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Chapter 1

From Discrete to Continuous Trees

In this chapter, we first explain how discrete random trees can be coded by discrete paths
called the height function and the contour function of the tree. We then prove that the
rescaled height function associated with a forest of independent Galton-Watson trees con-
verges in distribution towards reflecting Brownian motion on the positive half-line. This has
several interesting consequences for the asymptotic behavior of various functionals of Galton-
Watson forests or trees. We also discuss analogous results for a single Galton-Watson tree
conditioned to be large. In particular we recover a famous theorem of Aldous showing that
the suitably rescaled contour function of a Galton-Watson tree conditioned to have n vertices
converges in distribution towards the normalized Brownian excursion as n → ∞.

1.1 Discrete trees

We will be interested in (finite) rooted ordered trees, which are also called plane trees in
combinatorics (see e.g. [31]). We first introduce the set of labels

U =

∞⋃

n=0

Nn

where N = {1, 2, . . .} and by convention N0 = {∅}. An element of U is thus a sequence u =
(u1, . . . , un) of elements of N, and we set |u| = n, so that |u| represents the “generation” of
u. If u = (u1, . . . um) and v = (v1, . . . , vn) belong to U , we write uv = (u1, . . . um, v1, . . . , vn)
for the concatenation of u and v. In particular u∅ = ∅u = u.

The mapping π : U\{∅} −→ U is defined by π(u1 . . . un) = u1 . . . un−1 (π(u) is the
“father” of u).

A (finite) rooted ordered tree t is a finite subset of U such that:

(i) ∅ ∈ t.

(ii) u ∈ t\{∅} ⇒ π(u) ∈ t.

(iii) For every u ∈ t, there exists an integer ku(t) ≥ 0 such that, for every j ∈ N, uj ∈ t if
and only if 1 ≤ j ≤ ku(t)
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The number ku(t) is interpreted as the “number of children” of u in t.
We denote by A the set of all rooted ordered trees. In what follows, we see each vertex

of the tree t as an individual of a population whose t is the family tree. The cardinality
#(t) of t is the total progeny.

We will now explain how trees can be coded by discrete functions. We first intro-
duce the (discrete) height function associated with a tree t. Let us denote by u0 =
∅, u1, u2, . . . , u#(t)−1 the elements of t listed in lexicographical order. The height function
(ht(n); 0 ≤ n < #(t)) is defined by

ht(n) = |un|, 0 ≤ n < #(t).

The height function is thus the sequence of the generations of the individuals of t, when
these individuals are listed in the lexicographical order (see Fig.1 for an example). It is easy
to check that ht characterizes the tree t.
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Figure 1

The contour function (or Dyck path in the terminology of [31]) gives another way of
characterizing the tree, which is easier to visualize on a picture (see Fig.1). Suppose that
the tree is embedded in the half-plane in such a way that edges have length one. Informally,
we imagine the motion of a particle that starts at time t = 0 from the root of the tree and
then explores the tree from the left to the right, moving continuously along the edges at unit
speed, until it comes back to its starting point. Since it is clear that each edge will be crossed
twice in this evolution, the total time needed to explore the tree is ζ(t) := 2(#(t)− 1). The
value Ct of the contour function at time t is the distance (on the tree) between the position
of the particle at time t and the root. By convention Ct = 0 if t ≥ ζ(t). Fig.1 explains the
definition of the contour function better than a formal definition.

We will introduce still another way of coding the tree. We denote by S the set of all
finite sequences of nonnegative integers m1, . . . , mp (with p ≥ 1) such that

• m1 + m2 + · · · + mi ≥ i , ∀i ∈ {1, . . . , p − 1};
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• m1 + m2 + · · · + mp = p − 1.

Recall that u0 = ∅, u1, u2, . . . , u#(t)−1 are the elements of t listed in lexicographical order.

Proposition 1.1.1 The mapping

Φ : t −→ (ku0(t), ku1(t), . . . , ku#(t)−1
(t))

defines a bijection from A onto S.

Proof. We note that if #(t) = p, the sum ku0(t)+ ku1(t)+ · · ·+ ku#(t)−1
(t) counts the total

number of children of all individuals in the tree and is thus equal to p − 1 (because ∅ is not
counted !). Furthermore, if i ∈ {0, 1, . . . , p − 2}, ku0 + · · ·+ kui

is the number of children of
u0, . . . , ui and thus greater than or equal to i, because u1, . . . , ui are counted among these
children (in the lexicographical order, an individual is visited before his children). There is
even a strict inequality because the father of ui+1 belongs to {u0, . . . , ui}. It follows that Φ
maps A into S. We leave the rest of the proof to the reader. �

Let t ∈ A and p = #(t). Rather than the sequence (m1, . . . , mp) = Φ(t), we will often
consider the finite sequence of integers

xn =

n∑

i=1

(mi − 1) , 0 ≤ n ≤ p

which satisfies the following properties

• x0 = 0 and xp = −1.

• xn ≥ 0 for every 0 ≤ n ≤ p − 1.

• xi − xi−1 ≥ −1 for every 1 ≤ i ≤ p.

Such a sequence is called a Lukasiewicz path. Obviously the mapping Φ of the proposition
induces a bijection between trees (in A) and Lukasiewicz paths.

We now observe that there is a simple relation between the height function of a tree and
its Lukasiewicz path.

Proposition 1.1.2 The height function ht of a tree t is related to the Lukasiewicz path of
t by the formula

ht(n) = Card{j ∈ {0, 1, . . . , n − 1} : xj = inf
j≤`≤n

x`},

for every n ∈ {0, 1, . . . , #(t) − 1}.
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Proof. Obviously,

ht(n) = Card{j ∈ {0, 1, . . . , n − 1} : uj ≺ un}

where ≺ stands for the genealogical order on the tree (u ≺ v if v is a descendant of u). Thus
it is enough to prove that for j ∈ {0, 1, . . . , n − 1}, uj ≺ un holds iff

xj = inf
j≤`≤n

x`.

To this end, it suffices to verify that

inf{k ≥ j : xk < xj}

is equal either to #(t), in the case when all uk with k > j are descendants of uj, or to the
first index k > j such that uk is not a descendant of uj.

However, writing

xk − xj =
k∑

i=j+1

(mi − 1)

and using the same arguments as in the proof of Proposition 1.1.1 (to prove that Φ takes
values in S), we see that for every ` > j such that u` is a descendant of uj, we have x`−xj ≥ 0,
whereas on the other hand xk−xj = −1 if k is the first ` > j such that u` is not a descendant
of j (or k = p if there are no such `). This completes the proof. �

1.2 Galton-Watson trees

Let µ be a critical or subcritical offspring distribution. This means that µ is a probability
measure on Z+ such that

∞∑

k=0

kµ(k) ≤ 1.

We exclude the trivial case where µ(1) = 1.

We will make use of the following explicit construction of Galton-Watson trees: Let
(Ku, u ∈ U) be a collection of independent random variables with law µ, indexed by the
label set U . Denote by θ the random subset of U defined by

θ = {u = u1 . . . un ∈ U : uj ≤ Ku1...uj−1 for every 1 ≤ j ≤ n}.

Proposition 1.2.1 θ is a.s. a tree. Moreover, if

Zn = Card{u ∈ θ : |u| = n},

(Zn, n ≥ 0) is a Galton-Watson process with offspring distribution µ and initial value Z0 = 1.
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Remark. Clearly ku(θ) = Ku for every u ∈ θ.

The tree θ, or any random tree with the same distribution, will be called a Galton-Watson
tree with offspring distribution µ, or in short a µ-Galton-Watson tree. We also write Πµ for
the distribution of θ on the space A.

We leave the easy proof of the proposition to the reader. The finiteness of the tree θ
comes from the fact that the Galton-Watson process with offspring distribution µ becomes
extinct a.s., so that Zn = 0 for n large.

If t is a tree and 1 ≤ j ≤ k∅(t), we write Tjt for the tree t shifted at j:

Tjt = {u ∈ U : ju ∈ t}.

Note that Tjt is a tree.
Then Πµ may be characterized by the following two properties (see e.g. [25] for more

general statements):

(i) Πµ(k∅ = j) = µ(j), j ∈ Z+.

(ii) For every j ≥ 1 with µ(j) > 0, the shifted trees T1t, . . . , Tjt are independent under the
conditional probability Πµ(dt | k∅ = j) and their conditional distribution is Πµ.

Property (ii) is often called the branching property of the Galton-Watson tree.
We now give an explicit formula for Πµ.

Proposition 1.2.2 For every t ∈ A,

Πµ(t) =
∏

u∈t

µ(ku(t)).

Proof. We can easily check that

{θ = t} =
⋂

u∈t

{Ku = ku(t)},

so that
Πµ(t) = P (θ = t) =

∏

u∈t

P (Ku = ku(t)) =
∏

u∈t

µ(ku(t)).

�

Recall from Proposition 1.1.1 the definition of the mapping Φ.

Proposition 1.2.3 Let θ be a µ-Galton-Watson tree. Then

Φ(θ)
(d)
= (M1, M2, . . . , MT ),

where the random variables M1, M2, . . . are independent with distribution µ, and

T = inf{n ≥ 1 : M1 + · · · + Mn < n}.
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Remark. The fact that T < ∞ a.s. is indeed a consequence of our approach, but is also
easy to prove directly by a martingale argument.

Proof. We may assume that θ is given by the preceding explicit construction. Write U0 = ∅,
U1, . . . , U#(θ)−1 for the elements of θ listed in lexicographical order, in such a way that

Φ(θ) = (KU0, KU1 , . . . , KU#(θ)−1
).

We already know that KU0 + · · · + KUn ≥ n + 1 for every n ∈ {0, 1, . . . , #(θ) − 2}, and
KU0 + · · · + KU#(θ)−1

= #(θ) − 1.
It will be convenient to also define Up for p ≥ #(θ), for instance by setting

Up = U#(θ)−11 . . . 1

where in the right-hand side we have added p − #(θ) + 1 labels 1. Then the proof of the
proposition reduces to checking that, for every p ≥ 0, KU0, . . . , KUp are independent with
distribution µ. We prove this by induction on p (for p = 0 or p = 1 this is obvious since we
have always U0 = ∅ and U1 = 1).

Fix p ≥ 2. Use the notation u ≤ v for the lexicographical order on U (in contrast with
u ≺ v for the genealogical order !). As usual u < v if u ≤ v and u 6= v. The point is to
observe that, for every fixed u ∈ U , the random set

θ ∩ {v ∈ U : v ≤ u}
is measurable with respect to the σ-field σ(Kv, v < u). This readily follows from the con-
struction of θ. As a consequence, the event

{Up = u} ∩ {#(θ) > p}
is measurable with respect to σ(Kv, v < u). It is also easy to see that the same measurability
property holds for the event

{Up = u} ∩ {#(θ) ≤ p}.
Hence {Up = u} is measurable with respect to σ(Kv, v < u).

Finally, if g0, g1, . . . , gp are nonnegative functions on {0, 1, . . .},
E[g0(KU0)g1(KU1) . . . gp(KUp)]

=
∑

u0<u1<···<up

E
[
1{U0=u0,...,Up=up} g0(Ku0) . . . gp(Kup)

]

=
∑

u0<u1<···<up

E
[
1{U0=u0,...,Up=up} g0(Ku0) . . . gp−1(Kup−1)

]
E[gp(Kup)]

because Kup is independent of σ(Kv, v < up), and we use the preceding measurability prop-
erty.

Then E[gp(Kup)] = µ(gp) does not depend on up, and taking gp = 1 in the preceding
formula we see that

E[g0(KU0)g1(KU1) . . . gp(Kup)] = E[g0(KU0)g1(KU1) . . . gp−1(Kup−1)] µ(gp).

An application of the induction assumption completes the proof. �
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Corollary 1.2.4 Let (Sn, n ≥ 0) be a random walk on Z with initial value S0 and jump
distribution ν(k) = µ(k + 1) for every k ≥ −1. Set

T = inf{n ≥ 1 : Sn = −1}.

Then the Lukasiewicz path of a µ-Galton-Watson tree θ is distributed as (S0, S1, . . . , ST ). In
particular, #(θ) and T have the same distribution.

This is an immediate consequence of the preceding proposition.

1.3 Convergence to Brownian motion

Our goal is to show that the height functions (or contour functions) of Galton-Watson
trees (or Galton-Watson forests) converge in distribution (modulo a suitable normalization)
towards Brownian excursions or reflected Brownian motions.

We fix a critical offspring distribution µ with finite variance σ2 > 0. Note that the
criticality means that we now have

∞∑

k=0

kµ(k) = 1.

Let θ1, θ2, . . . be a sequence of independent µ-Galton-Watson trees. With each θi we can
associate its height function (hθi

(n), 0 ≤ n ≤ #(θi)− 1)). We then define the height process
(Hn, n ≥ 0) of the forest by concatenating the functions hθ1 , hθ2 , . . .:

Hn = hθi
(n − (#(θ1) + · · ·+ #(θi−1))) if #(θ1) + · · ·+ #(θi−1) ≤ n < #(θ1) + · · ·+ #(θi).

Clearly, the function (Hn, n ≥ 0) determines the sequence of trees. To be specific, the “k-th
excursion” of H from 0 (more precisely, the values of H between its k-th zero and the next
one) is the height function of the k-th tree in the sequence.

By combining Corollary 1.2.4 with Proposition 1.1.2, we arrive at the following result (cf
Corollary 2.2 in [22]).

Proposition 1.3.1 We have for every n ≥ 0

Hn = Card {k ∈ {0, 1, . . . , n − 1} : Sk = inf
k≤j≤n

Sj}. (1.1)

where (Sn, n ≥ 0) is a random walk with the distribution described in Corollary 1.2.4.

This is the main ingredient for the proof of the following theorem. By definition, a
reflected Brownian motion (started at the origin) is the absolute value of a standard linear
Brownian motion started at the origin. The notation [x] refers to the integer part of x.
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Theorem 1.3.2 Let θ1, θ2, . . . be a sequence of independent µ-Galton-Watson trees, and let
(Hn, n ≥ 0) be the associated height process. Then

(
1√
p
H[pt], t ≥ 0)

(d)−→
p→∞

(
2

σ
γt, t ≥ 0)

where γ is a reflected Brownian motion. The convergence holds in the sense of weak conver-
gence on the Skorokhod space D(R+, R+).

Let us establish the weak convergence of finite-dimensional marginals in the theorem.

Let S = (Sn, n ≥ 0) be as in Proposition 1.3.1. Note that the jump distribution ν has
mean 0 and finite variance σ2, and thus the random walk S is recurrent. We also introduce
the notation

Mn = sup
0≤k≤n

Sk , In = inf
0≤k≤n

Sk .

Donsker’s invariance theorem gives

(
1√
p
S[pt], t ≥ 0)

(d)−→
p→∞

(σ Bt, t ≥ 0) (1.2)

where B is a standard linear Brownian motion started at the origin.
For every n ≥ 0, introduce the time-reversed random walk Ŝn defined by

Ŝn
k = Sn − S(n−k)+

and note that (Ŝn
k , 0 ≤ k ≤ n) has the same distribution as (Sn, 0 ≤ k ≤ n). From formula

(1.1), we have

Hn = Card {k ∈ {0, 1, . . . , n − 1} : Sk = inf
k≤j≤n

Sj} = Φn(Ŝn),

where for any discrete trajectory ω = (ω(0), ω(1), . . .), we have set

Φn(ω) = Card {k ∈ {1, . . . , n} : ω(k) = sup
0≤j≤k

ω(j)}.

We also set
Kn = Φn(S) = Card {k ∈ {1, . . . , n} : Sk = Mk}.

Lemma 1.3.3 Define a sequence of stopping times Tj, j = 0, 1, . . . inductively by setting
T0 = 0 and for every j ≥ 1,

Tj = inf{n > Tj−1 : Sn = Mn}.

Then the random variables STj
− STj−1

, j = 1, 2, . . . are independent and identically dis-
tributed, with distribution

P [ST1 = k] = ν([k,∞)) , k ≥ 0.
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Proof. The fact that the random variables STj
− STj−1

, j = 1, 2, . . . are independent and
identically distributed is a straightforward consequence of the strong Markov property. It
remains to compute the distribution of ST1 .

The invariant measure of the recurrent random walk S is the counting measure on Z. By
a standard result, if R0 = inf{n ≥ 1 : Sn = 0}, we have for every i ∈ Z,

E
[ R0−1∑

n=0

1{Sn=i}
]

= 1.

Notice that T1 ≤ R0 and that the random walk takes positive values on ]T1, R0[. It easily
follows that for every i ≤ 0

E
[ T1−1∑

n=0

1{Sn=i}
]

= 1.

Therefore, for any function g : Z −→ Z+,

E
[ T1−1∑

n=0

g(Sn)
]

=

−∞∑

i=0

g(i). (1.3)

Then, for any function f : Z −→ Z+,

E[f(ST1)] = E
[ ∞∑

k=0

1{k<T1}f(Sk+1) 1{Sk+1≥0}
]

=
∞∑

k=0

E
[
1{k<T1}f(Sk+1) 1{Sk+1≥0}

]

=
∞∑

k=0

E
[
1{k<T1}

∞∑

j=0

ν(j)f(Sk + j)1{Sk+j≥0}
]

=
−∞∑

i=0

∞∑

j=0

ν(j) f(i + j)1{i+j≥0}

=

∞∑

m=0

f(m)

∞∑

j=m

ν(j),

which gives the desired formula. In the third equality we used the Markov property at time
k and in the fourth one we applied (1.3). �

Note that the distribution of ST1 has a finite first moment:

E[ST1 ] =

∞∑

k=0

k ν([k,∞)) =

∞∑

j=0

j(j + 1)

2
ν(j) =

σ2

2
.

The next lemma is the key to the first part of the proof.
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Lemma 1.3.4 We have
Hn

Sn − In

(P)−→
n→∞

2

σ2
,

where the notation
(P)→ means convergence in probability.

