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My research on algorithms applies to two general areas, mathematical biology and number
theory. My switch to biological problems is recent. The broader impact of extracting informa-
tion from biological sequences is great, despite the difficulty of precise problem definition. My
graduate thesis develops a specialized number theory algorithm which converts a question about
modular forms into a combinatorial problem. The basic problem of finding the prime divisors
of an integer is a continuing interest of mine. I continue to consult for Institute for Defense
Analyses (IDA), due to the application of number theory to cryptography.

I plan to continue developing biological sequence comparison algorithms. Goals include
gaining insight into the process of evolution and understanding the semantics of the genetic
code.

In the immediate future, I will refine the methods I describe below. Probabilitistic pairwise
visualization (PPV) allows sequences to be compared using a data array which translates into
an image showing regions of higher and lower correlation. The numerical data can then be
processed by digital image techniques. It is a challenging programming problem to generalize to
multiple sequences. Traceback and realignment of gaps (TAR) is a separate algorithm designed
as part of an improvement to the CLUSTAL progressive multiple sequence alignment.

These methods have been tested on data from mouse, rat, and yeast. They can each benefit
from development of stronger underlying models of evolution. I would like to use them to go
beyond the information developed using other strategies, examining both larger and more com-
plex data sets.

In my Ph. D. thesis [Sm], I develop a technique to analyze the slopes of the Atkin U operator,
which acts as a compact operator on certain spaces of p-adic modular forms. In a later paper,
I define the set of compact operators with rational generation (CORG). I show that U is a
CORG and that the set of CORGs is an algebra. Based on numerical experiments, I conjecture
structure in the slopes of these operators, which are proved, by me and others, in particular
cases. The general case remains an open problem.

Mathematical Biology

Biological sequences are strings from an alphabet of four nucleotides or twenty amino acids.
For simplicity, I will use nucleotide sequences as an example. DNA, the molecule of heredity
in every cellular life form on Earth, is a polymer composed of two complementary chains of
nucleotides. It encodes the instructions for every life process. The duplication process between
generations is imperfect. The mutations may result in variations of individuals within species
and, eventually, speciation.

My start on this project came from the suggestion of Jade Vinson at the Whitehead Institute
at MIT in the summer of 2002, instigated by our common work on algorithms at IDA. I have
been fortunate to have his advice, as well as that of Nick Patterson at Whitehead and Rick
Durrett at Cornell.
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In [Sm5], I describe a new algorithm, PPV, for visualizing an alignment of biological se-
quences according to a probabilistic model of evolution. The resulting data array is readily
interpreted by the human eye and amenable to digital image techniques as well as statistical
methods. The demonstration implementation uses an underlying evolutionary model derived
from one proposed by Thorne, Kishino, and Felsenstein in [TKF] and improved by Hein and
others in [H+].

PPV as implemented applies to two sequences and requires time and memory proportional to
the product of the sequence lengths. There is a natural extension of PPV to multiple sequences
using a result of [L+]. I describe a basic method to reduce the time and memory demands.

Along with the description of the algorithm, I present examples using mRNA sequences from
mouse and rat. Figure 1, excerpted from [Sm5] and appearing after the list of references, is part
of the analysis of two zinc finger proteins from chromosome 7 of Mus musculus. The many
diagonal bands reflect the repeated 28 amino acid zinc finger functional units, with some more
similar to each other. Evaluation of this kind of multiple similarity is a shortcoming of standard
Smith-Waterman type dynamic programming methods, including CLUSTAL. For this example,
BLAST finds only some of the multiple similarities, and does not assemble them into the larger
picture.

The insight of [H+], discussed further in [L+], is the description of a Markov process for
evolution using one main state and multiple transitions. This simplifies computing the total
likelihood of two sequences aligning by any path, rather than solely the Viterbi maximum score
path.

I extend their work by computing total likelihood from both the head and tail ends of
sequences and combining the answers. The result is an array that compares sequences point
by point by assigning a value to every ordered pair of loci, one in each sequence. The value is
meaningful as a probability, comparable across an array, and together with a normalization I
describe, comparable between arrays generated for different pairs of sequences. I explore a way
to express degree of preference for local similarity by suggesting a model for “jump” events,
where the sequence continuity possibly breaks and is not modeled well by insertion, deletion,
and substitution.

