
18.312: Algebraic Combinatorics Lionel Levine

Lecture 12
Lecture date: March 17, 2011 Notes by: Lou Odette

This lecture:

• A continuation of the last lecture: computation of µΠn , the Möbius function over the
incidence algebra of partition lattices.

• The zeta polynomial of the poset P .

• Finite Boolean algebras.

• A review of selected questions from the midterm.

1 Computing µΠn
, continued...

In lecture 11 we discussed partition lattices, and showed that intervals [σ, τ ] of the lattice
were isomorphic to a direct product of k posets, where k is the number of blocks of τ . In
particular, given an interval [σ, τ ] of Πn, if τ has k blocks, each the (disjoint) union of λk
blocks of σ, then

[σ, τ ] ' Πλ1 × · · · ×Πλk

Using our earlier lemma for the Möbius function of a direct product we can write

µΠn [σ, τ ] = µΠλ1
× · · · × µΠλk

(1)

where
µΠλ ≡ µΠλ

(
0̂, 1̂
)

Lemma 1 (lattice recurrence) Let L be a lattice with |L| ≥ 2, and recalling that a co-atom
is a maximal element of L−

{
1̂
}
, fix a co-atom a ∈ L. Then∑

x∈L
x∧a=0̂

µ
(
x, 1̂
)

= 0
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Proof:

We use the following facts about the Möbius algebra A (L) which we discussed in lecture 11:

x =
∑
y≤x

δy (2)

δx =
∑
y≤x

µ (y, x) y (3)

δxδy =

{
δx , x = y
0 , otherwise (4)

From equations (2) and (4) and the assumption that the co-atom a 6= 1̂

aδ1̂ =

∑
y≤a

δy

 δ1̂ = 0⇒ aδ1̂ =
∑
x∈L

cxx = 0

and since aδ1̂ is identically zero, all coefficients of aδ1̂ in the natural basis of A (L) are zero,
in particular the coefficient c0̂ of 0̂ vanishes. From the multiplication rule for A (L) and
using equation (3) applied to δ1̂ we can also write

0 = aδ1̂ = a
∑
y≤1̂

µ
(
y, 1̂
)
y =

∑
y≤1̂

µ
(
y, 1̂
)

(a ∧ y) (5)

so if we restrict the sum in equation (5) to y ∈ L such that (a ∧ y) = 0̂, then we can equate
the sum of the Möbius functions with the coefficient c0̂, which is identically zero.

2

Applying Lemma 1 to L = Πn, we can pick co-atoms ai with partitions whose two blocks
are {i} and [n]− {i}. The lemma condition x ∧ ai = 0̂ implies that either x = 0̂ or x has a
total of n − 1 blocks, n − 2 blocks that are singletons, and one block of two elements, one
of which is i. Denote partitions of this sort by xi. The lemma then states that for each
co-atom a ∈ {ai}ni=1 ∑

x∈L
x∧a=0̂

µΠn

(
x, 1̂
)

= µΠn

(
0̂, 1̂
)

+

n−1∑
i=1

µΠn

(
xi, 1̂

)
= 0

which after re-arranging and using the fact that
[
xi, 1̂

]
' Πn−1 (so µΠn

(
xi, 1̂

)
=

µΠn−1

(
0̂, 1̂
)
≡ µΠn−1) gives

µΠn

(
0̂, 1̂
)

= −
n−1∑
i=1

µΠn

(
xi, 1̂

)
= − (n− 1)µΠn−1

= (−1)n−1 (n− 1)!
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and so, using equation (1), we see that in general

µΠn (σ, τ) = µΠλ1
× · · · × µΠλk

=
∏
i∈[k]

(−1)λi−1 (λi − 1)!

