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LIAT KESSLER

1. Predicate Calculus, First-order Logic

Recall the symbol set

Sar := {+, ·, 0, 1}

where + and · are binary function symbols, and 0 and 1 are constants.
Also recall the Sar-structure

N := (N,+N , ·N , 0N , 1N )

where +N and ·N are the usual addition and multiplication on N and
0N and 1N are the numbers zero and one, respectively.

In this lecture, we consider N as a structure of the symbol set
(0,+, ·, s), where we interpret s as the successor function s(n) = n+ 1
for n ∈ N.

1.1. Example. The structure N satisfies the so-called Peano axiom sys-
tem PA:

(1) (∀x1)(∀x2)((s(x1) = s(x2)) → (x1 = x2)) (i.e., s is one-to-one).
(2) • (∀x)(¬(x = 0) → (∃y)(s(y) = x)) (i.e., every element in N

that is not 0 is a successor of another element).
• ¬(∃y)(s(y) = 0) (i.e., there is no element of N such that 0

is its successor).
(3) • (∀y)(0 + y = y)

• (∀x)(∀y)(s(x) + y = s(x+ y)
(4) • (∀y)(0 · y = 0)

• (∀x)(∀y)(s(x) · y = x · y + y)
(5) Induction principle: for all x, y1, . . . , yn and φ with FV(φ) =

{x, y1, . . . , yn},

(∀ȳ)([φ(0, ȳ) ∧ (∀z)(φ(z, ȳ) → φ(s(z), ȳ))] → (∀x)φ(x, ȳ)),

where ȳ = {y1, . . . , yn} and (∀ȳ) = (∀y1) . . . (∀yn).
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The theory of N and non-standard models. For an S-structure
A, we denote by Th(A) the set of the sentences ψ in the first-order
language L(S) such that A |= ψ. We call Th(A) the (first-order)
theory of A.

1.2. Theorem. There is a model of Th(N ) that is not isomorphic to
N .

Let A be a model of Th(N ) over S = {0,+, ·, s}. Define s1(x) =
s(x), s2(x) = s(s(x)), . . ., in general, sn+1(x) = s(sn(x)). The domain

A contains the elements 0A, sA(0A), s2A(0A), . . . Does A contain other
elements? such elements are called non standard elements. If A con-
tains non-standard elements, then A is called a non standard model of
Th(N ). In the proof of Theorem 1.2, we find a non standard model of
Th(N ).

Proof. We add a constant c to S to get the symbol set {c, 0,+, ·, s}.
We set

Γ∗ = {c 6= 0, c 6= s(0), c 6= s2(0), . . .}

and

Γ = Th(N ) ∪ Γ∗.

1.3. Claim. Γ admits a model.

Proof. By the compactness theorem, it is enough to show that every
finite subset of Γ admits a model. Indeed, a finite subset Γ0 ⊂ Γ
is contained in Th(N ) ∪ {c 6= 0, . . . , c 6= sn(0)}; Define a structure
A = An+1 as follows:

• A = N,
• +A = +N ,
• ·A = ·N ,
• sA = sN ,
• 0A = 0N ,
• cA = n+ 1.

Every sentence in Th(N ) is true in N , and does not use c, hence it is
true in A. By the choice of cA, the n+ 1 first sentences of Γ∗ are also
true in A. �

Thus, there is a model B′ of Γ. Let B be the structure with the same
domain and interpretation for (+, ·, s, 0) as B′ but without the inter-
pretation for c, Then B is a model of Th(N ) whose domain contains
the non-standard element cB

′

. �
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Notice that a model of Th(N ) is in particular a model of PA ⊆
Th(N ). Hence Theorem 1.2 implies that there is a model of PA that
is not isomorphic to N .

Theorem 1.2 gives an example of two structures (of the same sym-
bol set) that satisfy the same sentences but are not isomorphic, (as
promised when we talked about isomorphism of structures).

Godel’s enumeration.

1.4. Lemma. Assume that the symbol set S is countable. Then the set
of all formulas is countable, i.e., can be listed as φ1, φ2, . . . such that
every formula appears as φi for some i ∈ N.

Proof. To each formula φ in L = L(S) we assign a natural number ♯φ,
the Godel number of φ, such that φ 7→ ♯φ is one-to-one: if φ 6= φ′ then
♯φ 6= ♯φ′. Given such an enumeration we define φm to be the formula
with Godel number m, if exists, and ⊥ if not. This gives a well defined
onto map N → L, i.e., the set of formulas is countable.

We assign Godel numbers by induction on φ. First we assign Godel
numbers to the alphabet:

(1) to the logic symbols

( ) → ⊥ ∀ =
21 · 3 21 · 32 21 · 33 21 · 34 21 · 35 21 · 36

(2) to each variable symbol vk: ♯vk = 22 · 3k.
(3) to each relation symbol Rk

i : ♯R
k
i = 23 · 3i+1 · 5k+1.

(4) to each function symbol Fm
j : ♯Fm

j = 24 · 3j+1 · 5m+1.