Proof. From our definitions, we have

Mn =
∑

Tk≤n

(STk
− STk−1

) =

Kn∑

k=1

(STk
− STk−1

). (1.4)

Using Lemma 1.3.3 and the law of large numbers (note that Kn −→ ∞), we get

Mn

Kn

(a.s.)−→
n→∞

E[ST1 ] =
σ2

2
.

By replacing S with the time-reversed walk Ŝn we see that for every n, the pair (Mn, Kn)
has the same distribution as (Sn − In, Hn). Hence the previous convergence entails

Sn − In

Hn

(P)−→
n→∞

σ2

2
,

and the lemma follows. �

From (1.2), we have for every choice of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm,

1√
p

(
S[pt1] − I[pt1], . . . , S[ptm] − I[ptm]

)
(d)−→

p→∞
σ
(
Bt1 − inf

0≤s≤t1
Bs, . . . , Btm − inf

0≤s≤tm
Bs

)
.

Therefore it follows from Lemma 1.3.4 that

1√
p

(
H[pt1], . . . , H[ptm]

)
(d)−→

p→∞
2

σ

(
Bt1 − inf

0≤s≤t1
Bs, . . . , Btm − inf

0≤s≤tm
Bs

)
.

However, a famous theorem of Lévy states that the process

γt = Bt − inf
0≤s≤t

Bs

is a reflected Brownian motion. This completes the proof of the convergence of finite-
dimensional marginals in Theorem 1.3.2.

We will now discuss the functional convergence in Theorem 1.3.2. To this end, we will
need more precise estimates. We will give details of the argument in the case when µ has
small exponential moments, that is there exists λ > 0 such that

∞∑

k=0

eλk µ(k) < ∞.

Our approach in that case is inspired from [23]. See [21] for a proof in the general case. We
first state a lemma.
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Lemma 1.3.5 Let ε ∈ (0, 1
4
). We can find ε′ > 0 and an integer N ≥ 1 such that, for every

n ≥ N and ` ∈ {0, 1, . . . , n},

P [|M` −
σ2

2
K`| > n

1
4
+ε] < exp(−nε′).

We postpone the proof of the lemma and complete the proof of Theorem 1.3.2. We apply
Lemma 1.3.5 with ε = 1/8. Since for every n the pair (Mn, Kn) has the same distribution
as (Sn − In, Hn), we get that, for every sufficiently large n, and ` ∈ {0, 1, . . . , n},

P [|S` − I` −
σ2

2
H`| > n

3
8 ] < exp(−nε′).

Hence

P
[

sup
0≤`≤n

|S` − I` −
σ2

2
H`| > n

3
8

]
< n exp(−nε′).

Let A ≥ 1 be a fixed integer. We deduce from the preceding bound that, for every p
sufficiently large,

P
[

sup
0≤t≤A

|S[pt] − I[pt] −
σ2

2
H[pt]| > (Ap)

3
8

]
< Ap exp(−(Ap)ε′). (1.5)

A simple application of the Borel-Cantelli lemma gives

sup
0≤t≤A

∣∣∣S[pt] − I[pt]√
p

− σ2

2

H[pt]√
p

∣∣∣ −→
p→∞

0 , a.s.

It is now clear that the theorem follows from the convergence

(
1√
p
(S[pt] − I[pt]), t ≥ 0)

(d)−→
p→∞

(σ( Bt − inf
0≤s≤t

Bs), t ≥ 0),

which is an immediate consequence of (1.2). �

We still have to prove Lemma 1.3.5. We first state a very simple “moderate deviations”
lemma for sums of independent random variables.

Lemma 1.3.6 Let Y1, Y2, . . . be a sequence of i.i.d. real random variables. We assume that
there exists a number λ > 0 such that E[exp(λ|Y1|)] < ∞, and that E[Y1] = 0. Then, for
every α > 0, we can choose N sufficiently large so that for every n ≥ N and ` ∈ {1, 2, . . . , n},

P [|Y1 + · · · + Y`| > n
1
2
+α] ≤ exp(−nα/2).

Proof. The assumption implies that E[eλY1 ] = 1+cλ2 +o(λ2) as λ → 0, where c = 1
2
var(Y1).

Hence we can find a constant C such that for every sufficiently small λ > 0,

E[eλY1 ] ≤ eCλ2

.
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It follows that, for every sufficiently small λ > 0,

P [Y1 + · · · + Y` > n
1
2
+α] ≤ e−λn

1
2+α

E[eλ(Y1+...+Y`)] ≤ e−λn
1
2+α

eCnλ2

.

If n is sufficiently large we can take λ = n−1/2 and the desired result follows (after also
replacing Yi with −Yi). �

Let us now prove Lemma 1.3.5. We choose α ∈ (0, ε/2) and to simplify notation we put

mn = [n
1
2
+α]. Then, for every ` ∈ {0, 1, . . . , n},

P [|M` −
σ2

2
K`| > n

1
4
+ε] ≤ P [K` > mn] + P [|M` −

σ2

2
K`| > n

1
4
+ε; K` ≤ mn]. (1.6)

Recalling (1.4), we have first

P [|M` −
σ2

2
K`| > n

1
4
+ε; K` ≤ mn] ≤ P

[
sup

0≤k≤mn

|
k∑

j=1

((STj
− STj−1

) − σ2

2
)| > n

1
4
+ε

]

≤ P
[

sup
0≤k≤mn

|
k∑

j=1

((STj
− STj−1

) − σ2

2
)| > m

1
2
+ε

n

]

≤ mn exp(−mε/2
n ),

where the last bound holds for n large by Lemma 1.3.6. Note that we are assuming that
µ has small exponential moments, and the same holds for the law of ST1 by Lemma 1.3.3,
which allows us to apply Lemma 1.3.6.

We still need to bound the first term in the right-hand side of (1.6). Plainly,

P [K` > mn] ≤ P [Kn > mn] ≤ P [STmn
≤ Mn],

and so

P [K` > mn] ≤ P [STmn
≤ n

1
2
+α

2 ] + P [Mn > n
1
2
+α

2 ].

Applying again Lemma 1.3.6, we get that for n large,

P [Mn > n
1
2
+α

2 ] ≤ n sup
1≤`≤n

P [S` > n
1
2
+α

2 ] ≤ n exp(−nα/4).

Finally,

P [STmn
≤ n

1
2
+α

2 ] = P [STmn
− σ2

2
mn ≤ n

1
2
+α

2 − σ2

2
mn]

and since STmn
− σ2

2
mn is the sum of mn i.i.d. centered random variables having small expo-

nential moments, we can again apply Lemma 1.3.6 (or a classical large deviations estimate)
to get the needed bound. This completes the proof of Lemma 1.3.5. �
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1.4 Some applications

Let us first recall some important properties of linear Brownian motion. Let β be a standard
linear Brownian motion started at 0. Then there exists a continuous increasing process
L0

t = L0
t (β) called the local time of β at 0 such that if Nε(t) denotes the number of positive

excursions of β away from 0 with height greater than ε and completed before time t, one has

lim
ε→0

2ε Nε(t) = L0
t

for every t ≥ 0, a.s. The topological support of the measure dL0
t coincides a.s. with the zero

set {t ≥ 0 : βt = 0}. Moreover, the above-mentioned Lévy theorem can be strengthened in
the form

(Bt − Bt ,−Bt; t ≥ 0)
(d)
= (|βt|, L0

t (β); t ≥ 0)

where Bt = inf0≤s≤t Bs. See e.g. [28] Chapter VI, Theorem VI.2.3.
Keeping the notation of Section 3, we set for every n ≥ 0,

Λn = k iff #(θ1) + · · ·+ #(θk−1) ≤ n < #(θ1) + · · ·+ #(θk)

in such a way that k is the index of the tree to which the nth-visited vertex belongs.
The convergence stated in Theorem 1.3.2 can now be strenghtened in the following form:

(
1√
p
H[pt],

1√
p
Λ[pt]; t ≥ 0)

(d)−→
p→∞

(
2

σ
|βt|, σL0

t (β); t ≥ 0). (1.7)

This is a simple consequence of our arguments: It is easily seen that

Λn = 1 − inf
j≤n

Sj = 1 − In.

On the other hand, we saw that, for every A > 0,

sup
0≤t≤A

∣∣∣S[pt] − I[pt]√
p

− σ2

2

H[pt]√
p

∣∣∣ −→
p→∞

0 , a.s.

Combining with Donsker’s theorem, we get

(
1√
p
H[pt],

1√
p
Λ[pt]; t ≥ 0)

(d)−→
p→∞

(
2

σ
(Bt − Bt) ,−σBt; t ≥ 0)

and an application of Lévy’s theorem in the form recalled above yields (1.7).
We will now apply (1.7) to study the asymptotics of a single Galton-Watson tree condi-

tioned to be large. We write h(θ) = sup{|v| : v ∈ θ} for the height of the tree θ. Let us fix
x > 0 and for every integer p ≥ 1 denote by θ{x

√
p} a random tree with distribution

Πµ(da | h(a) ≥ x
√

p)

where we recall that Πµ is the law of the Galton-Watson tree with offspring distribution µ.

We denote by H{x√p} the height function of θ{x
√

p}. By convention, H
{x√p}
n = 0 if

n ≥ #(θ{x
√

p}).
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Corollary 1.4.1 We have

(
1√
p
H

{x√p}
[pt] , t ≥ 0)

(d)−→
p→∞

(
2

σ
e

σx/2
t , t ≥ 0)

where eσx/2 is a Brownian excursion conditioned to have height greater than σx/2.

The excursion eσx/2 can be constructed explicitly in the following way. Set

T = inf{t ≥ 0 : |βt| ≥ σx/2}
G = sup{t ≤ T : βt = 0}
D = inf{t ≥ T : βt = 0}.

Then we may take
e

σx/2
t = |β(G+t)∧D|.

Proof. We rely on (1.7). From the Skorokhod representation theorem, we may for every

p ≥ 1 find a process (H
(p)
t , Λ

(p)
t ) such that

(H
(p)
t , Λ

(p)
t )t≥0

(d)
= (

1√
p
H[pt],

1√
p
Λ[pt])t≥0

and

(H
(p)
t , Λ

(p)
t )t≥0 −→

p→∞
(
2

σ
|βt|, σL0

t (β))t≥0. (1.8)

uniformly on every compact set, a.s.
Set

T (p) = inf{t ≥ 0 : |H (p)
t | ≥ x}

G(p) = sup{t ≤ T (p) : H
(p)
t = 0} − p−1

D(p) = inf{t ≥ T (p) : H
(p)
t = 0}.

By construction, (H
(p)

(G(p)+t)∧D(p) , t ≥ 0) has the distribution of the (rescaled) height process

of the first tree in the sequence θ1, θ2, . . . with height greater than x
√

p, which is distributed
as θ{x

√
p}. Therefore,

(H
(p)

(G(p)+t)∧D(p) , t ≥ 0)
(d)
= (

1√
p
H

{x√p}
[pt] , t ≥ 0).

The corollary will thus follow from (1.8) if we can prove that

G(p) a.s.−→ G , D(p) a.s.−→ D.

Using the fact that immediately after time T the process |β| hits levels strictly larger
than σx/2, we easily get from (1.8) that

T (p) a.s.−→
p→∞

T.
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From this and (1.8) again it follows that

lim inf D(p) ≥ D a.s.

lim sup G(p) ≥ G a.s.

Let us prove that we have also lim sup D(p) ≤ D a.s. (the same argument works for
lim inf G(p)). Let us fix t > 0. From the support property of local time, we have

L0
t > L0

D a.s. on {D < t}.

Thanks to (1.8), we get

Λ
(p)
t > σL0

D for p large, a.s. on {D < t}.

Now note that L0
D = L0

T . Since T (p) converges to T , (1.8) also shows that Λ
(p)

T (p) converges to
σL0

T , and it follows that

Λ
(p)
t > Λ

(p)

T (p) for p large, a.s. on {D < t}.

Observing that Λ(p) stays constant on the interval [T (p), D(p)), we conclude that

t ≥ D(p) for p large, a.s. on {D < t}.

This is enough to prove that lim sup D(p) ≤ D a.s. �

Replacing p by p2 and taking x = 1, we deduce from the corollary (in fact rather from
its proof) that

1

p2
#(θ{p})

(d)−→
p→∞

ζσ/2

where ζσ/2 = D − G is the length of excursion eσ/2. Indeed this immediately follows from
the convergence of D(p) − G(p) towards D − G and the fact that, by construction

#(θ{p})
(d)
= p2(D(p2) − G(p2)) + 1

in the notation of the preceding proof.
Notice that the Laplace transform of the limiting law is known explicitly :

E[exp(−λ ζσ/2)] =
σ
√

2λ/2

sinh(σ
√

2λ/2)
exp(−σ

√
2λ/2).

This basically follows from the Williams decomposition of Itô’s excursion measure (Theorem
XII.4.5 in [28]) and the known formulas for the hitting time of σ/2 by a three-dimensional
Bessel process or a linear Brownian motion started at 0 (see e.g. [28]).

Exercise. Show the convergence in distribution of p−1h(θ{p}) and identify the limiting law.
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We will now discuss “occupation measures”. Rather than considering a single tree as
above, we will be interested in a finite forest whose size will tend to ∞ with p. Precisely, we
fix b > 0, and we set

Hp
n =

{
Hn if Λn ≤ bp,
0 if Λn > bp,

in such a way that Hp is the height process for a collection of [bp] independent Galton-Watson
trees. Then it easily follows from (1.7) that

(
1

p
Hp

[p2t], t ≥ 0)
(d)−→

p→∞
(
2

σ
|β|t∧τb/σ

, t ≥ 0), (1.9)

where, for every r > 0,
τr := inf{t ≥ 0 : L0

t > r}.
Indeed, we can write

1

p
Hp

[p2t] =
1

p
H

[p2(t∧τ
(p)
b )]

where τ
(p)
b = 1

p2 inf{n ≥ 0 : Λn > bp} = inf{t ≥ 0 : 1
p
Λ[p2t] > b}. Then we observe from (1.7)

that

((
1

p
H[p2t])t≥0 , τ

(p)
b )

(d)−→
p→∞

((
2

σ
|βt|)t≥0 , τb/σ)

and (1.9) follows.
Taking b = 1, we deduce from (1.9) that, for every x > 0,

P
[

sup
1≤i≤p

h(θi) > px
]
−→
p→∞

P
[

sup
t≤τ1/σ

2

σ
|βt| > x

]
= 1 − exp(− 2

σ2x
).

The last equality is a simple consequence of excursion theory for linear Brownian motion
(see e.g. Chapter XII in [28]). Now obviously

P
[

sup
1≤i≤p

h(θi) > px
]

= 1 − (1 − P [h(θ) > px])p

and we recover the classical fact in the theory of branching processes

P [h(θ) ≥ n] ∼
n→∞

2

σ2n
.

We now set Zp
0 = p and, for every n ≥ 1,

Zp
n =

p∑

i=1

Card{u ∈ θi : |u| = n} = Card{k ≥ 0 : Hp
k = n}.

From Proposition 1.2.1, we know that (Zp
n, n ≥ 0) is a Galton-Watson branching process

with offspring distribution µ. We can thus apply the classical diffusion approximation to
this process.
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Theorem 1.4.2

(
1

p
Zp

[pt], t ≥ 0)
(d)−→

p→∞
(Xt, t ≥ 0),

where the limiting process X is a diffusion process with infinitesimal generator 1
2
σ2x d2

dx2 ,
which can be obtained as the unique solution of the stochastic differential equation

dXt = σ
√

Xt dBt

X0 = 1.

For a proof, see e.g. Theorem 9.1.3 in Ethier and Kurtz [13]. It is easy to see that, for
every p ≥ 1,

• Zp
n is a martingale,

• (Zp
n)

2 − σ2
∑n−1

k=0 Zp
k is a martingale,

which strongly suggests that the limiting process X is of the form stated in the theorem.

The process X is called Feller’s branching diffusion. When σ = 2, this is also the zero-
dimensional squared Bessel process in the terminology of [28]. Note that X hits 0 in finite
time and is absorbed at 0.

To simplify notation, let us fix µ with σ = 2. Let f1, . . . , fq be q continuous functions
with compact support from R+ into R+. As a consequence of (1.9) we have

( ∫ τ
(p)
1

0

fi(
1

p
Hp

[p2t]) dt
)

1≤i≤q

(d)−→
p→∞

( ∫ τ1/2

0

fi(|βt|) dt
)

1≤i≤q
.

On the other hand,

∫ τ
(p)
1

0

fi(
1

p
Hp

[p2t]) dt =
1

p2

∞∑

n=0

Zp
nfi(

n

p
) =

∫ ∞

0

da fi(
[pa]

p
)
1

p
Zp

[pa].

By using Theorem 1.4.2, we see that

( ∫ τ1/2

0

fi(|βt|) dt
)

1≤i≤q

(d)
=

( ∫ ∞

0

da fi(a) Xa

)
1≤i≤q

.

In other words, the occupation measure of |β| over the time interval [0, τ1/2], that is the
measure

f −→
∫ τ1/2

0

f(|βt|) dt

has the same distribution as the measure Xada. We have recovered one of the celebrated
Ray-Knight theorems for Brownian local times (see e.g. Theorem XI.2.3 in [28]).
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1.5 Galton-Watson trees with a fixed progeny

We can also use Theorem 1.3.2 to recover a famous result of Aldous concerning Galton-
Watson trees conditioned to have a large (fixed) number of vertices (see [2]). We will follow
an idea of [23]. We assume as in the end of Section 3 that µ has a small exponential moment.
Our results hold without this assumption, but it will simplify the proof.

For every p ≥ 1 we denote by θ(p) the µ-Galton-Watson tree conditioned to have #(θ) = p.
For this to make sense we need P (#(θ) = p) > 0 for every p ≥ 1, which holds if µ(1) > 0 (in
fact, we only need P (#(θ) = p) > 0 for p large, which holds under an aperiodicity condition
on µ).

We denote by (H
(p)
k )0≤k≤p the height process of θ(p), with the convention H

(p)
p = 0.