I determine the equilbrium value, ν for the array computed with random sequences. By
assigning the value ν to certain parts of the array compued for actual data, I can model the
assumption that certain sequence comparisons verify the null hypothesis of no evolutionary re-
lation. With this kind of masking, it will be possible to extend the algorithm in [Sm5] to longer
sequences and multiple sequences.

For biological sequences with expected one to one correspondence, dynamic programming
with Viterbi path computation is a good strategy to find the best alignment. Multiple sequence
alignment (MSA) is used to detect candidates for functional regions of DNA. Within a species,
genes that are part of the same metabolic pathway may have control regions which respond to
the same regulating factors. Across species, parsimony predicts that homologous genes conserve
essential functional groups.

CLUSTAL is a popular program for progressive MSA using Viterbi score paths. Given
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a set of sequences, CLUSTAL constructs a (binary) guide tree using a distance matrix from
pairwise alignment and Saitou–Nei neighbor joining [SN]. Each leaf of the tree corresponds
to a data sequence. For each interior node, when both of its children are labeled either by a
single sequence or a MSA, the two objects are aligned pairwise by Smith–Waterman dynamic
programming [SW]. The entries in the score matrix are computed by scoring the profiles of the
two inputs. The parent node gets for a label the larger MSA, with a row corresponding to each
row of each child. When the root of the tree gets a label, that grand MSA contains a row for
every input sequence.

One well known limitation of CLUSTAL is its inability to backtrack on the tree; all partial
MSAs are frozen. This can lead to suboptimal alignments due to gap position ambiguity. Here
is an example where the improvement is obvious. Consider excerpts of three sequences

X ATCCGAGATCGCGATCGA

Y ATCCGA------GATCGA

Z ATCCGTGATCGCTTCCGA

where, based on the whole sequence, X and Y are more closely related than either is to Z. In the
excerpt shown, the score of the XY alignment is unchanged if the gap and the GAT following are
swapped. Smith–Waterman alignment chooses one way. In light of sequence Z, we see that the
alternative GAT followed by the gap is better. A transposable element often inserts following a
string similar to its tail, leading to this kind of ambiguity. CLUSTAL has equal difficulty with
the inverse situation, where the fragment on the edge of a gap is dissimilar from the opposite
sequence on each side of the gap.

I propose a modification of the record kept by the dynamic programming segment, which
allows traceback through the guide tree and realignment of gaps (TAR). At each stage of the
progressive MSA, TAR attaches to every gap a range in which to float. At a later stage involving
that alignment, that gap is floated in its range to optimize the score of the new MSA. TAR
requires parameters to determine the range of the float and the trade-off between the score of
the smaller alignment versus the score of the larger alignment.

The motivation for TAR comes from scanning CLUSTAL alignments for the biggest, easiest
improvement. The idea to use a local method, relative to the guide tree, comes from the view
of sequence alignments as reconstructions of evolutionary history. TAR overcomes the challenge
presented by transposable elements. to multiple alignments.

A basic implementation of TAR, tested on a handful of cases shows a modest quantitative
improvement over CLUSTAL, as measured by the recalculated CLUSTAL score, and a qual-
itative improvement in that the new alignments do not suggest obvious improvements. TAR
applies to the Tcoffee progressive MSA algorithm [NHH]. Tcoffee also freezes intermediate
MSAs. A natural future direction for TAR is complete implementation of TAR as an extension
of CLUSTAL, Tcoffee, or any other progressive MSA method.
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Number Theory

My interest in computation number theory began in about 1987, when I corresponded with
Larry Carter, then at IBM, about enumerating prime numbers faster than the Sieve of Eratos-
thenes. Later, as an undergraduate, I wrote a senior thesis, Modern integer factorization under
Noam Elkies, describing subexponential integer factorization algorithms, with emphasis on the
number field sieve. IDA kept a copy of this paper for their library.

I continued with number theory in Berkeley. I wrote my dissertation on p-adic modular
forms under the direction of Robert Coleman.

