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Our technology for dealing with information is restricted to
materials with periodic structures.

Wikipedia: “...Almost all metal exists in a polycristalline state.”

“A crystal or crystalline solid is a solid material whose constituent
atoms, molecules, or ions are arranged in an orderly repeating
pattern extending in all three spatial dimensions.”

Is there a way to encode/process information in a nonperiodic
environment?



A tiling of the plane is a partition of the plane into sets (called
tiles) that are topological disks.

An n-hedral tiling — there are n different types of tiles, i.e. every
tile is congruent to one of n fixed subsets of the plane, called
prototiles.

ex. a 4-hedral tiling



How many tilings can you make?

How many distinct tilings does a given set of prototiles admit?

A prototile is called n-morphic if it admits precisely n distinct
monohedral tilings of the plane.

For example, this tile wis monomorphic; it is clear that there is
only one way to tile the Blane with it.
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More examples of monomorphic prototiles: E

Ex. two tilings admitted by a dimorphic prototile:

1] !

**Open question: for every n € N, does there exist a n-morphic
prototile?

**Open question: does there exist a prototile (or set of prototiles)
that admits countably but not uncountably many distinct tilings?



A tiling is periodic if its symmetry group includes translations in
two nonparallel directions. Otherwise the tiling is nonperiodic.




nonperiodic tiling example
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nonperiodic tiling example



nonperiodic tiling example
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But each of these sets of prototiles admits a periodic tiling!



But each of these sets of prototiles admits a periodic tiling!
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aperiodic tiling
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aperiodic tiling

So does there exist a finite set of prototiles that admits ONLY
nonperiodic tilings?

A set of prototiles with this property (they tile the plane but never
periodically) is said to be aperiodic and a tiling admitted by an
aperiodic set of prototiles is called an aperiodic tiling.

The (somewhat surprising) answer is yes! The first aperiodic set
was constructed by Robert Berger in 1966 and used 20,426
prototiles!



The next obvious question is “Can we find a smaller set of
aperiodic prototiles?” and, in particular, “What is the smallest
number of prototiles necessary to tile the plane aperiodically?”

After Berger's discovery, various mathematicians considered this
question and discovered sets of aperiodic prototiles with fewer and
fewer prototiles.

One well-known set of six aperiodic prototiles was discovered by
Robinson in 1971.
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Penrose Tilings

The most famous example of aperiodic tilings, known as Penrose
tilings, were discovered by Roger Penrose in the 1970s, and have
only two prototiles.

**QOpen Question: Does there exist a single prototile that tiles the
plane aperiodically?

Here are the two prototiles in the aperiodic set discovered by

Penrose:

thin: angles 7/5 and 47 /5; thick: angles 27/5 and 37/5.



Equivalent representations of Penrose tilings
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Equivalent representations - kites and darts




Inflation /Deflation

P
P> <

Inflation/Deflation Rules

2N <y

1 thick — 2 thick and 1 thin: 1 thin — 1 thick and 1 thin.
(thin,thick): (0,1),(1,2),(3,5),(8, 13),(21, 34),(55,89),(144, 233)

Prototiles look like




Inflation /Deflation
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Extension Theorem

Theorem

Let T be any finite set of prototiles, each of which is a closed

topological disk. If T tiles over arbitrarily large circular disks, then
T admits a tiling of the plane.



Can prove that in any Penrose tiling the ratio of thick to thin
rhombs is the golden ratio, which is irrational.



Can prove that in any Penrose tiling the ratio of thick to thin
rhombs is the golden ratio, which is irrational.

Suppose it is periodic. Then the ratio for the whole tiling equals
the ratio in the fundamental unit, i.e. is rational. Therefore the
Penrose tiling is nonperiodic.



Penrose tilings:

-have no translational symmetries

-can have 5-fold rotations and/or reflections as symmetries.

-patch in a tiling is repeated infinitely many times in that tiling
-ratio of thick rhombs to thin rhombs = the golden ratio = 1.618...



Quasicrystals

Before 1982, it was assumed that all solids that are “ordered” at
the microscopic level were made from the periodic repetition of a
fundamental unit. But in 1982 Schechtman cooled an
aluminum-manganese sample and found that its diffraction
patterns had 5-fold rotational symmetry.







