18.510: INTRODUCTION TO MATHEMATICAL LOGIC
AND SET THEORY, FALL 08

LIAT KESSLER

1. PREDICATE CALCULUS, FIRST-ORDER LOGIC

Recall the symbol set
Sar = {+7 ) 07 1}

where + and - are binary function symbols, and 0 and 1 are constants.
Also recall the S,,-structure

N = (N, +V, N oV, 1Y)

where +V and -V are the usual addition and multiplication on N and
0V and 1%V are the numbers zero and one, respectively.

In this lecture, we consider N as a structure of the symbol set
(0,4, -, s), where we interpret s as the successor function s(n) =n+1
for n € N.

1.1. Ezample. The structure N satisfies the so-called Peano aziom sys-
tem PA:

(1) (Va1)(Va2)((s(z1) = s(z2)) — (x1 = x3)) (i-e., s is one-to-one).
(2) o (Vz)(=(xz=0) — (Jy)(s(y) = x)) (i.e., every element in N
that is not 0 is a successor of another element).
e —(Jy)(s(y) = 0) (i.e., there is no element of N such that 0
is its successor).
3) o (Vy0+y=y)
o (Va)(vy)(s(x) +y = s(z +y)
(4) o (vy)(0-y=0)
o (Va)(vy)(s(x) -y =2 -y+y)
(5) Induction principle: for all z,yy,...,y, and ¢ with FV(¢) =
{.T, Y- - ayn}a

(V) ([¢(0, ) A (V2)(9(2,7) — é(s(2),9)] — (Yz)d(x, 7)),

where g = {y1,...,y,} and (Vg) = (V1) ... (Vyn).
1
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The theory of N and non-standard models. For an S-structure
A, we denote by Th(A) the set of the sentences ¢ in the first-order
language L(S) such that A = . We call Th(A) the (first-order)
theory of A.

1.2. Theorem. There is a model of Th(N') that is not isomorphic to
N.

Let A be a model of Th(N) over S = {0, +,-,s}. Define s'(z) =
s(z), s*(x) = s(s(x)), ..., in general, s"™'(x) = s(s"(z)). The domain
A contains the elements 04, s4(04), s2*(04), ... Does A contain other
elements? such elements are called non standard elements. If A con-
tains non-standard elements, then A is called a non standard model of
Th(N). In the proof of Theorem 1.2, we find a non standard model of
Th(N).

Proof. We add a constant ¢ to S to get the symbol set {c,0,+, -, s}.
We set

= {e#£0, c#5(0), ¢ £ 5(0), ...}
and
['=ThN)uT™.

1.3. Claim. I' admits a model.

Proof. By the compactness theorem, it is enough to show that every
finite subset of I' admits a model. Indeed, a finite subset I'y C T’
is contained in Th(N) U {c # 0, ..., ¢ # s"(0)}; Define a structure
A=A, as follows:

e A=N,

o A= 4N
..A:.N’

o 54—V,
OOA:ON,
ot =n+1.

Every sentence in Th(N) is true in A/, and does not use ¢, hence it is
true in A. By the choice of ¢, the n + 1 first sentences of I'* are also
true in A. O

Thus, there is a model B’ of I'. Let B be the structure with the same
domain and interpretation for (+4,-,s,0) as B’ but without the inter-
pretation for ¢, Then B is a model of Th(N') whose domain contains
the non-standard element 2. U
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Notice that a model of Th(N) is in particular a model of PA C
Th(N). Hence Theorem 1.2 implies that there is a model of PA that
is not isomorphic to N .

Theorem 1.2 gives an example of two structures (of the same sym-
bol set) that satisfy the same sentences but are not isomorphic, (as
promised when we talked about isomorphism of structures).

Godel’s enumeration.

1.4. Lemma. Assume that the symbol set S is countable. Then the set
of all formulas is countable, i.e., can be listed as @1, ¢s, ... such that
every formula appears as ¢; for some i € N.

Proof. To each formula ¢ in £ = £(S) we assign a natural number f¢,
the Godel number of ¢, such that ¢ — fi¢ is one-to-one: if ¢ # ¢’ then
o # t¢’. Given such an enumeration we define ¢,, to be the formula
with Godel number m, if exists, and L if not. This gives a well defined
onto map N — L, i.e., the set of formulas is countable.