A nontechnical sketch of the construction of modular forms begins with elliptic curves, which
are cubic curves. When the complex numbers is the ground field of definition, an elliptic curve
may be transformed by projective 2-space isomorphism to have the equation

Y 2Z = X3 + aXZ2 + bZ3,

for constants a and b.
An elliptic curve is an example of a algebraic group. The group law is that three collinear

points on an elliptic curve sum to zero. In [Sm], [Sm2], [Sm3] and [Sm4], the ground field is
p-adic, and the elliptic curves may be marked with extra data, the level structure. For example,
level Γ0(5) structure adds to an elliptic curve a distinguished subgroup of order 5.

A modular curve is a parameter space for elliptic curves with a particular level structure.
Differentials on this modular curve are modular forms. The weight of a modular form is twice
the degree of the differential. Maps between modular curves lift to maps between modular forms
which preserve weight. For example, there is a natural map from X0(5), the space of elliptic
curves with marked subgroup of order 5, to X(1), the space of elliptic curves with no extra
structure, by ignoring the level structure. A modular form on X(1) pulls back to a modular
form on X0(5).

Among the endomorphisms of modular forms is the Hecke algebra, which arises from traces
of certain maps of modular curves. The modular forms derived from elliptic curves over a p-
adic ground field have a generalization, the overconvergent modular forms, such that the ideal
generated by the Atkin U operator in the Hecke algebra is a set of compact operators on a p-adic
Banach space.

A compact operator L has a spectrum which is the set of reciprocals of roots of the charac-
teristic power series

fL(t) = det(1− tL).

Koike’s formula computes the coefficients of fU(t). Their p-adic valuations determine the valu-
ations of the eigenvalues of U . The Newton polygon of U is the lower convex hull of a plot of n
versus the valuation of the coefficient of tn in fU(t). The slopes of the Newton polygon are the
valuations of eigenvalues.

I compute p-adic approximations to the U operator when the related modular curve has
genus zero. In this case, the ring of weight zero modular forms is a restricted power series
ring Cp〈d〉, meaning there is a single weight zero modular form d such that every weight zero
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modular form may be realized as a power series in d with coefficients in Cp such that power
series converges on the closed disk of radius 1.

I determine a recursion for U applied to powers of d and realize U as an explicit infinite
order matrix. (The same procedure is possible for arbitrary genus modular curves; the choice
of module basis more difficult.)

Computational linear algebra applies to the matrix for U . The operator U is compact, so
truncations of the matrix converge in the p-adic topology to U . I prove that every instance of U
has a Newton polygon which is bounded below by a parabola. For p = 3 and weight 0, I find a
bounding parabola which coincides with the Newton polygon infinitely often and also the points
of coincidence. The explicit results support the view of Gouvêa and Mazur that the slopes of
U in different weights are related; however, there is a recent counterexample to their specific
conjecture in [GM].

The good p-adic approximations allow computation of many slopes of the U operator. The
calculations are determinants of integer matrices, often with many zero entries. These calcula-
tions are faster than Koike’s formula. On a Intel 486 machine using the Pari algebra system, we
computed over a hundred 3-adic slopes using the matrix and its recursion, compared with less
than forty for Koike’s formula. The calculations with integer matrices would also be much easier
to program without an algebra package than would the quotients of p-adic algebraic numbers
required by Koike’s formula.

Buzzard, Calegari, and Kilford have done more extensive calculations for 2-adic modular
forms. See [Ki] for reference to all three. Using the recursive generation for the matrix and
some ad hoc combinatorics, they have determined, with proof, some infinite sequences of slopes
of some 2-adic modular forms. The short recursion makes realization of a closed form solution
for the matrix coefficients easier than for larger primes.

The set of CORGs is an algebra. The Newton polygon of a CORG is bounded below by a
parabola. Numerical experiments suggest that the Newton polygons are also bounded above by
a parabola, with the same quadratic term; the difference between the bounding parabola and
the Newton polygon grows linearly; and the slopes grow linearly, with a deviation that grows
logarithmically.
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Figure 1: Comparison of zinc finger protein mRNA seqences for Mus musculus Zfp111 and
Zfp235. The normalized likelihood array shows: high sequence identity to coordinate (537,
540), then a mismatch with a net insertion of 222 bases in Zfp235. In the rectangle with bottom
left corner (622, 844) and top right corner (2106, 2112), there are many parallel tracks, with
parts of three more intense than the others. Closer analysis of the parallel tracks reveals the
internal repeat structure among the zinc finger functional groups.