The Crystallographic Restriction Theorem confines the rotational
symmetries of translation lattices in two- and three-dimensional
Euclidean space to orders 2, 3, 4, and 6.

So this “quasicrystal” is not periodic. But it is clearly “ordered.”
Like Penrose tilings, can inflate/deflate.

Since then, many more examples of “quasicrystals” have been
discovered.



Conway's Game of Life

Conway’s Game of Life is a cellular automaton played on a regular
grid of square “cells;” each cell of the automaton takes either state
0 or 1 (“living” or “dead”) and updates its state in discrete time
based on the states of its 8 closest neighbors, as follows:

-A dead cell with exactly three living neighbors becomes alive.
-A living cell with 2 or 3 living neighbors remains alive.
-In any other case the cell dies/remains dead.



Link to bitstorm
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philosophical observations

-complex patterns can emerge from very simple rules.
-“design” and “organization” can spontaneously emerge in the
absence of a designer. emergent behavior.

-GOL equivalent to a Turing machine. Can encode arbitrarily
complicated processes.

- complex philosophical constructs ( “consciousness’? “free will"?),
can evolve from a simple set of deterministic physical laws
governing our own universe.

- the human brain - a CA?

-the universe as a cellular automata? life as an algorithm?
-self-replicating machines (i.e. patterns) exist. (DNA?)



Logic Gates

Every logical function, i.e. every possible result set of the
combination of two Boolean variables, can be constructed using
these three fundamental operators.

aANDb
d 0
o——0 b
a b (0]
aORb
b

b 0
NOT a



We then only have to implement AND, OR, NOT-gates to be able
to manage any Boolean function. To implement a logical gate we
therefore need:

- Some kind of electrical pulses to represent inputs.

- Wires to transmit the electrical pulses.

- Processing devices which associate inputs and compute the
Boolean result.

- A device placed after the processing device, able to check the
output electrical pulses. This will represent the output.



An eater:
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This consumes a glider and recovers to its original form.

An eater that detects gliders:

Output activation. The light colored cell is activated.



Glider gun streams annihilate each other if the distance between

nascent gliders is even and there is a one-cell vertical offset
between the glider streams.
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NOT gate
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AND gate

A False, B False ATrue, B False
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A False, B False

ATrue, B False
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Rennard'’s applet






Previous research....

Various people tried lots of different sets of nearest-neighbors
rules...but no gliders were found.

Ash and oscillators....



Projection method: 2 dimensions to 1
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Projection method: 2 dimensions to 1
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Projection method: 2 dimensions to 1
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Penrose tilings: projection method

N. G. de Bruijn (1981). " Algebraic theory of Penrose’s nonperiodic
tilings of the plane, |, II" (PDF). Indagationes mathematicae 43
(No. 1): 3966.

de Bruijn’s big result: Penrose tilings are obtained in an analogous
way using a 2-dimensional plane cutting through 5-dimensional
space at a (fixed) irrational “angle”.

The “angle” of the plane is fixed; you can pick the “offset” vector.
de Bruijn: any offset vector so that the plane does not go through
a “corner” gives rise to a Penrose tiling. Conversely, every Penrose
tiling arises in this way.



The moral of the story: Penrose tilings are the “shadows” of the
edges of 5-d cubes.

Faces of 5-d cubes — Penrose tiles (angle of face in relation to
cutting plane determines whether a face becomes a thick rhomb or
a thin rhomb).

Vertices — vertices

Generalize it: you can get aperiodic structures in 3-space as the
projection of a regular/periodic structure in a higher dimension
projected down to 3-space.



The Solution

The rough idea of the solution: play a “Game of Life” on Z° (with
appropriate rules) and project it down onto the plane, i.e. the
Penrose tiling.

Redefine the notion of “neighbors” — define tiles to be neighbors if
their preimages under the projection are neighbors in Z>.

Each cube projects to > 1 tile; pick a pair of axes in 5-space and
identify a 5-d cube with the tile that is the image of that face in
the Penrose tiling.



neighbors




A small oscillator
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Gosper glider gun
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Movies!!!
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