Example 2 The Hasse diagram of Π4 is shown below:

and the corresponding matrix of Möbius function values is

1|2|3|4
12|3|4
13|2|4
14|2|3
1|23|4
1|24|3
1|2|34
123|4
124|3
12|34
134|2
13|24
14|23
1|234
1234



1 −1 −1 −1 −1 −1 −1 2 2 1 2 1 1 2 −6
0 1 0 0 0 0 0 −1 −1 −1 0 0 0 0 2
0 0 1 0 0 0 0 −1 0 0 −1 −1 0 0 2
0 0 0 1 0 0 0 0 −1 0 −1 0 −1 0 2
0 0 0 0 1 0 0 −1 0 0 0 0 −1 −1 2
0 0 0 0 0 1 0 0 −1 0 0 −1 0 −1 2
0 0 0 0 0 0 1 0 0 −1 −1 0 0 −1 2
0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



where the rows of the matrix are labeled with the partition represented by the corresponding
vertex of the Hasse diagram.

We have 0̂ = 1|2|3|4, i.e. the partition with four blocks, and the values of µ
(
0̂, ·
)
are in

row 1 of the matrix above, while 1̂ = 1234, the partition having a single block (row 15 in
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the matrix). The co-atoms each have two blocks, and their Möbius function values are in
rows 8 though 14, and so per Lemma 1, if we choose the co-atom a = 123|4 (with µ (a, ·)
values in row 8), then the elements of x ∈ Π4 such that x ∧ a = 0̂ are the vertices labeled
14|2|3, 1|24|3, 1|2|34 (rows 4, 6, 7 respectively). From the Möbius function we can confirm

−6 = µ
(
0̂, 1̂
)

= −
(
µ
(
4, 1̂
)

+ µ
(
6, 1̂
)

+ µ
(
7, 1̂
))

= − (2 + 2 + 2)

Similarly, if we choose co-atom a = 12|34 (row 10) then the elements of x ∈ Π4 such that
x∧a = 0̂ correspond to rows 3, 4, 5, 6, 12, 13. From the Möbius function values in those rows
of the matrix we can confirm

−6 = µ
(
0̂, 1̂
)

=
∑

x∈{3,4,5,6,12,13}

µ
(
x, 1̂
)

2 Zeta polynomial of a poset.

For a poset P with minimum and maximum elements 0̂, 1̂ respectively, define a function of
n as follows

Z (P, n) ≡ #
{
multichains: 0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂

∣∣xi ∈ P} (6)

then using the ideas we developed for incidence algebras we can write this polynomial in n
in terms of the zeta function on P , i.e. as ζn

(
0̂, 1̂
)
. By contrast with (6), the zeta functions

is well formed for all n ∈ Z.

Claim: Z (P, n) is a polynomial in n and can be shown to satisfy a linear recurrence.

Recall that (ζ − 1)r+1 = 0 if P is of rank r, so let

Zn ≡ Z (P, n)

then Zn satisfies the recurrence
(E − 1)r+1 Z = 0

which implies that Zn is a polynomial q (·) in n of degree ≤ r, and in fact, the degree of q (·)
is equal to r.

This gives another way to compute Möbius functions, since Z (P,−1) = ζ−1
(
0̂, 1̂
)

= µ
(
0̂, 1̂
)
.

Example 3 (zeta polynomial on the Boolean algebra of rank r) Let P = Br, then the zeta
polynomial Z (Br, n) counts multi-chains of the form

Ã¿ = 0̂ ⊆ S0 ⊆ · · · ⊆ Sn = 1̂ = [r]
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and by construction, each i ∈ [r] appears for the first time in some Sj , j ∈ [n], which we can
choose independently. Thus the number of multi chains is nr, since there are n choices for
the set where i ∈ [r] appears for the first time, and there are r elements of [r]. Thus

Z (Br,−1) = µBr
(
0̂, 1̂
)

= (−1)r

3 Lattice Axioms.

We assert the following lattice axioms

x ∨ y = x ∨ y x ∧ y = x ∧ y
x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x

where the axioms of the last line are referred to as absorption axioms. With the identification

x ≤ y ≡ x = x ∧ y

we can check the following lattice properties:

1. does x ≤ x⇒ x = x ∧ x?

x = x ∨ (x ∧ x) by absorption
x ∧ (x ∨ (x ∧ x)) = x ∧ x by absorption again

= x

2. do x ≤ y, and y ≤ x⇒ x = y?

x ≤ y ≡ x = x ∧ y
y ≤ x ≡ y ∧ x = y

⇒ x = y

3. does transitivity hold?

x ≤ y& y ≤ z ⇒ x = x ∧ y& y = y ∧ z
⇒ x ∧ (y ∧ z) = (x ∧ y) ∧ z = x ∧ z
⇒ x ≤ z
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So, the three axioms above satisfy the requirements for a poset lattice. If we add the axiom

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

we can also describe a distributive lattice axiomatically.