(5) to each constant symbol cj : ♯cj = 25 · 3j+1.

Then we assign Godel numbers to the terms by induction on the
construction of the term. If t = Fm

j (t1, . . . , tm) then

♯t = 26 · 3♯F
m
j · 5♯t1 · 7♯t2 · . . . · pm+2

♯tm ,

where pi is the i-th prime number.
We assign Godel numbers to the formulas by induction on the con-

struction of the formula:

(1) ♯(t1 = t2) = 27 · 3♯t1 · 5♯t
2

;

(2) ♯(Rk
i (t1, . . . , tk)) = 28 · 3♯R

k
i · 5♯t1 · . . . · p♯tkk+2;

(3) ♯(ψ1 → ψ2) = 29 · 3♯ψ1 · 5♯ψ2 ;
(4) ♯(∀xn)ψ = 210 · 3♯xn · 5♯ψ.

The fact that the assignment is one-to-one follows from the unique
decomposition of natural numbers to prime factors.

�
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1.5. Remark. We can continue the proof of Lemma 1.4 and assign
unique Godel numbers to proofs: ♯(α1, . . . , αk) = 211 ·3♯α1 ·5♯α2 ·. . .·p♯αk

k+1.
Thus the set of all proofs over S is countable.

Godel’s Theorem and Tarski’s Theorem.

1.6. Theorem (Godel’s Theorem). There are formulas φi, i = 1, 2, 3, 4
with FV(φi) = {x} for i = 1, 2, 4 and FV(φ3) = {x, y}, such that:

(1) N |= φ1(n) ⇔ n is the Godel number of a sentence;
(2) N |= φ2(n) ⇔ n is the Godel number of a proof from PA;
(3) N |= φ3(n,m) ⇔ n is the Godel number of a proof of φ with

♯φ = m from PA;
(4) φ4 = (∃x)φ3(x, y), N |= φ4(m) ⇔ ∃n ∈ N such that n is the

Godel number of a proof of φ with ♯φ = m from PA .

1.7. Theorem (Tarski’s Theorem). There is no formula ψ (with FV(ψ) =
{x}) such that N |= ψ(n) ⇔ n is the Godel number of a sentence that is true in N .

1.8. Corollary. It is not true that N |= φ iff PA ⊢ φ.

Hence, using the completeness theorem, there is a sentence φ such
that N |= φ but PA 2φ.

Proof of Tarski’s Theorem. A subset A ⊆ N is called definable if
there is a formula φ with FV(φ) = {x} such that φN = A, i.e.,

n ∈ A⇔ N |= φ[
sn(0)

x
].

For example, the set A of even numbers is definable by the formula
φ(x) = (∃y)(y + y = x).

Similarly, a subset A ⊆ N
k is definable if there is a formula φ with

FV(φ) = {x1, . . . , xk} such that φN = A.
To construct an example of a non-definable subset of N, list all the

formulas φ with FV(φ) = {x} using Godel’s enumeration, (see Lemma
1.4), as φ1, φ2, . . .We will build the example according to the “opposite”
of the diagonal in the following table.

0 1 2 . . .

φ0 0 1 0 . . .

φ1 1 1 0 . . .

φ2 1 0 0 . . .
...

...
...

...

(We write φi(j) = 1 iff N |= φi(j), where j stands for sj(0).)
Set

∆ = {n ∈ N | N |= ¬φn(n)}.
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1.9. Claim. The set ∆ is not definable.

Proof. Suppose that ∆ is definable, i.e., there is a formula φ with
FV(φ) = {x} such that ∆ = φN . The formula φ is one of the for-
mulas in the list, φ = φk for some k ∈ N. However, for this number
k,

k ∈ ∆ ⇔ N |= ¬φk(k) ⇔ k is not in φk
N = φN ,

hence ∆ 6= φN in contradiction with our assumption. �

1.10. Corollary. The set {n ∈ N | N |= ψn}, where ψn = ¬φn(n) =

¬φn[
sn(0)
x

], is not definable.

1.11. Lemma. The function

h : N → N

mapping n 7→ ♯ψn is definable, i.e., the set (n, ♯ψn) is a definable subset
of N

2.

1.12. Corollary. The set

T = {n ∈ N | N |= the sentence with Godel number n}

is not definable.

Proof. Suppose that T is definable by a formula α, i.e.,

n ∈ T ⇔ N |= α(sn(0)).

By Lemma 1.11, h is definable by a formula β, i.e.,

h(n) = m⇔ N |= β(sn(0), sm(0)).

Then

n ∈ ∆ ⇔ N |= ¬φn(s
n(0)) ⇔ N |= ψn ⇔ h(n) ∈ T ⇔ N |= α(h(n))

⇔ N |= (∃y)(β(sn(0), y) ∧ α(y)).

Hence, ∆ is also definable, in contradiction with Claim 1.9. �

This proves Tarski’s Theorem. In other words, there is no inner truth
definition in N .