We also need to introduce the normalized Brownian excursion (et)0≤t≤1. This is simply
the Brownian excursion conditioned to have length 1. For instance, we may look at the
first positive excursion of β (away from 0) with length greater than 1, write [G, D] for the
corresponding time interval, and set

Et = β(G+t)∧D , t ≥ 0

and

et =
1√

D − G
E(D−G)t , 0 ≤ t ≤ 1.

A more intrinsic construction of the normalized Brownian excursion will be presented in the
next chapter.

Theorem 1.5.1 We have

(
1√
p
H

(p)
[pt], 0 ≤ t ≤ 1)

(d)−→
p→∞

(
2

σ
et, 0 ≤ t ≤ 1).

This is obviously very similar to our previous results Theorem 1.3.2 and Corollary 1.4.1.
However, because the present conditioning “degenerates in the limit” p → ∞ (there is no
Brownian excursion with length exactly equal to 1), we cannot use the same strategy of
proof as in Corollary 1.4.1.

Proof. Let (Hn, n ≥ 0) be as in Theorem 1.3.2 the height process associated with a sequence
of independent µ-Galton-Watson trees. We may and will assume that H is given in terms
of the random walk S as in (1.1).

Denote by T1 the number of vertices of the first tree in the sequence, or equivalently

T1 = inf{n ≥ 1 : Hn = 0} = inf{n ≥ 0 : Sn = −1}.

A simple combinatorial argument (consider all circular permutations of the p increments of
the random walk S over the interval [0, p]) shows that, for every p ≥ 1,

P (T1 = p) =
1

p
P (Sp = −1).
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On the other hand classical results for random walk (see e.g. P9 in Chapter II of [30]) give

lim
p→∞

√
p P (Sp = −1) =

1

σ
√

2π
,

and it follows that

P (T1 = p) ∼
p→∞

1

σ
√

2πp3
. (1.10)

Recall from the end of the proof of Theorem 1.3.2 (see (1.5)) that we can find ε > 0 so
that, for p large enough

P
[

sup
0≤t≤1

|H[pt]√
p

− 2

σ2

S[pt] − I[pt]√
p

| > p−1/8
]

< exp(−pε).

By comparing with (1.10), we see that we have also for p large

P
[

sup
0≤t≤1

|H[pt]√
p

− 2

σ2

S[pt] − I[pt]√
p

| > p−1/8
∣∣∣ T1 = p

]
< exp(−pε′),

for any ε′ < ε. Since In = 0 for 0 ≤ n < T1, we have also for p large

P
[

sup
0≤t≤1

|H[pt]√
p

− 2

σ2

S[pt]√
p
| > p−1/8

∣∣∣ T1 = p
]

< exp(−pε′).

Now obviously (H
(p)
k , 0 ≤ k ≤ p) has the same distribution as (Hk, 0 ≤ k ≤ p) under

P (· | T1 = p). Therefore Theorem 1.5.1 is a consequence of the last bound and the following
lemma which relates the normalized Brownian excursion to the random walk excursion with
a fixed long duration.

Lemma 1.5.2 The distribution of the process ( 1
σ
√

p
S[pt], 0 ≤ t ≤ 1) under the conditional

probability P (· | T1 = p) converges as p tends to ∞ to the law of the normalized Brownian
excursion.

We omit the proof of this lemma, which can be viewed as a conditional version of
Donsker’s theorem. See Kaigh [17].

See also Duquesne [7] for generalisations of Theorem 1.5.1.

Applications. We immediately deduce from Theorem 1.5.1 that, for every x > 0,

lim
p→∞

P (h(θ) > x
√

p | #(θ) = p) = P ( sup
0≤t≤1

et >
σx

2
). (1.11)

There is an explicit (complicated) formula for the right side of (1.11).
This also has interesting combinatorial consequences. Note that if µ is the geometric

distribution with parameter 1
2

(µ(k) = 2−k−1), then Πµ(da | h(a) = p) is the uniform
distribution on the set Ap of all rooted ordered trees with p vertices (this follows from
Proposition 1.2.2). Thus (1.11) shows that the height of a tree chosen at random in Ap is of
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order
√

p, and more precisely it gives the asymptotic proportion of those trees in Ap with
height greater than x

√
p.

Similar observations apply to other functionals than the height. Often the convergence
in distribution of Theorem 1.5.1 is not good enough to deduce rigorously the desired com-
binatorial asymptotics (this is the case for instance if one looks at the height profile of the
tree, that is the number of vertices at every level in the tree). Still Theorem 1.5.1 allows one
to guess what the limit should be in terms of the normalized Brownian excursion.

1.6 Convergence of contour functions

In this section, we briefly explain how the preceding results can be stated as well in terms of
the contour processes of the trees rather than the height processes as discussed above. The
contour function of a tree was discussed in Section 1.1 (see Fig.1). Notice that in contrast to
the height process it is convenient to have the contour function indexed by a real parameter.

We will give the result corresponding to Theorem 1.3.2. So we consider again a sequence
θ1, θ2, . . . of independent µ-Galton-Watson trees and we denote by (Ct, t ≥ 0) the process
obtained by concatenating the contour functions of θ1, θ2, . . . Here we need to define precisely
what we mean by concatenation. In Fig.1 and the discussion of Section 1.1, the contour
function of a tree θ is naturally defined on the time interval [0, ζ(θ)], where ζ(θ) = 2(#(θ)−1).
This has the unpleasant consequence that the contour function of the tree consisting only of
the root is trivial. For this reason we make the slightly artificial convention that the contour
function Ct(θ) is defined for 0 ≤ t ≤ ξ(θ) = 2#(θ) − 1, by taking Ct = 0 if ζ(θ) ≤ t ≤
ξ(θ). We then obtain (Ct, t ≥ 0) by concatenating the functions (Ct(θ1), 0 ≤ t ≤ ξ(θ1)),
(Ct(θ2), 0 ≤ t ≤ ξ(θ2)), etc.

For every n ≥ 0, we set

Jn = 2n − Hn + In.

Note that the sequence Jn is strictly increasing and Jn ≥ n.

Recall that the value at time n of the height process corresponds to the generation of the
individual visited at step n, assuming that individuals are visited in lexicographical order
one tree after another. It is easily checked by induction on n that [Jn, Jn+1] is exactly the
time interval during which the contour process goes from the individual n to the individual
n + 1. From this observation, we get

sup
t∈[Jn,Jn+1]

|Ct − Hn| ≤ |Hn+1 − Hn| + 1.

A more precise argument for this bound follows from the explicit formula for Ct in terms of
the height process: For t ∈ [Jn, Jn+1],

Ct = Hn − (t − Jn) if t ∈ [Jn, Jn+1 − 1],

Ct = (Hn+1 − (Jn+1 − t))+ if t ∈ [Jn+1 − 1, Jn+1].

These formulas are easily checked by induction on n.
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Define a random function ϕ : R+ −→ {0, 1, . . .} by setting ϕ(t) = n iff t ∈ [Jn, Jn+1).
From the previous bound, we get for every integer m ≥ 1,

sup
t∈[0,m]

|Ct − Hϕ(t)| ≤ sup
t∈[0,Jm]

|Ct − Hϕ(t)| ≤ 1 + sup
n≤m

|Hn+1 − Hn|. (1.12)

Similarly, it follows from the definition of Jn that

sup
t∈[0,m]

|ϕ(t) − t

2
| ≤ sup

t∈[0,Jm]

|ϕ(t) − t

2
| ≤ 1

2
sup
n≤m

Hn +
1

2
|Im| + 1. (1.13)

Theorem 1.6.1 We have
(

1√
p
C2pt , t ≥ 0

)
(d)−→

p→∞
(
2

σ
|βt|, t ≥ 0). (1.14)

where β is a standard linear Brownian motion.

Proof. For every p ≥ 1, set ϕp(t) = p−1ϕ(pt). By (1.12), we have for every m ≥ 1,

sup
t≤m

∣∣∣ 1√
p
C2pt −

1√
p
Hpϕp(2t)

∣∣∣ ≤ 1√
p

+
1√
p

sup
t≤2m

|H[pt]+1 − H[pt]| −→
p→∞

0 (1.15)

in probability, by Theorem 1.3.2.
On the other hand, the convergence (1.2) implies that, for every m ≥ 1,

1√
p
Imp

(d)−→
p→∞

σ inf
t≤m

Bt. (1.16)

Then, we get from (1.13)

sup
t≤m

|ϕp(2t) − t| ≤ 1

p
sup

k≤2mp
Hk +

1

p
|I2mp| +

2

p
−→
p→∞

0 (1.17)

in probability, by Theorem 1.3.2 and (1.16).
The statement of the theorem now follows from Theorem 1.3.2, (1.15) and (1.17). �

Remark. There is one special case where Theorem 1.6.1 is easy, without any reference to
Theorem 1.3.2. This is the case where µ is the geometric distribution µ(k) = 2−k−1, which
satisfies our assumptions with σ2 = 2. In that case, it is not hard to see that away from
the origin the contour process (Cn, n ≥ 0) behaves like simple random walk (indeed, by the
properties of the geometric distribution, the probability for an individual to have at least
n+1 children knowing that he has at least n is 1/2 independently of n). A simple argument
then shows that the statement of Theorem 1.6.1 follows from Donsker’s invariance theorem.

Clearly, Corollary 1.4.1 and Theorem 1.5.1 can also be restated in terms of the contour
process of the respective trees. Simply replace H

{p}
[pt] by C

{p}
[2pt] (with an obvious notation) in

Corollary 1.4.1 and H
(p)
[pt] by C

(p)
[2pt] in Theorem 1.5.1.
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1.7 Conclusion

The various results of this chapter show that the rescaled height processes (or contour pro-
cesses) of large Galton-Watson trees converge in distribution towards Brownian excursions.
Still we did not assert that the trees themselves converge. In fact, a precise mathematical
formulation of this fact requires a formal definition of what the limiting random trees are
and what the convergence means. In the next chapter, we will give a precise definition of
continuous trees and discuss a topology on the space of continuous trees. This will make it
possible to reinterpret the results of this chapter as convergence theorems for random trees.

Bibiographical notes. The coding of discrete trees by contour functions (Dyck paths) or
Lukasiewicz words is well known: See e.g. [31]. Theorem 1.3.2 can be viewed as a variant
of Aldous’ theorem about the scaling limit of the contour function of Galton-Watson trees
[2]. The method that is presented here is taken from [21], with an additonal idea from [23].
Much more general statements can be found in Chapter 2 of the monograph [8].
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Chapter 2

Real Trees and their Coding

by Brownian Excursions

In this chapter, we first describe the formalism of real trees, which can be used to give a
precise mathematical meaning to the convergence of rescaled discrete trees towards contin-
uous objects. We then show how a real tree can be coded by a continuous function in a
way similar to the coding of discrete trees by their contour functions. Aldous’ Continuum
Random Tree (the CRT) can be defined as the random real tree coded by a normalized
Brownian excursion. For every integer p ≥ 1, we then compute the p-dimensional marginal
distribution (that is the law of the reduced tree consisting of the ancestral lines of p indi-
viduals chosen uniformly at random) of the tree coded by a Brownian excursion under the
Itô excursion measure. Via a conditioning argument, this leads to a simple derivation of the
marginal distributions of the CRT.

2.1 Real trees

Definition 2.1.1 A compact metric space (T , d) is a real tree if the following two properties
hold for every a, b ∈ T .

(i) There is a unique isometric map fa,b from [0, d(a, b)] into T such that fa,b(0) = a and
fa,b(d(a, b)) = b.

(ii) If q is a continuous injective map from [0, 1] into T , such that q(0) = a and q(1) = b,
we have

q([0, 1]) = fa,b([0, d(a, b)]).

A rooted real tree is a real tree (T , d) with a distinguished vertex ρ = ρ(T ) called the root.
In what follows, real trees will always be rooted, even if this is not mentioned explicitly.

Let us consider a rooted real tree (T , d). The range of the mapping fa,b in (i) is denoted
by [[a, b]] (this is the line segment between a and b in the tree). In particular, [[ρ, a]] is the
path going from the root to a, which we will interpret as the ancestral line of vertex a. More
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precisely we define a partial order on the tree by setting a 4 b (a is an ancestor of b) if and
only if a ∈ [[ρ, b]].

If a, b ∈ T , there is a unique c ∈ T such that [[ρ, a]] ∩ [[ρ, b]] = [[ρ, c]]. We write c = a ∧ b
and call c the most recent common ancestor to a and b.

By definition, the multiplicity of a vertex a ∈ T is the number of connected components
of T \{a}. Vertices of T \{ρ} which have multiplicity 1 are called leaves.

Our goal is to study the convergence of random real trees. To this end, it is of course
necessary to have a notion of distance between two real trees. We will use the Gromov-
Hausdorff distance, which has been introduced by Gromov (see e.g. [15]) in view of geometric
applications.

If (E, δ) is a metric space, we use the notation δHaus(K, K ′) for the usual Hausdorff metric
between compact subsets of E :

δHaus(K, K ′) = inf{ε > 0 : K ⊂ Uε(K
′) and K ′ ⊂ Uε(K)},

where Uε(K) := {x ∈ E : δ(x, K) ≤ ε}.
Then, if T and T ′ are two rooted real trees with respective roots ρ and ρ′, we define the

distance dGH(T , T ′) by

dGH(T , T ′) = inf{δHaus(ϕ(T ), ϕ′(T ′)) ∨ δ(ϕ(ρ), ϕ′(ρ′))}

where the infimum is over all choices of a metric space (E, δ) and all isometric embeddings
ϕ : T −→ E and ϕ′ : T ′ −→ E of T and T ′ into (E, δ).

Two rooted real trees T(1) and T(2) are called equivalent if there is a root-preserving
isometry that maps T(1) onto T(2). Obviously dGH(T , T ′) only depends on the equivalence
classes of T and T ′. We denote by T the set of all equivalence classes of rooted compact
real trees. Then dGH defines a metric on T (cf [15] and [14]).

Theorem 2.1.1 The metric space (T, dGH) is complete and separable.

For a proof, see Theorem 2 in [14]. Furthermore, the distance dGH can often be evaluated
in the following way. First recall that if (E1, d1) and (E2, d2) are two compact metric spaces,
a correspondence between E1 and E2 is a subset R of E1 × E2 such that for every x1 ∈ E1

there exists at least one x2 ∈ E2 such that (x1, x2) ∈ R and conversely for every y2 ∈ E2

there exists at least one y1 ∈ E1 such that (y1, y2) ∈ R. The distorsion of the correspondence
R is defined by

dis(R) = sup{|d1(x1, y1) − d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R}.

Then, if T and T ′ are two rooted real trees with respective roots ρ and ρ′, we have

dGH(T , T ′) =
1

2
inf

R∈C(T ,T ′), (ρ,ρ′)∈R
dis(R), (2.1)

where C(T , T ′) denotes the set of all correspondences between T and T ′ (see Lemma 2.3 in
[14]).
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2.2 Coding real trees

In this section, we describe a method for constructing real trees, which is particularly well-
suited to our forthcoming applications to random trees. We consider a (deterministic) con-
tinuous function g : [0,∞) −→ [0,∞) with compact support and such that g(0) = 0. To
avoid trivialities, we will also assume that g is not identically zero. For every s, t ≥ 0, we set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r),

and

dg(s, t) = g(s) + g(t) − 2mg(s, t).

Clearly dg(s, t) = dg(t, s) and it is also easy to verify the triangle inequality

dg(s, u) ≤ dg(s, t) + dg(t, u)

for every s, t, u ≥ 0. We then introduce the equivalence relation s ∼ t iff dg(s, t) = 0 (or
equivalently iff g(s) = g(t) = mg(s, t)). Let Tg be the quotient space

Tg = [0,∞)/ ∼ .

Obviously the function dg induces a distance on Tg, and we keep the notation dg for this
distance. We denote by pg : [0,∞) −→ Tg the canonical projection. Clearly pg is continuous
(when [0,∞) is equipped with the Euclidean metric and Tg with the metric dg).

We set ρ = pg(0). If ζ > 0 is the supremum of the support of g, we have pg(t) = ρ for
every t ≥ ζ. In particular, Tg = pg([0, ζ]) is compact.

Theorem 2.2.1 The metric space (Tg, dg) is a real tree.

We will view (Tg, dg) as a rooted tree with root ρ.
Before proceeding to the proof of the theorem, we state and prove the following root

change lemma.

Lemma 2.2.2 Let s0 ∈ [0, ζ). For any real r ≥ 0, denote by r the unique element of [0, ζ)
such that r − r is an integer multiple of ζ. Set

g′(s) = g(s0) + g(s0 + s) − 2mg(s0, s0 + s),

for every s ∈ [0, ζ], and g′(s) = 0 for s > ζ. Then, the function g′ is continuous with compact
support and satisfies g′(0) = 0, so that we can define the tree Tg′. Furthermore, for every
s, t ∈ [0, ζ], we have

dg′(s, t) = dg(s0 + s, s0 + t) (2.2)

and there exists a unique isometry R from Tg′ onto Tg such that, for every s ∈ [0, ζ],

R(pg′(s)) = pg(s0 + s). (2.3)
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Proof. It is immediately checked that g′ satisfies the same assumptions as g, so that we can
make sense of Tg′ . Then the key step is to verify the relation (2.2). Consider first the case
where s, t ∈ [0, ζ − s0). Then two possibilities may occur.

If mg(s0 + s, s0 + t) ≥ mg(s0, s0 + s), then mg(s0, s0 + r) = mg(s0, s0 + s) = mg(s0, s0 + t)
for every r ∈ [s, t], and so

mg′(s, t) = g(s0) + mg(s0 + s, s0 + t) − 2mg(s0, s0 + s).

It follows that

dg′(s, t) = g′(s) + g′(t) − 2mg′(s, t)

= g(s0 + s) − 2mg(s0, s0 + s) + g(s0 + t) − 2mg(s0, s0 + t)

−2(mg(s0 + s, s0 + t) − 2mg(s0, s0 + s))

= g(s0 + s) + g(s0 + t) − 2mg(s0 + s, s0 + t)

= dg(s0 + s, s0 + t).