Finally, we can add the following complement axiom. Assume ∃0̂, 1̂ and ∀x, ∃¬x such that
0̂ = x ∧ (¬x) and 1̂ = x ∨ (¬x). Then we can describe the Boolean algebra as follows

Theorem 4 If L is a finite Boolean algebra by axiomatic definition, then L ' Bn for some
n ∈ N.

Proof:

By Birkhoff’s Theorem, since L is a distributive lattice, we have L = J (P ) for some poset
P . If L is to be isomorphic to Bn then we need to show that P is an antichain, i.e.
P = 1 + 1 + · · · + 1 is the direct sum of n singletons, and has no order relations (there do
not exist x, y ∈ P such that x < y). To this end, assume the complement axiom holds so
that for I ∈ L = J (P )

I ∧ (¬I) = I ∩ (¬I) = ∅ = 0̂

I ∨ (¬I) = I ∩ (¬I) = P = 1̂

and so the complement operator must be set-theoretic complement in this instance:

¬I = P − I.

However, if P has a nontrivial order relation x < y, then consider the principal ideal I =
〈x〉 = {z ∈ P | z ≤ x}. Its complement P − I is not an order ideal, since y ∈ P − I and
x < y but x /∈ (P − I). Therefore L does not satisfy the complement axioms unless P is an
antichain. 2

In logic, if L is a Boolean algebra, the elements of L can be interpreted as propositions or
sentences with

x ∧ y ≡ x and y
x ∨ y ≡ x or y
¬x ≡ not x

0̂ ≡ FALSE
1̂ ≡ TRUE

for x, y ∈ L.

Example 5 B1 ' 2 =
{

0̂, 1̂
}

Example 6 Bn ' 2× 2× · · · × 2 (n bits)
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4 Midterm review.

Question 7 Midterm question M5.

Answer 8 an+2 − 4an+1 + 4an = 0 ⇒
(
E2 − 4E + 4

)
an = (E − 2)2 an = 0, which then

means that

an = r2n + ns2n

r = a0

s =
a1

2
− a0

then

• (c)

bn = 2−nan

= r + ns

= (r + ns) (1)n

⇒ (E − 1)2 bn = 0

• (d)

cn = an − 2

= r2n + ns2n − 2(1)n

⇒ (E − 2)2 (E − 1)cn = 0

• (e)

dn = a2n = r22n + 2ns22n

= r4n + 2ns4n

⇒ (E − 4)2 dn = 0
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Question 9 Midterm question M1.

Answer 10 We want to show that
(

2p
p

)
−
(

2
1

)
is divisible by p, for p prime. Framed as a

necklace problem, consider necklaces a composed of 2p beads with p red beads (say), and
p blue beads. There are

(
2p
p

)
necklaces that fit this description, and since p is prime, the

possible stabilizers are C1, C2, Cp, C2p, and

C2p − no necklaces
Cp − 2 necklaces with alternative colors
C2 − no necklaces except for p = 2

C1 −
((

2p

p

)
− 2

)
necklaces

the last number is divisible by 2p, and so also by p.

Answer 11 Writing the Vandermonde convolution

p∑
k=0

(
p

k

)(
p

p− k

)
=

(
2p

p

)

2 +

p−1∑
k=1

(
p

k

)(
p

p− k

)
=

(
2p

p

)
⇒

(
2p

p

)
mod p = 2

since (
p

k

)
=

p!

k! (p− k)!

is divisible by p for k ∈ [p]. Thus (
2p

p

)
− 2 mod p = 0
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