We assign Godel numbers by induction on ¢. First we assign Godel
numbers to the alphabet:

(1) to the logic symbols
| ) | =1 L]V | =
T 32T 37|20 3 |21-37 [ 2037 | 27 3

(2) to each variable symbol vy: fv, = 22 - 3.
(3) to each relation symbol RF: gRF = 23 . 37F1 . 5h+1,
(4) to each function symbol Fj": §F™ = 2*. 3/ . 5m+1,
(5) to each constant symbol ¢;: fc; = 2° - 37F1.
Then we assign Godel numbers to the terms by induction on the
construction of the term. If t = F"(ty,...,t,,) then

gt =20 3HT gt i H

where p; is the i-th prime number.
We assign Godel numbers to the formulas by induction on the con-

struction of the formula:

(1) #(ty = t) = 27 - 3t . 57,

k

(2) $(RE(ty, ... b)) =28 - 38 . 58 'pﬁkti%

(3) 8t — hg) = 29 - 381 . 52

(4) 4(Va, ) = 210 3kan . 580,
The fact that the assignment is one-to-one follows from the unique

decomposition of natural numbers to prime factors.
O
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1.5. Remark. We can continue the proof of Lemma 1.4 and assign
unique Godel numbers to proofs: f(ay, ..., ay) = 211.3f1 .52, .-pi‘_‘fl.
Thus the set of all proofs over § is countable.

Godel’s Theorem and Tarski’s Theorem.

1.6. Theorem (Godel’s Theorem). There are formulas ¢;, i = 1,2, 3,4
with FV(¢;) = {x} fori=1,2,4 and FV(¢3) = {x,y}, such that:
(1) N |= ¢1(n) & n is the Godel number of a sentence;
(2) N | ¢a(n) < n is the Godel number of a proof from PA;
(3) N | ¢3(n,m) < n is the Godel number of a proof of ¢ with
1o =m from PA;
(4) ¢4 = (Fx)Ps(x,y), N |= ¢a(m) < In € N such that n is the
Godel number of a proof of ¢ with 8¢ = m from PA .

1.7. Theorem (Tarski’s Theorem). There is no formula v (with FV () =
{x}) such that N |= ¢ (n) < n is the Godel number of a sentence that is true in N .

1.8. Corollary. [t is not true that N |= ¢ iff PA + ¢.

Hence, using the completeness theorem, there is a sentence ¢ such
that N = ¢ but PA ¥¢.

Proof of Tarski’s Theorem. A subset A C N is called definable if
there is a formula ¢ with FV(¢) = {z} such that ¢" = A, i.e.,

nedeN oY

x

For example, the set A of even numbers is definable by the formula
o(x) = Fy)(y+y=mux)

Similarly, a subset A C NF is definable if there is a formula ¢ with
FV(¢) = {21,..., 21} such that ¢ = A.

To construct an example of a non-definable subset of N, list all the
formulas ¢ with FV(¢) = {2} using Godel’s enumeration, (see Lemma
1.4), as ¢1, ¢a, . .. We will build the example according to the “opposite”
of the diagonal in the following table.

01 2
b0 |0 1 0
o1 10
b |1 0 0

(We write ¢;(7) = 1 iff N |= ¢;(j), where j stands for s7(0).)
Set
A ={neN[N —¢u(n)}.
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1.9. Claim. The set A is not definable.

Proof. Suppose that A is definable, i.e., there is a formula ¢ with
FV(¢) = {z} such that A = ¢". The formula ¢ is one of the for-
mulas in the list, ¢ = ¢, for some £ € N. However, for this number
k,

ke Ae N -p(k) < kis not in ¢V = ¢V,
hence A # ¢ in contradiction with our assumption. O

1.10. Corollary. The set {n € N|N = ¥,}, where 1, = —¢,(n) =
_‘¢n[sn(0)], is not definable.

x

1.11. Lemma. The function
h: N—N
mapping n — fi, is definable, i.e., the set (n,#1,) is a definable subset
of N2,
1.12. Corollary. The set
T ={n e N|N | the sentence with Godel number n}

1s not definable.
Proof. Suppose that T is definable by a formula «;, i.e.,
neT < N a(s"(0)).

By Lemma 1.11, h is definable by a formula f, i.e.,

B(n) = m & N | B(s"(0), 5" (0)).
Then
neAeNE-¢,(s"0) &N E, < hin) eT < N E a(h(n)

&N (@)(3(s"(0), 9) A aly)).

Hence, A is also definable, in contradiction with Claim 1.9. 0

This proves Tarski’s Theorem. In other words, there is no inner truth
definition in V.