If mg(s0 + s, s0 + t) < mg(s0, s0 + s), then the minimum in the definition of mg′(s, t) is
attained at r1 defined as the first r ∈ [s, t] such that g(s0 + r) = mg(s0, s0 + s) (because for
r ∈ [r1, t] we will have g(s0 + r) − 2mg(s0, s0 + r) ≥ −mg(s0, s0 + r) ≥ −mg(s0, s0 + r1)).
Therefore,

mg′(s, t) = g(s0) − mg(s0, s0 + s),

and

dg′(s, t) = g(s0 + s) − 2mg(s0, s0 + s) + g(s0 + t) − 2mg(s0, s0 + t) + 2mg(s0, s0 + s)

= dg(s0 + s, s0 + t).

The other cases are treated in a similar way and are left to the reader.
By (2.2), if s, t ∈ [0, ζ] are such that dg′(s, t) = 0, we have dg(s0 + s, s0 + t) = 0 so that

pg(s0 + s) = pg(s0 + t). Noting that Tg′ = pg′([0, ζ]) (the supremum of the support of g′ is
less than or equal to ζ), we can define R in a unique way by the relation (2.3). From (2.2),
R is an isometry, and it is also immediate that R takes Tg′ onto Tg. �

Proof of Theorem 2.2.1. Let us start with some preliminaries. For σ, σ ′ ∈ Tg, we set
σ 4 σ′ if and only if dg(σ, σ′) = dg(ρ, σ′) − dg(ρ, σ). If σ = pg(s) and σ′ = pg(t), it follows
from our definitions that σ 4 σ′ iff mg(s, t) = g(s). It is immediate to verify that this defines
a partial order on Tg.

For any σ0, σ ∈ Tg, we set

[[σ0, σ]] = {σ′ ∈ Tg : dg(σ0, σ) = dg(σ0, σ
′) + dg(σ

′, σ)}.

If σ = pg(s) and σ′ = pg(t), then it is easy to verify that [[ρ, σ]] ∩ [[ρ, σ′]] = [[ρ, γ]], where
γ = pg(r), if r is any time which achieves the minimum of g between s and t. We then put
γ = σ ∧ σ′.

We set Tg[σ] := {σ′ ∈ Tg : σ 4 σ′}. If Tg[σ] 6= {σ} and σ 6= ρ, then Tg\Tg[σ] and Tg[σ]\{σ}
are two nonempty disjoint open sets. To see that Tg\Tg[σ] is open, let s be such that pg(s) = σ
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and note that Tg[σ] is the image under pg of the compact set {u ∈ [0, ζ] : mg(s, u) = g(s)}.
The set Tg[σ]\{σ} is open because if σ′ ∈ Tg[σ] and σ′ 6= σ, it easily follows from our
definitions that the open ball centered at σ′ with radius dg(σ, σ′) is contained in Tg[σ]\{σ}.

We now prove property (i) of the definition of a real tree. So we fix σ1 and σ2 in Tg and
we have to prove existence and uniqueness of the mapping fσ1,σ2 . By using Lemma 2.2.2
with s0 such that pg(s0) = σ1, we may assume that σ1 = ρ. If σ ∈ Tg is fixed, we have to
prove that there exists a unique isometric mapping f = fρ,σ from [0, dg(ρ, σ)] into Tg such
that f(0) = ρ and f(dg(ρ, σ)) = σ. Let s ∈ p−1

g ({σ}), so that g(s) = dg(ρ, σ). Then, for
every a ∈ [0, dg(ρ, σ)], we set

v(a) = inf{r ∈ [0, s] : mg(r, s) = a}.
Note that g(v(a)) = a. We put f(a) = pg(v(a)). We have f(0) = ρ and f(dg(ρ, σ)) = σ, the
latter because mg(v(g(s)), s) = g(s) implies pg(v(g(s))) = pg(s) = σ. It is also easy to verify
that f is an isometry: If a, b ∈ [0, dg(ρ, σ)] with a ≤ b, it is immediate that mg(v(a), v(b)) = a,
and so

dg(f(a), f(b)) = g(v(a)) + g(v(b)) − 2a = b − a.

To get uniqueness, suppose that f̃ is an isometric mapping satisfying the same properties
as f . Then, if a ∈ [0, dg(ρ, σ)],

dg(f̃(a), σ) = dg(ρ, σ) − a = dg(ρ, σ) − dg(ρ, f̃(a)).

Therefore, f̃(a) 4 σ. Recall that σ = pg(s), and choose t such that pg(t) = f̃(a). Note that
g(t) = dg(ρ, pg(t)) = a. Since f̃(a) 4 σ we have g(t) = mg(t, s). On the other hand, we
also know that a = g(v(a)) = mg(v(a), s). It follows that we have a = g(t) = g(v(a)) =
mg(v(a), t) and thus dg(t, v(a)) = 0, so that f̃(a) = pg(t) = pg(v(a)) = f(a). This completes
the proof of (i).

As a by-product of the preceding argument, we see that f([0, dg(ρ, σ)]) = [[ρ, σ]]: Indeed,
we have seen that for every a ∈ [0, dg(ρ, σ)], we have f(a) 4 σ and, on the other hand, if
η 4 σ, the end of the proof of (i) just shows that η = f(dg(ρ, η)).

We turn to the proof of (ii). We let q be a continuous injective mapping from [0, 1] into
Tg, and we aim at proving that q([0, 1]) = fq(0),q(1)([0, dg(q(0), q(1))]). From Lemma 2.2.2
again, we may assume that q(0) = ρ, and we set σ = q(1). Then we have just noticed that
f0,σ([0, dg(ρ, σ)]) = [[ρ, σ]].

We first argue by contradiction to prove that [[ρ, σ]] ⊂ q([0, 1]). Suppose that η ∈
[[ρ, σ]]\q([0, 1]), and in particular, η 6= ρ, σ. Then q([0, 1]) is contained in the union of the two
disjoint open sets Tg\Tg[η] and Tg[η]\{η}, with q(0) = ρ ∈ Tg[η]\{η} and q(1) = σ ∈ Tg\Tg[η].
This contradicts the fact that q([0, 1]) is connected.

Conversely, suppose that there exists a ∈ (0, 1) such that q(a) /∈ [[ρ, σ]]. Set η = q(a) and
let γ = σ ∧ η. Note that γ ∈ [[ρ, η]] ∩ [[η, σ]] (from the definition of σ ∧ η, it is immediate to
verify that dg(η, σ) = dg(η, γ)+dg(γ, σ)). From the first part of the proof of (ii), γ ∈ q([0, a])
and, via a root change argument, γ ∈ q([a, 1]). Since q is injective, this is only possible if
γ = q(a) = η, which contradicts the fact that η /∈ [[ρ, σ]]. �

Once we know that (Tg, dg) is a real tree, it is straightforward to verify that the notation
σ 4 σ′, [[σ, σ′]], σ ∧ σ′ introduced in the preceding proof is consistent with the definitions of
Section 1 stated for a general real tree.
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Let us briefly discuss multiplicities of vertices in the tree Tg. If σ ∈ Tg is not a leaf then
we must have `(σ) < r(σ), where

`(σ) := inf p−1
g ({σ}) , r(σ) := sup p−1

g ({σ})

are respectively the smallest and the largest element in the equivalence class of σ in [0, ζ].
Note that mg(`(σ), r(σ)) = g(`(σ)) = g(r(σ)) = dg(ρ, σ). Denote by (ai, bi), i ∈ I the
connected components of the open set (`(σ), r(σ))∩ {t ∈ [0,∞) : g(t) > dg(ρ, σ)} (the index
set I is empty if σ is a leaf). Then we claim that the connected components of the open set
Tg\{σ} are the sets pg((ai, bi)), i ∈ I and Tg\Tg[σ] (the latter only if σ is not the root). We
have already noticed that Tg\Tg[σ] is open, and the argument used above for Tg[σ]\{σ} also
shows that the sets pg((ai, bi)), i ∈ I are open. Finally the sets pg((ai, bi)) are connected as
continuous images of intervals, and Tg\Tg[σ] is also connected because if σ′, σ′′ ∈ Tg\Tg[σ],
[[ρ, σ′]] ∪ [[ρ, σ′′]] is a connected closed set contained in Tg\Tg[σ].

We conclude this section with a lemma comparing the trees coded by two different func-
tions g and g′.

Lemma 2.2.3 Let g and g′ be two continuous functions with compact support from [0,∞)
into [0,∞), such that g(0) = g′(0) = 0. Then,

dGH(Tg, Tg′) ≤ 2‖g − g′‖,

where ‖g − g′‖ stands for the uniform norm of g − g′.

Proof. We rely on formula (2.1) for the Gromov-Hausdorff distance. We can construct a
correspondence between Tg and Tg′ by setting

R = {(σ, σ′) : σ = pg(t) and σ′ = pg′(t) for some t ≥ 0}.

In order to bound the distortion of R, let (σ, σ′) ∈ R and (η, η′) ∈ R. By our definition of
R we can find s, t ≥ 0 such that pg(s) = σ, pg′(s) = σ′ and pg(t) = η, pg′(t) = η′. Now recall
that

dg(σ, η) = g(s) + g(t) − 2mg(s, t),

dg′(σ
′, η′) = g′(s) + g′(t) − 2mg′(s, t),

so that
|dg(σ, η) − dg′(σ

′, η′)| ≤ 4‖g − g′‖.
Thus we have dis(R) ≤ 4‖g − g′‖ and the desired result follows from (2.1). �

2.3 The continuum random tree

We recall from Chapter 1 the notation e = (et, 0 ≤ t ≤ 1) for the normalized Brownian
excursion. By convention, we take et = 0 if t > 1.
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Definition 2.3.1 The continuum random tree (CRT) is the random real tree Te coded by
the normalized Brownian excursion.

The CRT Te is thus a random variable taking values in the set T. Note that the measur-
ability of this random variable follows from Lemma 2.2.3.

We can restate many of the results of Chapter 1 in terms of weak convergence in the
space T. Rather than doing this in an exhaustive manner, we will give a typical example
showing that the CRT is the limit of rescaled “combinatorial” trees.

Recall from Section 1 of Chapter 1 the notation A for the set of all (finite) rooted ordered
trees, and denote by An the subset of A consisting of trees with n vertices. We may and will
view each element t of A as a rooted real tree: Simply view t as a union of line segments
of length 1 in the plane, in the way represented in the left part of Figure 1 of Chapter
1, equipped with the obvious distance (the distance between σ and σ ′ is the length of the
shortest path from σ to σ′ in the tree). Alternatively, if (Ct, t ≥ 0) is the contour function
of the tree, this means that we identify t = TC (this is not really an identification, because
the tree t has an order structure which which disappears when we consider it as a real tree).

For any λ > 0 and a tree T ∈ T, the tree λT is the “same” tree with all distances
multiplied by the factor λ (if the tree is embedded in the plane as suggested above, this
corresponds to replacing the set T by λT ).

Theorem 2.3.1 For every n ≥ 1, let T(n) be a random tree distributed uniformly over An.
Then (2n)−1/2T(n) converges in distribution to the CRT Te, in the space T.

Proof. Let θ be a Galton-Watson tree with geometric offspring distribution µ(k) = 2−k−1,
and for every n ≥ 1 let θn be distributed as θ conditioned to have n vertices. Then is is easy
to verify that θn has the same distribution as T(n). On the other hand, let (Cn

t , t ≥ 0) be the
contour function of θn, and let

C̃n
t = (2n)−1/2 Cn

2nt , t ≥ 0.

From Theorem 5.1 in Chapter 5 (restated in terms of the contour function as explained in
Section 6 of the same chapter), we have

(C̃n
t , t ≥ 0)

(d)−→
n→∞

(et, t ≥ 0).

On the other hand, from the observations preceding the theorem, and the fact that θn has
the same distribution as T(n), it is immediate that the tree TC̃n coded by C̃n has the same
distribution as (2n)−1/2T(n). The statement of the theorem now follows from the previous
convergence and Lemma 2.2.3. �

We could state analogues of Theorem 2.3.1 for several other classes of combinatorial trees.
For instance, we could consider discrete trees chosen uniformly among the binary trees with n
vertices (replace the geometric distribution of the previous proof with the binary distribution
µ(0) = µ(2) = 1/2). Or we can consider a random tree τn distributed uniformly among all
rooted trees with n labelled vertices (by a famous formula due to Cayley, there are nn−1

such trees). Then (4n)−1/2τn converges in distribution to the CRT Te, in the space T. To

31



see this, take a Galton-Watson tree θ with Poisson offspring distribution µ(k) = e−1 1
k!

. Let
θn be defined as above by conditioning θ to have n vertices. By affecting randomly labels
1, 2, . . . , n to the vertices of θn and then “forgetting” the order structure of θn, we get a tree
distributed as τn. We can then argue as in the preceding proof.

2.4 The Itô excursion measure

Our goal is to derive certain explicit distributions for the CRT, and more specifically its so-
called finite-dimensional marginal distributions. For these calculations, we will need some
basic properties of Brownian excursions. Before dealing with the normalized Brownian ex-
cursion, we will consider Itô’s measure.

We denote by (Bt, t ≥ 0) a linear Brownian motion, which starts at x under the proba-
bility measure Px. We set

St = sup
s≤t

Bs , It = inf
s≤t

Bs

and, for every a ∈ R, Ta = inf{t ≥ 0 : Bt = a}. The reflection principle gives the law of the
pair (St, Bt): If a ≥ 0 and b ∈ (−∞, a],

P0[St ≥ a, Bt ≤ b] = P0[Bt ≥ 2a − b].

It follows that, for every t > 0, the density under P0 of the law of the pair (St, Bt) is

γt(a, b) =
2(2a − b)√

2πt3
exp

(
− (2a − b)2

2t

)
1{a≥0,b≤a}. (2.4)

The reflection principle also implies that St and |Bt| have the same distribution. Let a > 0.
Observing that {Ta ≤ t} = {St ≥ a}, P0 a.s., we obtain that the density of Ta under P0 is
the function

qa(t) =
a√
2πt3

exp(−a2

2t
).

Notice the relation γt(a, b) = 2 q2a−b(t) for a ≥ 0 and b < a.
For every ε > 0, denote by νε the law of the first excursion of B away from 0 that hits

level ε. More specifically, if Gε = sup{t < Tε : Bt = 0} and Dε = inf{t > Tε : Bt = 0},
νε is the law of (B(Gε+t)∧Dε , t ≥ 0). The measure νε is thus a probability measure on
the set C = C(R+, R+) of all continuous functions from R+ into R+, and is supported on
Cε = {e ∈ C : sup e(s) ≥ ε}. If 0 < ε < ε′, we have

νε(Cε′) = Pε[Tε′ < T0] =
ε

ε′

and

νε′ = νε(· | Cε′) =
ε′

ε
νε(· ∩ Cε′).

For every ε > 0, set

nε =
1

2ε
νε.

Then nε′ = nε(· ∩ Cε′) for every 0 < ε < ε′. This leads to the following definition.
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Definition 2.4.1 The σ-finite measure n on C defined by

n = lim
ε↓0

↑ nε

is called the Itô measure of positive excursions of linear Brownian motion.

Let us briefly state some simple properties of the Itô measure. First n(de) is supported
on the set E consisting of all elements e ∈ C which have the property that there exists
σ = σ(e) > 0 such that e(t) > 0 if and only if 0 < t < σ (the number σ(e) is called the
length, or the duration of excursion e). By construction, nε is the restriction of n to Cε,
and in particular n(Cε) = (2ε)−1. Finally, if Tε(e) = inf{t ≥ 0 : e(t) = ε}, the law of
(e(Tε(e) + t), t ≥ 0) under n(· | Tε < ∞) = νε is the law of (Bt∧T0 , t ≥ 0) under Pε. The last
property follows from the construction of the measure νε and the strong Markov property of
Brownian motion at time Tε.

Proposition 2.4.1 (i) For every t > 0, and every measurable function g : R+ −→ R+ such
that g(0) = 0, ∫

n(de) g(e(t)) =

∫ ∞

0

dx qx(t) g(x). (2.5)

In particular, n(σ > t) = n(e(t) > 0) = (2πt)−1/2 < ∞. Moreover,

n
( ∫ ∞

0

dt g(e(t))
)

=

∫ ∞

0

dx g(x). (2.6)

(ii) Let t > 0 and let Φ and Ψ be two nonnegative measurable functions defined respectively
on C([0, t], R+) and C. Then,

∫
n(de) Φ(e(r), 0 ≤ r ≤ t)Ψ(e(t + r), r ≥ 0)

=

∫
n(de) Φ(e(r), 0 ≤ r ≤ t) Ee(t)[Ψ(Br∧T0 , r ≥ 0)].

Proof. (i) We may assume that g is bounded and continuous and that there exists α > 0
such that g(x) = 0 if x ≤ α. Then, by dominated convergence,

∫
n(de) g(e(t)) = lim

ε↓0

∫
n(de) g(Tε(e) + t) 1{Tε(e)<∞} = lim

ε↓0

1

2ε
Eε[g(Bt∧T0)],

using the property stated just before the proposition. From formula (2.4) we now get

Eε[g(Bt∧T0)] = Eε[g(Bt) 1{t<T0}] = E0[g(ε − Bt) 1{St<ε}] =

∫ ε

0

da

∫ a

−∞
db f(ε − b) γt(a, b).

The first assertion in (i) now follows, observing that qx(t) = 1
2
γt(0,−x). The identity n(e(t) >

0) = (2πt)−1/2 < ∞ is obtained by taking g(x) = 1{x>0}. The last assertion in (i) follows
from (2.5), recalling that the function t → qx(t) is a probability density.

