = ¢
[ is consistent in the sense of propositional logic. Hence I' admits a
model V' in the sense of propositional logic:

V. {propositions} — {0,1}

is an assignment such that for every proposition ¢ € ', V(¢) = 1.

In particular, if RY is a relation symbol and dy, ..., d}, are elements
of A then RF(dy,...,dy) is a sentence (over S+) and V assigns it a
truth value 0 or 1. We interpret

R = {(dy,....dy) € A*|V(RE(dy,. .. dy)) = 1}.
1.8. Claim. For every sentence ¢,
A9 iffVig) =1.
Proof of the claim. The proof is by induction on ¢.
(1) If ¢ is atomic then ¢ = RF(cy, ..., c). In this case
AE¢ < (cr,...,c0) €RF < V(R (c1,...,c) =1 V(p) = 1.
(2) If ¢ = (¢1 — ¢2), then by definition of =,
A ¢ & it is not true that (A | ¢ and AE¢,),
if and only if (by the induction assumption),
it is not true that V(¢1) =1 and V(¢2) =0 < V(¢) = 1.

(3) If ¢ = L, then, by definition (of an assignment and of a model),
V(¢) = 0 and AF¢.

(4) If ¢ = (Va)y» with FV(¢) = {z}, we need to show
(a) If V(¢) =1 then A |= ¢.
(b) If A |= ¢ then V(¢) = 1.

To show part (a), we show that for every constant symbol

cn, n € N, we have V(1)[%]) = 1. Indeed, we assume that
[ includes all the axioms, so (¢ — ¥[2]) € I hence V(¢ —
Y[®]) = 1. Since V(¢) = 1 and by the truth table of —
we get V(i[%]) = 1. Hence, by the induction assumption,
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A = ¢[%]. In other words, for every element a € A, A |=1(2).
By definition of = (for a sentence that begins with (Vz)), A |
V), ie., A= ¢.

To prove part (b), we will suppose that V(¢) = 0 and show
that A¥¢. Since V((Vz)y) = 0, the value V(=(Vx)y) = 1.
Since I' contains witnesses, there is a witness ¢, such that
(~(Va)y — —wp[2]) € . Then V(—p[2]) = 1. By the induc-
tion assumption, this implies A |= —¢)[“*] hence (by definition
of =) AE(Vx)1.

U
In particular, if € T' C T then V(¢) = 1 hence (by the claim)

A | ¢. Hence the restriction of A to the symbol set S of T" is a model
of T. U