(ii) We may assume that Φ and Ψ are bounded and continuous and that there exists α > 0
such that F (e) = 0 if e(α) = 0. The proof then reduces to an application of the Markov
property of Brownian motion stopped at time T0, by writing
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∫
n(de) Φ(e(r), 0 ≤ r ≤ t)Ψ(e(t + r), r ≥ 0)

= lim
ε→0

∫
n(de) 1{Tε(e)<∞} Φ(e(Tε(e) + r), 0 ≤ r ≤ t)Ψ(e(Tε(e) + t + r), r ≥ 0)

= lim
ε→0

1

2ε
Eε

[
Φ(Br∧T0 , 0 ≤ r ≤ t) Ψ(B(t+s)∧T0 , s ≥ 0)

]

= lim
ε→0

1

2ε
Eε

[
Φ(Br∧T0 , 0 ≤ r ≤ t) EBt∧T0

[Ψ(Bs∧T0, s ≥ 0)]
]

= lim
ε→0

∫
n(de) 1{Tε(e)<∞} Φ(e(Tε(e) + r), 0 ≤ r ≤ t)Ee(Tε(e)+t)[Ψ(Bs∧T0, s ≥ 0)]

=

∫
n(de) Φ(e(r), 0 ≤ r ≤ t) Ee(t)[Ψ(Br∧T0, r ≥ 0)].

�

2.5 Finite-dimensional marginals under the Itô mea-

sure

If (T , d) is a real tree with root ρ, and if x1, . . . , xp ∈ T , the subtree spanned by x1, . . . , xp

is simply the set

T (x1, . . . , xp) =

p⋃

i=1

[[ρ, xi]].

It is easy to see that T (x1, . . . , xp), equipped with the distance d, is again a real tree, which
has a discrete structure: More precisely, T (x1, . . . , xp) can be represented by a discrete
skeleton (which is a discrete rooted tree with p labelled leaves) and the collection, indexed
by vertices of the skeleton, of lengths of “branches”.

Rather than giving formal definitions for a general real tree, we will concentrate on the
case of the tree Tg coded by g in the sense of Section 2.

Recall that C denotes the set of all continuous functions from R+ into R+. We consider
a general continuous function g ∈ C (in contrast with Section 2, we do not assume that
g(0) = 0 and g has compact support). If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tp, we will define a “marked
tree”

θ(g; t1, . . . , tp) =
(
τ(g; t1, . . . , tp), (hv)v∈τ(g;t1,...,tp)

)

where τ(g; t1, . . . , tp) ∈ A (A is the set of all rooted ordered trees as in Chapter 1) and
hv ≥ 0 for every v ∈ τ(g; t1, . . . , tp). To do this, we proceed by induction on p.

If p = 1, τ(g; t1) = {∅} and h∅(g; t1) = g(t1).

Let p ≥ 2 and suppose that the “marked tree” θ(g; t1, . . . , tj) has been constructed up to
order p − 1. Then there exists an integer k ∈ {1, . . . , p − 1} and k integers 1 ≤ i1 < i2 <
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· · · < ik ≤ p−1 such that mg(ti, ti+1) = mg(t1, tp) iff i ∈ {i1, . . . , ik}. Set i0 = 0 and ik+1 = p
by convention. For every ` ∈ {1, 2, . . . , k + 1}, define g` ∈ C by the formula

g`(t) = g((t ∨ ti`−1+1) ∧ ti`) − mg(t1, tp).

We then let τ(g; t1, . . . , tp) be the concatenation of the trees τ(g`; ti`−1+1, . . . , ti`) for 1 ≤ ` ≤
k + 1: Precisely,

τ(g; t1, . . . , tp) = {∅} ∪
k+1⋃

`=1

{`u : u ∈ τ(g`; ti`−1+1, . . . , ti`)}.

Furthermore, if θ(g`; ti`−1+1, . . . , ti`) = (τ(g`; ti`−1+1, . . . , ti`), (h
`
v)v∈τ(g`;ti`−1+1,...,ti`)), we define

the marks (hv)v∈τ(g;t1 ,...,tp) by setting

hv = h`
u , if v = `u , u ∈ τ(g`; ti`−1+1, . . . , ti`),

and h∅ = mg(t1, tp)
This completes the construction of the tree by induction. Note that k + 1 is the number

of children of ∅ in the tree θ(g; t1, . . . , tp), and m(t1, tp) is the mark of ∅.
If now g satisfies the conditions in Section 2, it is easy to see that θ(g; t1, . . . , tp) corre-

sponds to the tree Tg(pg(t1), . . . , pg(tp)) spanned by the vertices pg(t1), . . . , pg(tp) in the tree
Tg. More precisely, if we attach to every v ∈ τ(g; t1, . . . , tp) a line segment in the plane with
length hv, in such a way that the line segments attached to v and to its children share a
common end (the same for all children of v) and that the line segments otherwise do not
intersect, the union of the resulting line segments will give a representative of the equivalence
class of Tg(pg(t1), . . . , pg(tp)). (Note that the order structure of τ(g; t1, . . . , tp) plays no role
in this construction.)

We let A(p) be the set of all rooted ordered trees with p leaves (a leaf of a tree τ ∈ A is
a vertex u ∈ τ with no child, i.e. such that ku(τ) = 0, with the notation of Chapter 1). We
denote by Θ(p) the set of all marked trees with p leaves: Elements of Θ(p) are of the form
θ = (τ, (hv)v∈τ ) where τ ∈ A(p) and hv ≥ 0 for every v ∈ τ . The set Θ(p) is equipped with
the obvious topology and the associated Borel σ-field. We also consider the corresponding
sets of binary trees: Abin

(p) is the set of all binary rooted trees with p leaves (and hence 2p− 1

vertices), and Θbin
(p) is the set of marked trees θ = (τ, (hv)v∈τ ) whose skeleton τ belongs to

Abin
(p) . Recall that

Card(Abin
(p)) =

(2p − 2)!

(p − 1)! p!
=: cp

is the Catalan number of order p − 1.

Theorem 2.5.1 The law of the tree θ(e; t1, . . . , tp) under the measure

n(de) 1{0≤t1≤···≤tp≤σ(e)}dt1 . . . dtp

is 2p−1Λp, where Λp is the uniform measure on Θbin
(p) , defined by

∫
Λp(dθ) F (θ) =

∑

τ∈Abin
(p)

∫ ∏

v∈τ

dhv F (τ, {hv, v ∈ τ}).
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It should be clear from our construction by induction that the tree θ(e; t1, . . . , tp) only de-
pends on the values of e(t1), . . . , e(tp) and of the successive minima me(t1, t2), me(t2, t3), . . . ,
me(tp−1, tp). The key tool in the proof of Theorem 2.5.1 will thus be the following proposition.
To simplify notation we write m(s, t) = me(s, t).

Proposition 2.5.2 Let F be nonnegative and measurable on R
2p−1
+ . Then

n
( ∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp))

)

= 2p−1

∫

R
2p−1
+

dα1 . . . dαp−1dβ1 . . . dβp

( p−1∏

i=1

1[0,βi∧βi+1](αi)
)
f(α1, . . . , αp−1, β1, . . . , βp).

The following lemma is an immediate consequence of (2.4). Recall that B is a Brownian
motion that starts from x under the probability Px, and that I = (It, t ≥ 0) is the associated
minimum process.

Lemma 2.5.3 If g is a nonnegative measurable function on R3 and x ≥ 0,

Ex

( ∫ T0

0

dt g(t, It, Bt)
)

= 2

∫ x

0

dy

∫ ∞

y

dz

∫ ∞

0

dt qx+z−2y(t) g(t, y, z) (2.7)

In particular, if h is a nonnegative measurable function on R2,

Ex

( ∫ T0

0

dt h(It, Bt)
)

= 2

∫ x

0

dy

∫ ∞

y

dz h(y, z). (2.8)

Proof of Proposition 2.5.2. This is a simple consequence of Lemma 2.5.3. For p = 1, the
result is exactly formula (2.6) in Proposition 2.4.1. We proceed by induction on p using the
Markov property under n (property (ii) in Proposition 2.4.1) and then (2.8):

n
( ∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp))

)

= n
( ∫

{0≤t1≤···≤tp−1≤σ}
dt1 . . . dtp−1

Ee(tp−1)

( ∫ T0

0

dt f(m(t1, t2), . . . , m(tp−2, tp−1), It, e(t1), . . . , e(tp−1), Bt)
))

= 2 n
( ∫

{0≤t1≤···≤tp−1≤σ}
dt1 . . . dtp−1

∫ e(tp−1)

0

dαp−1

∫ ∞

αp−1

dβp f(m(t1, t2), . . . , m(tp−2, tp−1), αp−1, e(t1), . . . , e(tp−1), βp)
)
.

The proof is then completed by using the induction hypothesis. �

Proof of Theorem 2.5.1. Let Γp be the measurable function from R
2p−1
+ into Θ(p) such

that
θ(e; t1, . . . , tp) = Γp(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp)).

36



The existence of this function easily follows from our construction by induction of the marked
tree θ(e; t1, . . . , tp).

Denote by ∆p the measure on R
2p−1
+ defined by

∆p(dα1 . . . dαp−1dβ1 . . . dβp) =
( p−1∏

i=1

1[0,βi∧βi+1](αi)
)
dα1 . . . dαp−1dβ1 . . . dβp.

In view of Proposition 2.5.2, the proof of Theorem 2.5.1 reduces to checking that Γp(∆p) =
Λp. For p = 1, this is obvious.

Let p ≥ 2 and suppose that the result holds up to order p−1. For every j ∈ {1, . . . , p−1},
let Hj be the subset of R

2p−1
+ defined by

Hj = {(α1, . . . , αp−1, β1, . . . , βp); αi > αj for every i 6= j}.

Then,

∆p =

p−1∑

j=1

1Hj
· ∆p.

On the other hand, it is immediate to verify that 1Hj
· ∆p is the image of the measure

∆j(dα′
1 . . . dβ ′

j) ⊗ 1(0,∞)(h)dh ⊗ ∆p−j(dα′′
1 . . . dβ ′′

p−j)

under the mapping Φ : (α′
1, . . . , β

′
j, h, α′′

1 . . . , β ′′
p−j) −→ (α1, . . . , βp) defined by

αj = h,
αi = α′

i + h for 1 ≤ i ≤ j − 1,
βi = β ′

i + h for 1 ≤ i ≤ j,
αi = α′′

i−j + h for j + 1 ≤ i ≤ p − 1,
βi = β ′′

i−j + h for j + 1 ≤ i ≤ p.

The construction by induction of the tree θ(e; t1, . . . , tp) exactly shows that, a.e. for the
measure ∆j(dα′

1 . . . dβ ′
j) ⊗ 1(0,∞)(h)dh ⊗ ∆p−j(dα′′

1 . . . dβ ′′
p−j), we have

Γp ◦ Φ(α′
1, . . . , β

′
j, h, α′′

1 . . . , β ′′
p−j) = Γj(α

′
1, . . . , β

′
j) ∗

h
Γp−j(α

′′
1 . . . , β ′′

p−j).

where if θ ∈ Θ(j) and θ′ ∈ Θ(p−j), the tree θ ∗
h

θ′ is obtained by concatenating the discrete

skeletons of θ and θ′ (as above in the construction by induction of θ(g; t1, . . . , tp)) and affecting
the mark h to the root ∅.

Together with the induction hypothesis, the previous observations imply that for any
nonnegative measurable function f on Θ(p),

∫
∆p(du) 1Hj

(u) f(Γp(u)) =

∫ ∞

0

dh

∫ ∫
∆j(du′)∆p−j(du′′) f(Γp(Φ(u′, h, u′′)))

=

∫ ∞

0

dh

∫ ∫
∆j(du′)∆p−j(du′′) f(Γj(u

′) ∗
h

Γp−j(u
′′))

=

∫ ∞

0

dh

∫
Λj ∗

h
Λp−j(dθ) f(θ)
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where we write Λj ∗
h

Λp−j for the image of Λj(dθ)Λp−j(dθ′) under the mapping (θ, θ′) −→
θ ∗

h
θ′. To complete the proof, simply note that

Λp =

p−1∑

j=1

∫ ∞

0

dh Λj ∗
h

Λp−j.

�

Remark. The fact that we get only binary trees in Theorem 2.5.1 corresponds to the
property that local minima of Brownian motion are distinct: If 0 < t1 < · · · < tp and if the
local minima mg(ti, ti+1) are distinct, the tree θ(g; t1, . . . , tp) is clearly binary.

2.6 Finite-dimensional marginals of the CRT

In this section, we propose to calculate the law of the tree θ(e; t1, . . . , tp) when e is a normal-
ized Brownian excursion. This corresponds to choosing p vertices independently uniformly
on the CRT (the uniform measure on the CRT Te is by definition the image of Lebesgue
measure on [0, 1] under the mapping pe) and determining the law of the tree spanned by
these vertices. In contrast with the measure Λp of Theorem 2.5.1, we will get for every p a
probability measure on Θbin

(p) , which may be called the p-dimensional marginal distribution of

the CRT (cf Aldous [1], [2]).

We first recall the connection between the Itô measure and the normalized Brownian
excursion. Informally, the law of the normalized Brownian excursion (e in the notation of
Chapter 1) is n(de | σ(e) = 1). More precisely, using a standard desintegration theorem for
measures, together with the Brownian scaling property, one easily shows that there exists a
unique collection of probability measures (n(s), s > 0) on the set E of excursions, such that
the following properties hold:

(i) For every s > 0, n(s)(σ = s) = 1.

(ii) For every λ > 0 and s > 0, the law under n(s)(de) of eλ(t) =
√

λ e(t/λ) is n(λs).

(iii) For every Borel subset A of E ,

n(A) =
1

2
(2π)−1/2

∫ ∞

0

s−3/2 n(s)(A) ds.

The measure n(1) is the law of the normalized Brownian excursion e which was considered
in Chapter 1 and in Section 3 above.

Our first goal is to get a statement more precise than Theorem 2.5.1 by considering the
pair (θ(e; t1, . . . , tp), σ) instead of θ(e; t1, . . . , tp). If θ = (τ, {hv, v ∈ τ}) is a marked tree, the
length of θ is defined in the obvious way by

L(θ) =
∑

v∈τ

hv.
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Proposition 2.6.1 The law of the pair (θ(e; t1, . . . , tp), σ) under the measure

n(de) 1{0≤t1≤···≤tp≤σ(e)}dt1 . . . dtp

is
2p−1 Λp(dθ) q2L(θ)(s)ds.

Proof. Recall the notation of the proof of Theorem 2.5.1. We will verify that, for any
nonnegative measurable function f on R

3p
+ ,

n
( ∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp), t1, t2 − t1, . . . , σ − tp)

)

= 2p−1

∫
∆p(dα1 . . . dαp−1dβ1 . . . dβp)

∫

R
p+1
+

ds1 . . . dsp+1 qβ1(s1)qβ1+β2−2α1(s2) . . .

. . . qβp−1+βp−2αp−1(sp)qβp(sp+1) f(α1, . . . , αp−1, β1, . . . , βp, s1, . . . , sp+1). (2.9)

Suppose that (2.9) holds. It is easy to check (for instance by induction on p) that

2 L(Γp(α1, . . . , αp−1, β1, . . . , βp)) = β1 +

p−1∑

i=1

(βi + βi−1 − 2αi) + βp.

Using the convolution identity qx ∗ qy = qx+y (which is immediate from the interpretation of
qx as the density of Tx under P0), we get from (2.9) that

n
( ∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp), σ)

)

= 2p−1

∫
∆p(dα1 . . . dαp−1dβ1 . . . dβp)

∫ ∞

0

dt q2L(Γp(α1 ,...,βp))(t) f(α1, . . . , βp, t).

As in the proof of Theorem 2.5.1, the statement of Proposition 2.6.1 follows from this last
identity and the equality Γp(∆p) = Λp.

It remains to prove (2.9). The case p = 1 is easy: By using the Markov property under
the Itô measure (Proposition 2.4.1 (ii)), then the definition of the function qx and finally
(2.5), we get

∫
n(de)

∫ σ

0

dt f(e(t), t, σ − t) =

∫
n(de)

∫ σ

0

dt Ee(t)(f(e(t), t, T0))

=

∫
n(de)

∫ σ

0

dt

∫ ∞

0

dt′ qe(t)(t
′)f(e(t), t, t′)

=

∫ ∞

0

dx

∫ ∞

0

dt qx(t)

∫ ∞

0

dt′ qx(t
′) f(x, t, t′).

Let p ≥ 2. Applying the Markov property under n successively at tp and at tp−1, and then
using (2.7), we obtain
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n
( ∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp

×f(m(t1, t2), . . . , m(tp−1, tp), e(t1), . . . , e(tp), t1, t2 − t1, . . . , σ − tp)
)

=n
( ∫

{0≤t1≤···≤tp−1≤σ}
dt1 . . . dtp−1 Ee(tp−1)

( ∫ T0

0

dt

∫ ∞

0

ds qBt(s)

×f(m(t1, t2), . . . , m(tp−2, tp−1), It, e(t1), . . . , e(tp−1), Bt, t1, . . . , tp−1 − tp−2, t, s)
))

=2n
( ∫

{0≤t1≤···≤tp−1≤σ}
dt1 . . . dtp−1

∫ e(tp−1)

0

dy

∫ ∞

y

dz

∫ ∞

0

dt

∫ ∞

0

ds qe(tp−1)+z−2y(t)qz(s)

×f(m(t1, t2), . . . , m(tp−2, tp−1), y, e(t1), . . . , e(tp−1), z, t1, . . . , tp−1 − tp−2, t, s)
)
.

It is then straightforward to complete the proof by induction on p. �

We can now state and prove the main result of this section.

Theorem 2.6.2 The law of the tree θ(e; t1, . . . , tp) under the probability measure

p! 1{0≤t1≤···≤tp≤1}dt1 . . . dtp n(1)(de)

is
p! 2p+1 L(θ) exp ( − 2 L(θ)2) Λp(dθ).

Proof. Let F be a nonnegative bounded continuous function on Θ(p) and let h be bounded,
nonnegative and measurable on R+. By Proposition 2.6.1,

∫
n(de) h(σ)

∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp F (θ(e; t1, . . . , tp))

= 2p−1

∫ ∞

0

ds h(s)

∫
Λp(dθ) q2L(θ)(s) F (θ).

On the other hand, using the properties of the definition of the measures n(s), we have also

∫
n(de) h(σ)

∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp F (θ(e; t1, . . . , tp))

=
1

2
(2π)−1/2

∫ ∞

0

ds s−3/2 h(s)

∫
n(s)(de)

∫

{0≤t1≤···≤tp≤s}
dt1 . . . dtp F (θ(e; t1, . . . , tp)).

By comparing with the previous identity, we get for a.a. s > 0,
∫

n(s)(de)

∫

{0≤t1≤···≤tp≤s}
dt1 . . . dtp F (θ(e; t1, . . . , tp))

= 2p+1

∫
Λp(dθ) L(θ) exp ( − 2L(θ)2

s
)F (θ).
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Both sides of the previous equality are continuous functions of s (use the scaling property of
n(s) for the left side). Thus the equality holds for every s > 0, and in particular for s = 1.
This completes the proof. �

Concluding remarks. If we pick t1, . . . , tp independently according to Lebesgue measure on
[0, 1] we can consider the increasing rearrangement t′1 ≤ t′2 ≤ · · · ≤ t′p of t1, . . . , tp and define
θ(e; t1, . . . , tp) = θ(e; t′1, . . . , t

′
p). We can also keep track of the initial ordering and consider

the tree θ̃(e; t1, . . . , tp) defined as the tree θ(e; t1, . . . , tp) where leaves are labelled 1, . . . , p,
the leaf corresponding to time ti receiving the label i. (This labelling has nothing to do with
the ordering of the tree.) Theorem 2.6.2 implies that the law of the tree θ̃(e; t1, . . . , tp) under
the probability measure

1[0,1]p(t1, . . . , tp)dt1 . . . dtp n(1)(de)

has density

2p+1L(θ) exp(−2L(θ)2)

with respect to Θ̃bin
(p) (dθ), the uniform measure on the set of labelled marked (ordered) binary

trees with p leaves.

We can then “forget” the ordering. Define θ̄(e; t1, . . . , tp) as the tree θ̃(e; t1, . . . , tp) with-
out the order structure. Since there are 2p−1 possible orderings for a given labelled binary
tree with p leaves, we get that the law (under the same measure) of the tree θ̄(e; t1, . . . , tp)
has density

22pL(θ) exp(−2L(θ)2)

with respect to Θ̄bin
(p) (dθ), the uniform measure on the set of labelled marked (unordered)

binary trees with p leaves.

For convenience, replace the excursion e by 2e (this simply means that all marks hv are
multiplied by 2). We obtain that the law of the tree θ̄(2e; t1, . . . , tp) has density

L(θ) exp(−L(θ)2

2
)

with respect to Θ̄bin
(p) (dθ). It is remarkable that the previous density (apparently) does not

depend on p.

In the previous form, we recognize the finite-dimensional marginals of Aldous’ continuum
random tree [1], [2]. To give a more explicit description, the discrete skeleton τ̄ (2e; t1, . . . , tp)
is distributed uniformly on the set of labelled rooted binary trees with p leaves. This set has
bp elements, with

bp = p! 2−(p−1)cp = 1 × 3 × · · · × (2p − 3).

Then, conditionally on the discrete skeleton, the marks hv are distributed with the density

bp (
∑

hv) exp ( − (
∑

hv)
2

2
)

(verify that this is a probability density on R
2p−1
+ !).
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Bibliographical notes. The coding of real trees described in Section 2 is taken from [9],
although the underlying ideas can be found in earlier papers (see in particular [2] and [18]).
See e.g. Chapter XII of [28] or the last section of [29] for a thorough discussion of the Itô
excursion measure. The CRT was introduced and studied by Aldous [1], [2]. The direct
approach to finite-dimensional marginals of the CRT which is presented in Sections 5 and 6
above is taken from [19].
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Chapter 3

The Brownian Snake

and its Connections

with Partial Differential Equations

Our goal in this chapter is to combine the continuous tree structure studied in the previous
chapter with independent spatial motions: In additional to the genealogical structure, “in-
dividuals” move in space according to the law of a certain Markov process ξ. This motivates
the definition of the path-valued process called the Brownian snake. We study basic proper-
ties of the Brownian snake, and we use our previous calculation of marginal distributions of
random real trees (Chapter 2) to give explicit formulas for moment functionals. We then in-
troduce the exit measure of the Brownian snake from a domain, and we derive a key integral
equation for the Laplace functional of this random measure. In the case when the spatial
motion ξ is Brownian motion in Rd, this integral equation leads to important connections
with semilinear partial differential equations, which have been studied recently by several
authors.

3.1 Combining the branching structure of a real tree

with a spatial displacement

We consider a Markov process (ξt, Πx)t≥0,x∈E with values in a Polish space E. We will
assume that ξ has continuous sample paths and that there exist an integer m > 2 and
positive constants C and ε such that for every x ∈ E and t > 0,

Πx

(
sup

0≤r≤t
δ(x, ξr)

m
)
≤ Ct2+ε, (3.1)

where δ denotes the distance on E. This assumption is not really necessary, but it will
simplify our treatment. It holds for Brownian motion or for solutions of stochastic differ-
ential equations with smooth coefficients in Rd or on a manifold. Later ξ will simply be
d-dimensional Brownian motion, but for the moment it is preferable to argue in a more
general setting.
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We denote by W the set of all finite E-valued paths. An element of W is a continuous
mapping w : [0, ζ] → E, where ζ = ζ(w) ≥ 0 depends on w and is called the lifetime of w.
The final point of w will be denoted by ŵ = w(ζ). If x ∈ E, the trivial path w such that
ζ(w) = 0 and w(0) = x is identified with the point x, so that E is embedded in W. The set
W is a Polish space for the distance

d(w, w′) = |ζ − ζ ′| + sup
t≥0

δ(w(t ∧ ζ), w′(t ∧ ζ ′)).

For x ∈ E we denote by Wx the set Wx = {w ∈ W : w(0) = x}.
If g : R+ → R+ is a continuous function with compact support such that g(0) = 0, we

saw in Section 2.2 that g codes a real tree Tg. Our goal is now to combine this branching
structure with spatial motions distributed according to the law of the process ξ. To this end,
we will not make an explicit use of the tree Tg but rather give our definitions in terms of the
coding function. It will be convenient to drop the compact support assumption on g, and to
consider instead a general function f ∈ C(R+, R+).

Notation. Let w : [0, ζ] → E be an element of W, let a ∈ [0, ζ] and b ≥ a. We denote by
Ra,b(w, dw′) the unique probability measure on W such that

(i) ζ ′ = b, Ra,b(w, dw′) a.s.

(ii) w′(t) = w(t), ∀t ≤ a, Ra,b(w, dw′) a.s.

(iii) The law under Ra,b(w, dw′) of (w′(a + t), 0 ≤ t ≤ b − a) coincides with the law of
(ξt, 0 ≤ t ≤ b − a) under Πw(a).

Under Ra,b(w, dw′), the path w′ is the same as w up to time a and then behaves according
to the spatial motion ξ up to time b.

Let (Ws, s ≥ 0) denote the canonical process on the space C(R+,W) of continuous
functions from R+ into W.

Proposition 3.1.1 Let f ∈ C(R+, R+). Assume that f is locally Hölder continuous with
exponent η for every η ∈ (0, 1

2
). Let w ∈ W with ζ(w) = f(0). Then, there exists a unique

probability measure Γf
w on C(R+,W) such that W0 = w, Γf

w a.s., and, under Γf
w, the canonical

process (Ws, s ≥ 0) is (time-inhomogeneous) Markov with transition kernel between times s
and s′ given by

Rmf (s,s′),f(s′)(w, dw′)

where mf(s, s
′) = inf [s,s′] f(r). We have in particular ζ(Ws) = f(s) for every s ≥ 0, Γf

w a.s.

The intuitive meaning of this construction should be clear : At least when f(0) = 0 and
f has compact support (so that we can use the theory of Section 2.2), the vertices pf(s)
and pf (s

′) in the tree Tf have the same ancestors up to generation mf (s, s
′). Therefore, the

corresponding spatial motions Ws and Ws′ must be the same up to time mf (s, s
′) and then

behave independently. This means that the path Ws′ is obtained from the path Ws through
the kernel Rmf (s,s′),f(s′)(Ws, dw′).
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Proof. We give the detailed argument only in the case when f(0) = 0, which implies
that w = x ∈ E. We leave the general case as an exercise for the reader (cf the proof of
Proposition IV.5 in [20]).

For each choice of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tp, we can consider the probability measure πx,f
t1,...,tp

on Wp defined by

πx,f
t1,...,tp(dw1 . . . dwp) = R0,f(t1)(x, dw1)Rmf (t1,t2),f(t2)(w1, dw2) . . . Rmf (tp−1 ,tp),f(tp)(wp−1, dwp).

It is easy to verify that this collection is consistent when p and t1, . . . , tp vary. Hence the

Kolmogorov extension theorem yields the existence of a process (W̃s, s ≥ 0) with values in
W (in fact in Wx) whose finite-dimensional marginals are the measures πx,f

t1 ,...,tp .

We then verify that (W̃s, s ≥ 0) has a continuous modification. Thanks to the classical
Kolmogorov lemma, it is enough to show that, for every T > 0 there are constants β > 0
and C such that

E[d(W̃s, W̃s′)
m] ≤ C|s − s′|1+β, (3.2)

for every s ≤ s′ ≤ T . (Here m is as in assumption (3.1).)
Our assumption on f guarantees that for every η ∈ (0, 1/2) there exists a finite constant

Cη,T such that, for every s, s′ ∈ [0, T ],

|f(s) − f(s′)| ≤ Cη,T |s − s′|η. (3.3)

By our construction, the joint distribution of (W̃s, W̃s′) is

R0,f(s)(x, dw)Rmf (s,s′),f(s′)(w, dw′).

This means that W̃s and W̃s′ are two random paths that coincide up to time mf(s, s
′) and

then behave independently according to the law of the process ξ. Using the definition of the
distance d, we get for every s, s′ ∈ [0, T ], s ≤ s′,

E(d(W̃s, W̃s′)
m) ≤ cm

(
|f(s) − f(s′)|m + 2 Πx

(
Πξmf (s,s′)

( sup
0≤t≤(f(s)∨f(s′))−mf (s,s′)

δ(ξ0, ξt)
m)

))

≤ cm

(
|f(s) − f(s′)|m + 2C|(f(s) ∨ f(s′)) − mf(s, s

′)|2+ε
)

≤ cm

(
Cm

η,T |s − s′|mη + 2C C2+ε
η,T |s − s′|(2+ε)η

)
,

where we used assumption (3.1) in the second inequality, and (3.3) in the third one. We can
choose η close enough to 1

2
so that mη > 1 and (2 + ε)η > 1. The bound (3.2) then follows.

We then define Γf
x as the law on C(R+,W) of the continuous modification of (W̃s, s ≥ 0).

The fact that under Γf
x the canonical process is Markov with the given transition kernels

is obvious from the choice of the finite-dimensional marginals. The form of the marginals
also readily shows that ζ(Wt1) = f(t1), . . . , ζ(Wtp) = f(tp), Γf

x a.s., for every finite collection
of times t1, . . . , tp. The last assertion of the proposition then follows from a continuity
argument. �
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The process (Ws, s ≥ 0) under the probability measure Γf
w is sometimes called the snake

driven by the function f (with spatial motion ξ and initial value w). From the form of the
transition kernels, and an easy continuity argument we have, Γf

w a.s. for every 0 ≤ s ≤ s′,

Ws(t) = Ws′(t) for every t ≤ mf(s, s
′).

We sometimes refer to this property as the snake property. Note in particular that if x = w(0)
we have Ws(0) = x for every s ≥ 0, Γf

w a.s.

3.2 The Brownian snake

We now randomize f in the construction of the previous section. For every r ≥ 0, we denote
by Pr(df) the law of reflected Brownian motion started at r (the law of (|Bs|, s ≥ 0) if B
is a linear Brownian motion started at r). Then Pr(df) is a probability measure on the set
C(R+, R+). Note that the assumption of Proposition 3.1.1 holds Pr(df) a.s.

For every s > 0, we denote by ρr
s(da db) the law under Pr of the pair

( inf
0≤u≤s

f(u), f(s)).

The reflection principle (cf Section 2.4) easily gives the explicit form of ρr
s(da db):

ρr
s(da db) =

2(r + b − 2a)

(2πs3)1/2
exp

(
− (r + b − 2a)2

2s

)
1(0<a<b∧r) da db

+ 2 (2πs)−1/2 exp
(
− (r + b)2

2s

)
1(0<b)δ0(da) db.

Theorem 3.2.1 For every w ∈ W, denote by Pw be the probability measure on C(R+,W)
defined by

Pw(dω) =

∫

C(R+,R+)

Pζ(w)
(df) Γf

w(dω).

The process (Ws, Pw)s≥0,w∈W is a continuous (time-homogeneous) Markov process with values
in W, with transition kernels

Qs(w, dw′) =

∫
ρ

ζ(w)
s (dadb) Ra,b(w, dw′).

This process is called the Brownian snake with spatial motion ξ.

Proof. The continuity is obvious and it is clear that W0 = w, Pw a.s. The semigroup
property for the kernels Qs is also easy to verify. As for the Markov property, we write

Ew[F (Ws1, . . . , Wsp)G(Wsp+1)]

=

∫
Pζ(w)

(df)

∫

Wp+1

Rmf (0,s1),f(s1)(x, dw1) . . . Rmf (sp,sp+1),f(sp+1)(wp, dwp+1) F (w1, . . . , wp)G(wp+1)
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=

∫

R
2(p+1)
+

ρ
ζ(w)
s1 (da1db1)ρ

b1
s2−s1

(da2db2) . . . ρ
bp

sp+1−sp
(dap+1dbp+1)

∫

Wp+1

Ra1 ,b1(w, dw1) . . . Rap+1,bp+1(wp, dwp+1) F (w1, . . . , wp)G(wp+1)

=

∫

R
2(p+1)
+

ρ
ζ(w)
s1 (da1db1)ρ

b1
s2−s1

(da2db2) . . . ρ
bp−1

sp−sp−1
(dapdbp)

∫

Wp

Ra1 ,b1(w, dw1) . . . Rap,bp(wp−1, dwp) F (w1, . . . , wp)Qsp+1−spG(wp)

= Ew[F (Ws1, . . . , Wsp)Qsp+1−spG(Wsp)].

This completes the proof. �

We denote by ζs = ζ(Ws) the lifetime of Ws. Under Pw, the process (ζs, s ≥ 0) is a
reflected Brownian motion started at ζ(w). This property is obvious from the last assertion
of Proposition 3.1.1 and the very definition of Pw.

The snake property can then be stated in the form

Ws(t) = Ws′(t) for all t ≤ inf
s≤r≤s′

ζr,

for every s < s′, Pw a.s.

In particular, if w(0) = x we have Ws ∈ Wx for every s ≥ 0, Pw a.s.

We now state the strong Markov property of W , which is very useful in applications.
We denote by Fs the canonical filtration on C(R+,W) (Fs is the σ-field generated by Wr,
0 ≤ r ≤ s) and as usual we take

Fs+ =
⋂

r>s

Fr .

Theorem 3.2.2 The process (Ws, Pw)s≥0,w∈W is strong Markov with respect to the filtration
(Fs+).

Proof. Let T be a stopping time of the filtration (Fs+) such that T ≤ K for some K < ∞.
Let F be bounded and FT+ measurable, and let Ψ be a bounded measurable function on
W. It is enough to prove that for every s > 0,

Ew(F Ψ(WT+s)) = Ew(F EWT
(Ψ(Ws))).

We may assume that Ψ is continuous. Then,

Ew(F Ψ(WT+s)) = lim
n→∞

∞∑

k=0

Ew(1{ k
n
≤T< k+1

n
}F Ψ(W k+1

n
+s))

= lim
n→∞

∞∑

k=0

Ew(1{ k
n
≤T< k+1

n
}F EW k+1

n

(Ψ(Ws))).

47



In the first equality, we used the continuity of paths and in the second one the ordinary
Markov property, together with the fact that 1{k/n≤T<(k+1)/n} F is F(k+1)/n-measurable. At
this point, we need an extra argument. We claim that

lim
ε↓0

(
sup

t≤K,t≤r≤t+ε
|EWr(Ψ(Ws)) − EWt(Ψ(Ws))|

)
= 0, Pw a.s. (3.4)

Clearly, the desired result follows from (3.4), because on the set {k/n ≤ T < (k + 1)/n} we
can bound

|EW k+1
n

(Ψ(Ws)) − EWT
(Ψ(Ws))| ≤ sup

t≤K,t≤r≤t+ 1
n

|EWr(Ψ(Ws)) − EWt(Ψ(Ws))|.

To prove (3.4), we write down explicitly

EWr(Ψ(Ws)) =

∫
ρζr

s (da db)

∫
Ra,b(Wr, dw′) Ψ(w′),

and a similar expression holds for EWt(Ψ(Ws)). Set

c(ε) = sup
t≤K,t≤r≤t+ε

|ζr − ζt|

and note that c(ε) tends to 0 as ε → 0, Pw a.s. Then observe that if t ≤ K and t ≤ r ≤ r+ε,
the paths Wr and Wt coincide at least up to time (ζt − c(ε))+. Therefore we have

Ra,b(Wr, dw′) = Ra,b(Wt, dw′)

for every a ≤ (ζt − c(ε))+ and b ≥ a. The claim (3.4) follows from this observation and the
known explicit form of ρζr

s (da db). �

Remark. The strong Markov property holds for W even if the underlying spatial motion ξ
is not strong Markov.

3.3 Excursion measures of the Brownian snake

For every x ∈ E, the excursion measure Nx is the σ-finite measure on C(R+,W) defined by

Nx(dω) =

∫

C(R+,R+)

n(de) Γe
x(dω), (3.5)

where n(de) denotes Itô’s excursion measure as in Chapter 2. As in Chapter 2, we will use
the notation σ for the duration of the excursion under Nx(dω):

σ = inf{s > 0 : ζs = 0}.

Note that Ws ∈ Wx for every s ≥ 0, Nx a.e.

Remark. We know that the process (Ws, Pw)s≥0,w∈W is a continuous strong Markov process.
Furthermore, every point x ∈ E (viewed as an element of W) is regular for W , in the sense
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that Px(T{x} = 0) = 1 if T{x} = inf{s > 0, Ws = x}. This last property is immediate from
the analogous property for reflected linear Brownian motion. Thus it makes sense to consider
the excursion measure of W away from x, in the sense of the general Itô excursion theory
(see e.g. Blumenthal [4]), and this excursion measure is easily identified with Nx.

We will make use of the strong Markov property under Nx. To state it, it will be
convenient to introduce the following notation. For every w ∈ W, we denote by P∗

w the
distribution under Pw of the process

W ∗
s = Ws∧σ, s ≥ 0

where σ := inf{s > 0 : ζs = 0} as above.

Theorem 3.3.1 Let T be a stopping time of the filtration (Fs+). Assume that 0 < T ≤ σ,
Nx a.e. Then, if F and G are nonnegative measurable functionals on C(R+,W), and if F
is FT+-measurable, we have

Nx

(
F G(WT+s, s ≥ 0)

)
= Nx

(
F E∗

WT
(G)

)
.

If we interpret Nx as the excursion measure away from x (as explained in the remark
above), the preceding theorem becomes a well-known fact of the theory of Markov processes:
See e.g. [4]. Alternatively, it is also easy to give a direct proof of Theorem 3.3.1 using the
same method as in the proof of Theorem 3.2.2, together with the simple Markov property
under the Itô excursion measure (cf Proposition 4.1 (ii) of Chapter 2).

We will now use Theorem 2.5.1 to derive some important formulas under the excursion
measure Nx. Ler p ≥ 1 be an integer. Recall from Section 2.5 the notation Θbin

(p) for the set

of all marked trees with p leaves, and let θ ∈ Θbin
(p) . For every x ∈ E, we associate with θ a

probability measure on Wp, denoted by Πθ
x, which is defined inductively as follows.

If p = 1, then θ = ({∅}, h) for some h ≥ 0 and we let Πθ
x = Πh

x be the law of (ξt, 0 ≤ t ≤ h)
under Πx.

If p ≥ 2, then we can write in a unique way

θ = θ′ ∗
h

θ′′ ,

where θ′ ∈ Θbin
(j) , θ′′ ∈ Θbin

(p−j), and j ∈ {1, . . . , p − 1} (the notation θ′ ∗
h

θ′′, for the concate-

nation of θ′ and θ′′ with root mark h, was introduced in the proof of Theorem 2.5.1) . We
then define Πθ

x by
∫

Πθ
x(dw1, . . . , dwp)F (w1, . . . , wp) = Πx

(∫ ∫
Πθ′

ξh
(dw′

1, . . . , dw′
j)Π

θ′′

ξh
(dw′′

1 , . . . , dw′′
p−j)

F (ξ[0,h] � w′
1, . . . , ξ[0,h] � w′

j, ξ[0,h] � w′′
1 , . . . , ξ[0,h] � w′′

p−j)
)

where ξ[0,h] � w denotes the concatenation (defined in an obvious way) of the paths (ξt, 0 ≤
t ≤ h) and (w(t), 0 ≤ t ≤ ζ(w)).
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Informally, Πθ
x is obtained by running independent copies of ξ along the branches of the

tree θ.
Finally, we recall the notation θ(f ; t1, . . . , tp) from Section 2.5, and we let Λp be as in

Theorem 2.5.1 the uniform measure on Θbin
(p) .

Proposition 3.3.2 (i) Let f ∈ C(R+, R+) such that f(0) = 0, and let 0 ≤ t1 ≤ t2 ≤ · · · ≤
tp. Then the law under Γf

x of (Wt1 , . . . , Wtp) is Π
θ(f ;t1,...,tp)
x .

(ii) For any nonnegative Borel measurable function F on Wp,

Nx

(∫

{0≤s1≤···≤sp≤σ}
ds1 . . . dsp F (Ws1 , . . . , Wsp)

)
= 2p−1

∫
Λp(dθ) Πθ

x(F ) .

Proof. Assertion (i) follows easily from the definition of Γf
x and the construction of the trees

θ(f ; t1, . . . , tp). A precise argument can be given using induction on p, but we leave details
to the reader. To get (ii), we write

Nx

(∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp F (Wt1 , . . . , Wtp)

)

=

∫
n(de)

∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp Γe

x

(
F (Wt1 , . . . , Wtp)

)

=

∫
n(de)

∫

{0≤t1≤···≤tp≤σ}
dt1 . . . dtp Πθ(e;t1,...,tp)

x (F )

= 2p−1

∫
Λp(dθ) Πθ

x(F ).

The first equality is the definition of Nx, the second one is part (i) of the proposition, and
the last one is Theorem 2.5.1. �

The cases p = 1 and p = 2 of Proposition 3.3.2 (ii) are of special interest. Let us rewrite
the corresponding formulas in a particular case. Recall that we denote by ŵ the terminal
point of w. For any nonnegative Borel measurable function g on E, we have

Nx

( ∫ σ

0

ds g(Ŵs)
)

= Πx

( ∫ ∞

0

dt g(ξt)
)
,

and

Nx

(( ∫ σ

0

ds g(Ŵs)
)2)

= 4 Πx

( ∫ ∞

0

dt
(
Πξt

( ∫ ∞

0

dr g(ξr)
))2)

.

Remark. In addition to (3.5), we could also consider the associated normalized excursion
measure

N(1)
x (dω) =

∫

C(R+,R+)

n(1)(de) Γe
x(dω), (3.6)

where n(1) is as in Chapter 2 the law of the normalized Brownian excursion. Let Z be the

random probability measure on E defined under N
(1)
x by

〈Z, g〉 =

∫ 1

0

ds g(Ŵs).
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In the case when ξ is Brownian motion in E = Rd and x = 0, the random measure Z is
called ISE (Aldous [3]) for Integrated Super-Brownian Excursion. ISE and its variants play
an important role in various asymptotics for statistical mechanics models (see e.g. [5], [16]).

We conclude this section with an important technical lemma. We fix w ∈ Wx with
ζ(w) > 0 and consider the Brownian snake under Pw. Recall that

σ = inf{s > 0 : ζs = 0}

and denote by (αi, βi), i ∈ I the excursion intervals of ζs − inf [0,s] ζr before time σ. In other
words, (αi, βi), i ∈ I are the connected components of the open set [0, σ] ∩ {s ≥ 0, ζs >
inf [0,s] ζr}. Then, for every i ∈ I we define W i ∈ C(R+,W) by setting for every s ≥ 0,

W i
s(t) = W(αi+s)∧βi

(ζαi
+ t) , 0 ≤ t ≤ ζ i

s := ζ(αi+s)∧βi
− ζαi

.

From the snake property we have in fact W i ∈ C(R+,Ww(ζαi )
).

Lemma 3.3.3 The point measure ∑

i∈I

δ(ζαi ,W
i)

is under Pw a Poisson point measure on R+ × C(R+,W) with intensity

2 1[0,ζ(w)](t)dt Nw(t)(dω) .

Proof. A well-known theorem of Lévy (already used in Chapter 1) states that, if (βt, t ≥ 0)
is a linear Brownian motion started at a, the process βt − inf [0,t] βr is a reflected Brownian
motion whose local time at 0 is t → 2(a − inf [0,t] βr). From this and excursion theory, it
follows that the point measure ∑

i∈I

δ(ζαi ,ζ
i)

is under Pw a Poisson point measure with intensity

2 1[0,ζw](t)dt n(de) .

It remains to combine this result with the spatial displacements.
To this end, fix a function f ∈ C(R+, R+) such that f(0) = ζ(w), σ(f) = inf{t > 0 :

f(t) = 0} < ∞ and f is locally Hölder with exponent 1
2
− γ for every γ > 0. Recall the

notation Γf
w from Section 1 above. Denote by ej, j ∈ J the excursions of f(s) − inf [0,s] f(r)

away from 0 before time σ(f), by (aj, bj), j ∈ J the corresponding time intervals, and define
for every j ∈ J

W j
s (t) = W(aj+s)∧bj

(f(aj) + t) , 0 ≤ t ≤ f((aj + s) ∧ bj) − f(aj) ,

From the definition of Γf
w, it is easily verified that the processes W j, j ∈ J are independent

under Γf
w, with respective distributions Γ

ej

w(f(aj )).

Let F be a bounded nonnegative measurable function on R+ × C(R+,W), such that
F (t, ω) = 0 if sup ζs(ω) ≤ γ, for some γ > 0. Recall the notation Pr(df) for the law
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of reflected Brownian motion started at r. By using the last observation and then the
beginning of the proof, we get

Ew(exp−
∑

i∈I

F (ζαi
, W i)) =

∫
Pζ(w)

(df)Γf
w

(
exp−

∑

j∈J

F (f(aj), W
j)

)

=

∫
Pζ(w)

(df)
∏

j∈J

Γ
ej

w(f(aj ))

(
e−F (f(aj),·)

)

= exp−2

∫ ζ(w)

0

dt

∫
n(de)Γe

w(t)(1 − e−F (t,·))

= exp−2

∫ ζ(w)

0

dt Nw(t)(1 − e−F (t,·)) .

The third equality is the exponential formula for Poisson measures, and the last one is
the definition of Nx. This completes the proof. �

3.4 The exit measure

Let D be an open set in E and fix x ∈ D. For every w ∈ Wx set

τ(w) = inf{t ∈ [0, ζ(w)], w(t) 6∈ D} ,

where inf ∅ = +∞. Define

ED = {Ws(τ(Ws)); s ≥ 0, τ(Ws) < ∞} ,

so that ED is the set of all exit points from D of the paths Ws, for those paths that do
exit D. Our goal is to construct Nx a.e. a random measure that is in some sense uniformly
spread over ED. To avoid trivial cases, we first assume that

Πx(∃t ≥ 0, ξt 6∈ D) > 0 . (3.7)

We start by constructing a continuous increasing process that increases only on the set
{s ≥ 0 : τ(Ws) = ζs}.

Proposition 3.4.1 The formula

LD
s = lim

ε↓0

1

ε

∫ s

0

dr 1{τ(Wr)<ζr<τ(Wr)+ε}

defines a continuous increasing process (LD
s , s ≥ 0), Nx a.e. or Pw a.s. for any w ∈ Wx.

Proof. Since Nx can be viewed as the excursion measure of W away from x, it is enough to
prove that the given statement holds under Pw. Indeed, if follows from the construction of
the construction of the Itô measure that, for every h > 0, Nx(·| sup ζs > h) is the law under
Px of the first excursion of W away from x with “height” greater than h, and so the result
under Nx can easily be derived from the case of Px.

We use the following lemma, where w ∈ Wx is fixed.
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Lemma 3.4.2 Set γs = (ζs − τ(Ws))
+ and σs = inf{v ≥ 0 :

∫ v

0
dr 1{γr>0} > s}. Then

σs < ∞ for every s ≥ 0, Pw a.s., and the process Γs = γσs is under Pw a reflected Brownian
motion started at (ζw − τ(w))+.

Proposition 3.4.1 easily follows from Lemma 3.4.2: Denote by (`s, s ≥ 0) the local time
at 0 of Γ. Then, Px a.s. for every s ≥ 0,

`s = lim
ε→0

1

ε

∫ s

0

dr 1{0<Γr<ε}.

Set As =
∫ s

0
dr 1{γr>0} and LD

s = `As. We get

LD
s = lim

ε↓0

1

ε

∫ As

0

dr 1{0<Γr<ε} = lim
ε↓0

1

ε

∫ s

0

dr 1{0<γr<ε} ,

which is the desired result. �

Proof of Lemma 3.4.2. For every ε > 0, introduce the stopping times

Sε
1 = inf{s ≥ 0 : ζs ≥ τ(Ws) + ε} T ε

1 = inf{s ≥ Sε
1 : ζs ≤ τ(Ws)}

Sε
n+1 = inf{s ≥ T ε

n : ζs ≥ τ(Ws) + ε} T ε
n+1 = inf{s ≥ Sε

n+1 : ζs ≤ τ(Ws)}
We first verify that the stopping times Sε

n and T ε
n are finite Pw a.s. By applying the

strong Markov property at inf{s ≥ 0, ζs = 0}, it is enough to consider the case when w = x.
Still another application of the strong Markov property shows that it is enough to verify
that Sε

1 < ∞ a.s. To this end, observe that Px(ζ1 ≥ τ(W1) + ε) > 0 (by (3.7) and because,
conditionally on ζ1, W1 is a path of ξ with length ζ1) and apply the strong Markov property
at inf{s ≥ 1, ζs = 0}.

From the snake property and the continuity of s → ζs, one easily gets that the mapping
s → γs is also continuous. It follows that γSε

1
= ε ∨ (ζ(w) − τ(w)) and γSε

n
= ε for n ≥ 2.

We then claim that, for every n ≥ 1, we have

T ε
n = inf{s ≥ Sε

n : ζs = τ(WSε
n
)} .

Indeed the snake property implies that for

Sε
n ≤ r ≤ inf{s ≥ Sε

n : ζs = τ(WSε
n
)},

the paths Wr and WSε
n

coincide for t ≤ τ(WSε
n
), so that τ(Wr) = τ(WSε

n
). This argument

also shows that γr = ζr − τ(WSε
n
) for Sε

n ≤ r ≤ T ε
n.

From the previous observations and the strong Markov property of the Brownian snake,
we see that the processes

(γ(Sε
n+r)∧T ε

n
, r ≥ 0), n = 1, 2, . . .

are independent and distributed according to the law of a linear Brownian motion started
at ε (at ε ∨ (ζ(w) − τ(w)) for n = 1) and stopped when it hits 0. Hence, if

σε
r = inf

{
s :

∫ s

0

∞∑

n=1

1[Sε
n,T ε

n)(u)du > r
}

,
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the process (γσε
r
, r ≥ 0) is obtained by pasting together a linear Brownian motion started at

ε ∨ (ζ(w) − τ(w)) and stopped when it hits 0, with a sequence of independent copies of the
same process started at ε. A simple coupling argument shows that (γσε

r
, r ≥ 0) converges in

distribution as ε → 0 to reflected Brownian motion started at (ζ(w) − τ(w))+. The lemma
follows since it is clear that σε

r ↓ σr a.s. for every r ≥ 0. �

Definition. The exit measure ZD from D is defined under Nx by the formula

〈ZD, g〉 =

∫ σ

0

dLD
s g(Ŵs) .

From Proposition 3.4.1 it is easy to obtain that LD
s increases only on the (closed) set

{s ∈ [0, σ] : ζs = τ(Ws)}. It follows that ZD is (Nx a.e.) supported on ED.

Let us consider the case when (3.7) does not hold. Then a first moment calculation using
the case p = 1 of Proposition 3.3.2 (ii) shows that

∫ ∞

0

ds 1{τ(Ws)<∞} = 0 , Nx a.e.

Therefore the result of Proposition 3.4.1 still holds under Nx with LD
s = 0 for every s ≥ 0.

Consequently, we take ZD = 0 in that case.

We will need a first moment formula for LD. With a slight abuse of notation, we also
denote by τ the first exit time from D for ξ.

Proposition 3.4.3 Let ΠD
x denote the law of (ξr, 0 ≤ r ≤ τ) under the subprobability mea-

sure Πx(· ∩ {τ < ∞}) (ΠD
x is viewed as a measure on Wx). Then, for every bounded

nonnegative measurable function G on Wx,

Nx

(∫ σ

0

dLD
s G(Ws)

)
= ΠD

x (G) .

In particular, for every bounded nonnegative measurable function g on E,

Nx(〈ZD, g〉) = Πx(1{τ<∞}g(ξτ)) .

Proof. We may assume that G is continuous and bounded, and G(w) = 0 if ζ(w) ≤ K−1 or
ζ(w) ≥ K, for some K > 0. By Proposition 3.4.1,

∫ σ

0

dLD
s G(Ws) = lim

ε→0

1

ε

∫ σ

0

ds 1{τ(Ws)<ζs<τ(Ws)+ε} G(Ws) (3.8)

Nx a.e. If we can justify the fact that the convergence (3.8) also holds in L1(Nx), we will get
from the case p = 1 of Proposition 3.3.2 (ii):

Nx

(∫ σ

0

dLD
s G(Ws)

)
= lim

ε→0

1

ε

∫ ∞

0

dh Πx

(
1{τ<h<τ+ε}G(ξr, 0 ≤ r ≤ h)

)

= lim
ε→0

Πx

(
1{τ<∞} ε−1

∫ τ+ε

τ

dh G(ξr, 0 ≤ r ≤ h)
)

= Πx

(
1{τ<∞}G(ξr, 0 ≤ r ≤ τ)

)
.
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It remains to justify the convergence in L1(Nx). Because of our assumption on G we may
deal with the finite measure Nx(· ∩ {sup ζs > K−1}) and so it is enough to prove that

sup
ε∈(0,1)

Nx

((1

ε

∫ σ

0

ds 1{τ(Ws)<ζs<τ(Ws)+ε}G(Ws)
)2)

is finite. This easily follows from the case p = 2 of Proposition 3.3.2 (ii), using now the fact
that G(w) = 0 if ζ(w) ≥ K. �

Let us give an important remark. Without any additional effort, the previous construc-
tion applies to the more general case of a space-time open set D ⊂ R+ × E, such that
(0, x) ∈ D. In this setting, ZD is a random measure on ∂D ⊂ R+ × E such that for
g ∈ Cb+(∂D)

〈ZD, g〉 = lim
ε→0

1

ε

∫ σ

0

ds 1{τ(Ws)<ζs<τ(Ws)+ε}g(ζs, Ŵs)

where τ(w) = inf{t ≥ 0, (t, w(t)) /∈ D}. To see that this more general case is in fact
contained in the previous construction, simply replace ξ by the space-time process ξ ′

t = (t, ξt),
which also satisfies assumption (3.1), and note that the Brownian snake with spatial motion
ξ′ is related to the Brownian snake with spatial motion ξ in a trivial manner.

We will now derive an integral equation for the Laplace functional of the exit measure.
This result is the key to the connections with partial differential equations that will be
investigated later.

Theorem 3.4.4 Let g be a nonnegative bounded measurable function on E. For every x ∈
E, set

u(x) = Nx(1 − exp−〈ZD, g〉) , x ∈ D .

The function u solves the integral equation

u(x) + 2Πx

(∫ τ

0

u(ξs)
2ds

)
= Πx(1{τ<∞}g(ξτ)) . (3.9)

Our proof of Theorem 3.4.4 is based on Lemma 3.3.3. Another more computational proof
would rely on calculations of moments of the exit measure from Proposition 3.3.2 above.

Proof. For every r > 0 set ηD
r = inf{s ≥ 0 : LD

s > r}, with the usual convention inf ∅ = ∞.
By the definition of ZD, we have

u(x) = Nx

(
1 − exp−

∫ σ

0

dLD
s g(Ŵs)

)

= Nx

(∫ σ

0

dLD
s g(Ŵs) exp(−

∫ σ

s

dLD
r g(Ŵr))

)

= Nx

(∫ ∞

0

dr 1{ηD
r <∞}g(ŴηD

r
) exp−

∫ σ

ηD
r

dLD
s g(Ŵs)

))

= Nx

(∫ ∞

0

dr 1{ηD
r <∞}g(ŴηD

r
) EW

ηD
r

(
exp−

∫ σ

0

dLD
s g(Ŵs)

))

= Nx

(∫ σ

0

dLD
s g(Ŵs)EWs

(
exp−

∫ σ

0

dLD
r g(Ŵr)

))
.
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The second equality is the simple identity 1 − exp(−At) =
∫ t

0
dAs exp(−(At − As)) valid

for any continuous nondecreasing function A. The third equality is the change of variables
s = ηD

r and the fourth one follows from the strong Markov property under Nx (cf Theorem
3.3.1) at the stopping time ηD

r .
Let w ∈ Wx be such that ζ(w) = τ(w). From Lemma 3.3.3, we have

Ew

(
exp−

∫ σ

0

dLD
r g(Ŵr)

)
= Ew

(
exp−

∑

i∈I

∫ βi

αi

dLD
r g(Ŵr)

)

= exp
(
−2

∫ ζ(w)

0

dt Nw(t)

(
1 − exp−

∫ σ

0

dLD
r g(Ŵr)

))

= exp
(
−2

∫ ζ(w)

0

dt u(w(t))
)

.

Hence,

u(x) = Nx

(∫ σ

0

dLD
s g(Ŵs) exp(−2

∫ ζs

0

dt u(Ws(t)))
)

= Πx

(
1{τ<∞}g(ξτ) exp(−2

∫ τ

0

dt u(ξt))
)

by Proposition 3.4.3. The proof is now easily completed by the usual Feynman-Kac argu-
ment:

u(x) = Πx(1{τ<∞}g(ξτ)) − Πx

(
1{τ<∞}g(ξτ)(1 − exp−2

∫ τ

0

dt u(ξt))
)

= Πx(1{τ<∞}g(ξτ)) − 2Πx

(
1{τ<∞}g(ξτ)

∫ τ

0

dt u(ξt) exp(−2

∫ τ

t

dr u(ξr))
)

= Πx(1{τ<∞}g(ξτ)) − 2Πx

(∫ τ

0

dt u(ξt)Πξt

(
1{τ<∞}g(ξτ) exp(−2

∫ τ

0

dr u(ξr))
))

= Πx(1{τ<∞}g(ξτ)) − 2Πx(

∫ τ

0

dt u(ξt)
2) .

3.5 The probabilistic solution of the nonlinear Dirich-

let problem

In this section, we assume that ξ is Brownian motion in Rd. The results however could easily
be extended to an elliptic diffusion process in Rd or on a manifold.

We say that y ∈ ∂D is regular for Dc if

inf{t > 0 : ξt 6∈ D} = 0 , Πy a.s.

The open set D is called regular if every point y ∈ ∂D is regular for Dc. We say that a
real-valued function u defined on D solves ∆u = 4u2 in D if u is of class C2 on D and the
equality ∆u = 4u2 holds pointwise on D.
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Theorem 3.5.1 Let D be a domain in Rd and let g be a bounded nonnegative measurable
function on ∂D. For every x ∈ D, set u(x) = Nx(1−exp−〈ZD, g〉). Then u solves ∆u = 4u2

in D. If in addition D is regular and g is continuous, then u solves the problem

∆u = 4u2 in D
u|∂D = g

(3.10)

where the notation u|∂D = g means that for every y ∈ ∂D,

lim
D3x→y

u(x) = g(y) .

Proof. First observe that, by (3.9),

u(x) ≤ Πx(1{τ<∞}g(ξτ)) ≤ sup
y∈∂D

g(y) ,

so that u is bounded in D. Let B be a ball whose closure is contained in D, and denote by
τB the first exit time from B. From (3.9) and the strong Markov property at time τB we get
for x ∈ B

u(x) + 2Πx

(∫ τB

0

u(ξs)
2ds

)
+ 2Πx

(
ΠξτB

(∫ τ

0

u(ξs)
2ds

))
= Πx(ΠξτB

(1{τ<∞}g(ξτ))).

By combining this with formula (3.9) applied with x = ξτB
, we arrive at

u(x) + 2Πx

(∫ τB

0

u(ξs)
2ds

)
= Πx(u(ξτB

)) . (3.11)

The function h(x) = Πx(u(ξτB
)) is harmonic in B, so that h is of class C2 and ∆h = 0 in B.

Set

f(x) := Πx

(∫ τB

0

u(ξ)2ds
)

=

∫

B

dy GB(x, y)u(y)2

where GB is the Green function of Brownian motion in B. Since u is measurable and
bounded, Theorem 6.6 of [27] shows that f is continuously differentiable in B, and so is u
since u = h − 2f . Then again by Theorem 6.6 of [27], the previous formula for f implies
that f is of class C2 in B and −1

2
∆f = u2 in B, which leads to the desired equation for u.

For the second part of the theorem, suppose first that D is bounded, and let y ∈ ∂D be
regular for Dc. Then, if g is continuous at y, it is well known that

lim
D3x→y

Πx(g(ξτ)) = g(y) .

On the other hand, we have also

lim sup
D3x→y

Πx

(∫ τ

0

u(ξs)
2ds

)
≤ (sup

x∈D
u(x))2 lim sup

D3x→y
Ex(τ) = 0 .

Thus (3.9) implies that
lim

D3x→y
u(x) = g(y) .
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When D is unbounded, a similar argument applies after replacing D by D ∩ B, where B is
now a large ball: Argue as in the derivation of (3.11) to verify that for x ∈ D ∩ B,

u(x) + 2Πx

(∫ τD∩B

0

u(ξs)
2ds

)
= Πx(1{τ≤τB}g(ξτ)) + Πx(1{τB<τ}u(ξτB

))

and then follow the same route as in the bounded case. �

The nonnegative solution of the problem (3.10) is always unique. When D is bounded,
this is a consequence of the following analytic lemma.

Lemma 3.5.2 (Comparison principle) Let h : R+ → R+ be a monotone increasing function.
Let D be a bounded domain in Rd and let u, v be two nonnegative functions of class C2 on
D such that ∆u ≥ h(u) and ∆v ≤ h(v). Suppose that for every y ∈ ∂D,

lim sup
D3x→y

(u(x) − v(x)) ≤ 0 .

Then u ≤ v.

Proof. Set f = u − v and D′ = {x ∈ D, f(x) > 0}. If D′ is not empty, we have

∆f(x) ≥ h(u(x)) − h(v(x)) ≥ 0

for every x ∈ D′. Furthermore, it follows from the assumption and the definition of D′ that

lim sup
D′3x→z

f(x) ≤ 0

for every z ∈ ∂D′. Then the classical maximum principle implies that f ≤ 0 on D′, which is
a contradiction. �

Corollary 3.5.3 (Mean value property) Let D be a domain in Rd and let U be a bounded
regular subdomain of D whose closure is contained in D. Then, if u is a nonnegative solution
of ∆u = 4 u2 in D, we have for every x ∈ U

u(x) = Nx(1 − exp−〈ZU , u〉).

Proof. For every x ∈ U , set

v(x) = Nx(1 − exp−〈ZU , u〉).

By Theorem 3.5.1, v solves ∆v = 4v2 in U with boundary value v|∂U = u|∂U . By Lemma
3.5.2, we must have v(x) = u(x) for every x ∈ U . �

The last proposition of this section provides some useful properties of nonnegative solu-
tions of ∆u = 4u2 in a domain. For x ∈ Rd and ε > 0, we denote by B(x, ε) the open ball
of radius ε centered at x. We also denote by

R = {Ŵs, 0 ≤ s ≤ σ}

the range of the Brownian snake.
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Proposition 3.5.4 (i) There exists a positive constant cd such that for every x ∈ Rd and
ε > 0,

Nx(R ∩ B(x, ε)c 6= ∅) = cd ε−2 .

(ii) Let u be a nonnegative solution of ∆u = 4u2 in the domain D. Then for every x ∈ D,

u(x) ≤ cd dist(x, ∂D)−2 .

(iii) The set of all nonnegative solutions of ∆u = 4 u2 in D is closed under pointwise con-
vergence.

Proof. (i) By translation invariance we may assume that x = 0. We then use a scaling
argument. For λ > 0, the law under n(de) of eλ(s) = λ−1e(λ2s) is λ−1n (exercise !). It easily

follows that the law under N0 of W
(ε)
s (t) = ε−1Wε4s(ε

2t) is ε−2N0. Then, with an obvious
notation,

N0(R ∩ B(0, ε)c 6= ∅) = N0(R(ε) ∩ B(0, 1)c 6= ∅)
= ε−2N0(R∩ B(0, 1)c 6= ∅) .

It remains to verify that N0(R ∩ B(0, 1)c 6= ∅) < ∞. If this were not true, excursion theory
would imply that P0 a.s., infinitely many excursions of the Brownian snake exit the ball
B(0, 1) before time 1. Clearly this would contradict the continuity of s → Ws under P0.

(ii) Let x ∈ D and r > 0 be such that B̄(x, r) ⊂ D. By Corollary 3.5.3, we have for every
y ∈ B(x, r)

u(y) = Ny(1 − exp−〈ZB(x,r), u〉) .

In particular,

u(x) ≤ Nx(ZB(x,r) 6= 0) ≤ Nx(R∩ B(x, r)c 6= ∅) = cd r−2 .

In the second inequality we used the fact that ZB(x,r) is supported on EB(x,r) ⊂ R∩B(x, r)c.

(iii) Let (un) be a sequence of nonnegative solutions of ∆u = 4 u2 in D such that un(x) −→
u(x) as n → ∞ for every x ∈ D. Let U be an open ball whose closure is contained in D. By
Corollary 3.5.3, for every n ≥ 1 and x ∈ U ,

un(x) = Nx(1 − exp−〈ZU , un〉).

Note that Nx(ZU 6= 0) < ∞ (by (i)) and that the functions un are uniformly bounded
on ∂U (by (ii)). Hence we can pass to the limit in the previous formula and get u(x) =
Nx(1 − exp−〈ZU , u〉) for x ∈ U . The desired result then follows from Theorem 3.5.1. �

Let us conclude this section with the following remark. Theorem 3.4.4 could be applied as
well to treat parabolic problems for the operator ∆u−4u2. To this end we need only replace
the Brownian motion ξ by the space-time process (t, ξt). If we make this replacement and
let D ⊂ R+ × Rd be a space-time domain, then for every bounded nonnegative measurable
function g on ∂D, the formula

u(t, x) = Nt,x(1 − exp−〈ZD, g〉)
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gives a solution of
∂u

∂t
+

1

2
∆u − 2u2 = 0

in D. Furthermore, u has boundary condition g under suitable conditions on D and g. The
proof proceeds from the integral equation (3.9) as for Theorem 3.4.4.

3.6 Solutions with boundary blow-up

Proposition 3.6.1 Let D be a bounded regular domain. Then u1(x) = Nx(ZD 6= 0), x ∈ D
is the minimal nonnegative solution of the problem

∆u = 4u2 in D

u|∂D = +∞.
(3.12)

Proof. First note that u1(x) < ∞ by Proposition 3.5.4 (i). For every n ≥ 1, set vn(x) =
Nx(1 − exp−n〈ZD, 1〉), x ∈ D. By Theorem 3.5.1, vn solves (3.10) with g = n. By
Proposition 3.5.4 (iii), u1 = lim ↑ vn also solves ∆u = 4u2 in D. The condition u1|∂D = ∞
is clear since u1 ≥ vn and vn|∂D = n. Finally if v is another nonnegative solution of the
problem (3.12), the comparison principle (Lemma 3.5.2) implies that v ≥ vn for every n and
so v ≥ u1. �

Proposition 3.6.2 Let D be any open set in Rd and u2(x) = Nx(R ∩ Dc 6= ∅) for x ∈ D.
Then u2 is the maximal nonnegative solution of ∆u = 4u2 in D (in the sense that u ≤ u2

for any other nonnegative solution u in D).

Proof First note that R is connected Nx a.e. as the range of the continuous mapping
s → Ŵs. It follows that we may deal separately with each connected component of D, and
thus assume that D is a domain. Then we can easily construct a sequence (Dn) of bounded
regular subdomains of D, such that D = lim ↑ Dn and D̄n ⊂ Dn+1 for every n. Set

vn(x) = Nx(ZDn 6= 0) , ṽn(x) = Nx(R ∩ Dc
n 6= ∅)

for x ∈ Dn. By the support property of the exit measure, it is clear that vn ≤ ṽn. We
also claim that ṽn+1(x) ≤ vn(x) for x ∈ Dn. To verify this, observe that on the event
{R ∩ Dc

n+1 6= ∅} there exists a path Ws that hits Dc
n+1. For this path Ws, we must have

τDn(Ws) < ζs (here τDn stands for the exit time from Dn), and it follows from the properties
of the Brownian snake that

An
σ :=

∫ σ

0

dr 1{τDn (Wr)<ζr} > 0 ,

Nx a.e. on {R∩Dc
n+1 6= ∅}. However, from the construction of the exit measure in Section 4

above, 〈ZDn , 1〉 is obtained as the local time at level 0 and at time An
σ of a reflected Brownian

motion started at 0. Since the local time at 0 of a reflected Brownian motion started at 0
immediately becomes (strictly) positive, it follows that {R ∩ Dc

n+1 6= ∅} ⊂ {ZDn 6= 0}, Nx

a.e., which gives the inequality ṽn+1(x) ≤ vn(x).
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We have then for x ∈ D

u2(x) = lim
n→∞

↓ ṽn(x) = lim
n→∞

↓ vn(x) . (3.13)

This follows easily from the fact that the event {R ∩ Dc 6= ∅} is equal Nx a.e. to the
intersection of the events {R∩Dc

n 6= ∅}. By Proposition 3.6.1, vn solves ∆u = 4u2 in Dn. It
then follows from (3.13) and Proposition 3.5.4 (iii) that u2 solves ∆u = 4u2 in D. Finally, if
u is another nonnegative solution in D, the comparison principle implies that u ≤ vn in Dn

and it follows that u ≤ u2. �

Example. Let us apply the previous proposition to compute Nx(0 ∈ R) for x 6= 0. By
rotational invariance and the same scaling argument as in the proof of Proposition 3.5.4
(i), we get Nx(0 ∈ R) = C|x|−2 with a nonnegative constant C. On the other hand, by
Proposition 3.6.2, we know that u(x) = Nx(0 ∈ R) solves ∆u = 4u2 in Rd\{0}. A short
calculation, using the expression of the Laplacian for a radial function, shows that the only
possible values of C are C = 0 and C = 2− d

2
. Since u is the maximal solution, we conclude

that if d ≤ 3,

Nx(0 ∈ R) = (2 − d

2
)|x|−2

whereas Nx(0 ∈ R) = 0 if d ≥ 4. In particular, points are polar (in the sense that they are
not hit by the range) if and only if d ≥ 4.

Let us conclude with some remarks. First note that, if D is bounded and regular (the
boundedness is superfluous here), the function u2 of Proposition 2 also satisfies u2|∂D = +∞.
This is obvious since u2 ≥ u1. We may ask the following two questions.

1. If D is regular, is it true that u1 = u2? (uniqueness of the solution with boundary
blow-up)

2. For a general domain D, when is it true that u2|∂D = +∞? (existence of a solution
with boundary blow-up)

A complete answer to question 2 is provided in [6] (see also [20]). A general answer to 1 is
still an open problem (see [20] and the references therein for partial results).

Bibliographical notes. Much of this chapter is taken from [20], where additional references
about the Brownian snake can be found. The connections with partial differential equa-
tions that are discussed in Section 5 and 6 were originally formulated by Dynkin [10] in the
language of superprocesses (see Perkins [26] for a recent account of the theory of superpro-
cesses). These connections are still the subject of an active research: See Dynkin’s books
[11], [12]. Mselati’s thesis [24] gives an application of the Brownian snake to the classification
and probabilistic representation of the solutions of ∆u = u2 in a smooth domain.
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d’été de probabilités de Saint-Flour 1999. In: Lecture Notes Math. 1781. Springer, 2002.

[27] S.C. Port, C.J. Stone. Brownian Motion and Classical Potential Theory. Academic, New
York, 1978.

[28] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Springer 1991.

[29] L.C.G. Rogers, D. Williams. Diffusions, Markov Processes and Martingales. Vol.2: Itô
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