18.312: Algebraic Combinatorics

Lionel Levine

Lecture 12

Lecture date: March 17, 2011

Notes by: Lou Odette

This lecture:

- A continuation of the last lecture: computation of μ_{Π_n} , the Möbius function over the incidence algebra of partition lattices.
- The zeta polynomial of the poset P.
- Finite Boolean algebras.
- A review of selected questions from the midterm.

1 Computing μ_{Π_n} , continued...

In lecture 11 we discussed partition lattices, and showed that intervals $[\sigma, \tau]$ of the lattice were isomorphic to a direct product of k posets, where k is the number of blocks of τ . In particular, given an interval $[\sigma, \tau]$ of Π_n , if τ has k blocks, each the (disjoint) union of λ_k blocks of σ , then

$$[\sigma,\tau]\simeq\Pi_{\lambda_1}\times\cdots\times\Pi_{\lambda_k}$$

Using our earlier lemma for the Möbius function of a direct product we can write

$$\mu_{\Pi_n} \left[\sigma, \tau \right] = \mu_{\Pi_{\lambda_1}} \times \dots \times \mu_{\Pi_{\lambda_k}} \tag{1}$$

where

$$\mu_{\Pi_{\lambda}} \equiv \mu_{\Pi_{\lambda}} \left(\hat{0}, \hat{1} \right)$$

Lemma 1 (lattice recurrence) Let L be a lattice with $|L| \ge 2$, and recalling that a co-atom is a maximal element of $L - \{\hat{1}\}$, fix a co-atom $a \in L$. Then

$$\sum_{\substack{x \in L \\ x \wedge a = \hat{0}}} \mu\left(x, \hat{1}\right) = 0$$

Proof:

We use the following facts about the Möbius algebra A(L) which we discussed in lecture 11:

$$x = \sum_{y \le x} \delta_y \tag{2}$$

$$\delta_x = \sum_{y \le x} \mu(y, x) y \tag{3}$$

$$\delta_x \delta_y = \begin{cases} \delta_x & , x = y \\ 0 & , \text{ otherwise} \end{cases}$$
(4)

From equations (2) and (4) and the assumption that the co-atom $a \neq \hat{1}$

$$a\delta_{\hat{1}} = \left(\sum_{y \le a} \delta_y\right)\delta_{\hat{1}} = 0 \Rightarrow a\delta_{\hat{1}} = \sum_{x \in L} c_x x = 0$$

and since $a\delta_{\hat{1}}$ is identically zero, all coefficients of $a\delta_{\hat{1}}$ in the natural basis of A(L) are zero, in particular the coefficient $c_{\hat{0}}$ of $\hat{0}$ vanishes. From the multiplication rule for A(L) and using equation (3) applied to $\delta_{\hat{1}}$ we can also write

$$0 = a\delta_{\hat{1}} = a\sum_{y\leq\hat{1}}\mu\left(y,\hat{1}\right)y = \sum_{y\leq\hat{1}}\mu\left(y,\hat{1}\right)\left(a\wedge y\right)$$
(5)

so if we restrict the sum in equation (5) to $y \in L$ such that $(a \wedge y) = \hat{0}$, then we can equate the sum of the Möbius functions with the coefficient $c_{\hat{0}}$, which is identically zero.

Applying Lemma 1 to $L = \Pi_n$, we can pick co-atoms a_i with partitions whose two blocks are $\{i\}$ and $[n] - \{i\}$. The lemma condition $x \wedge a_i = \hat{0}$ implies that either $x = \hat{0}$ or x has a total of n - 1 blocks, n - 2 blocks that are singletons, and one block of two elements, one of which is i. Denote partitions of this sort by x_i . The lemma then states that for each co-atom $a \in \{a_i\}_{i=1}^n$

$$\sum_{\substack{x \in L \\ x \land a = \hat{0}}} \mu_{\Pi_n} \left(x, \hat{1} \right) = \mu_{\Pi_n} \left(\hat{0}, \hat{1} \right) + \sum_{i=1}^{n-1} \mu_{\Pi_n} \left(x_i, \hat{1} \right) = 0$$

which after re-arranging and using the fact that $[x_i, \hat{1}] \simeq \Pi_{n-1}$ (so $\mu_{\Pi_n}(x_i, \hat{1}) = \mu_{\Pi_{n-1}}(\hat{0}, \hat{1}) \equiv \mu_{\Pi_{n-1}}$) gives

$$\mu_{\Pi_n} (\hat{0}, \hat{1}) = -\sum_{i=1}^{n-1} \mu_{\Pi_n} (x_i, \hat{1})$$

= -(n-1) $\mu_{\Pi_{n-1}}$
= (-1)ⁿ⁻¹ (n-1)!

and so, using equation (1), we see that in general

$$\mu_{\Pi_n} (\sigma, \tau) = \mu_{\Pi_{\lambda_1}} \times \cdots \times \mu_{\Pi_{\lambda_k}}$$
$$= \prod_{i \in [k]} (-1)^{\lambda_i - 1} (\lambda_i - 1)!$$

Example 2 The Hasse diagram of Π_4 is shown below:

HASSE DIAGRAM OF Π_4

and the corresponding matrix of Möbius function values is

1234	/ 1	-1	-1	-1	-1	-1	-1	2	2	1	2	1	1	2	-6 \
1234	(0	1	0	0	0	0	0	-1	-1	-1	0	0	0	0	2
1324	0	0	1	0	0	0	0	-1	0	0	-1	-1	0	0	2
14 2 3	0	0	0	1	0	0	0	0	-1	0	-1	0	-1	0	2
1 23 4	0	0	0	0	1	0	0	$^{-1}$	0	0	0	0	$^{-1}$	-1	2
1 24 3	0	0	0	0	0	1	0	0	-1	0	0	-1	0	-1	2
1 2 34	0	0	0	0	0	0	1	0	0	-1	-1	0	0	-1	2
123 4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-1
124 3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	-1
12 34	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-1
134 2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-1
13 24	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-1
14 23	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-1
1 234	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1
1234	\ 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 /

where the rows of the matrix are labeled with the partition represented by the corresponding vertex of the Hasse diagram.

We have $\hat{0} = 1|2|3|4$, i.e. the partition with four blocks, and the values of $\mu(\hat{0}, \cdot)$ are in row 1 of the matrix above, while $\hat{1} = 1234$, the partition having a single block (row 15 in

the matrix). The co-atoms each have two blocks, and their Möbius function values are in rows 8 though 14, and so per Lemma 1, if we choose the co-atom a = 123|4 (with $\mu(a, \cdot)$ values in row 8), then the elements of $x \in \Pi_4$ such that $x \wedge a = \hat{0}$ are the vertices labeled 14|2|3,1|24|3,1|2|34 (rows 4,6,7 respectively). From the Möbius function we can confirm

$$-6 = \mu(\hat{0}, \hat{1}) = -(\mu(4, \hat{1}) + \mu(6, \hat{1}) + \mu(7, \hat{1}))$$
$$= -(2 + 2 + 2)$$

Similarly, if we choose co-atom a = 12|34 (row 10) then the elements of $x \in \Pi_4$ such that $x \wedge a = \hat{0}$ correspond to rows 3, 4, 5, 6, 12, 13. From the Möbius function values in those rows of the matrix we can confirm

$$-6 = \mu(\hat{0}, \hat{1}) = \sum_{x \in \{3, 4, 5, 6, 12, 13\}} \mu(x, \hat{1})$$

2 Zeta polynomial of a poset.

For a poset P with minimum and maximum elements $\hat{0}, \hat{1}$ respectively, define a function of n as follows

$$Z(P,n) \equiv \# \left\{ \text{multichains: } \hat{0} = x_0 \le x_1 \le \dots \le x_n = \hat{1} \, \middle| \, x_i \in P \right\}$$
(6)

then using the ideas we developed for incidence algebras we can write this polynomial in n in terms of the zeta function on P, i.e. as $\zeta^n(\hat{0}, \hat{1})$. By contrast with (6), the zeta functions is well formed for all $n \in \mathbb{Z}$.

Claim: Z(P,n) is a polynomial in n and can be shown to satisfy a linear recurrence.

Recall that $(\zeta - 1)^{r+1} = 0$ if P is of rank r, so let

$$Z_n \equiv Z\left(P,n\right)$$

then Z_n satisfies the recurrence

$$(E-1)^{r+1} Z = 0$$

which implies that Z_n is a polynomial $q(\cdot)$ in n of degree $\leq r$, and in fact, the degree of $q(\cdot)$ is equal to r.

This gives another way to compute Möbius functions, since $Z(P, -1) = \zeta^{-1}(\hat{0}, \hat{1}) = \mu(\hat{0}, \hat{1})$.

Example 3 (zeta polynomial on the Boolean algebra of rank r) Let $P = B_r$, then the zeta polynomial $Z(B_r, n)$ counts multi-chains of the form

$$\tilde{A}_{\dot{\delta}} = \hat{0} \subseteq S_0 \subseteq \dots \subseteq S_n = \hat{1} = [r]$$

and by construction, each $i \in [r]$ appears for the first time in some S_j , $j \in [n]$, which we can choose independently. Thus the number of multi chains is n^r , since there are n choices for the set where $i \in [r]$ appears for the first time, and there are r elements of [r]. Thus

$$Z(B_r, -1) = \mu_{B_r}(\hat{0}, \hat{1}) = (-1)^r$$

3 Lattice Axioms.

We assert the following lattice axioms

$x \lor y = x \lor y$	$x \land y = x \land y$
$x \lor (y \lor z) = (x \lor y) \lor z$	$x \land (y \land z) = (x \land y) \land z$
$x \land (x \lor y) = x$	$x \lor (x \land y) = x$

where the axioms of the last line are referred to as *absorption* axioms. With the identification

$$x \le y \equiv x = x \land y$$

we can check the following lattice properties:

1. does $x \leq x \Rightarrow x = x \land x$?

$$\begin{array}{rcl} x & = & x \lor (x \land x) \mbox{ by absorption} \\ x \land (x \lor (x \land x)) & = & x \land x \mbox{ by absorption again} \\ & = & x \end{array}$$

2. do $x \leq y$, and $y \leq x \Rightarrow x = y$?

$$\begin{array}{rcl} x \leq y & \equiv & x = x \wedge y \\ y \leq x & \equiv & y \wedge x = y \\ & \Rightarrow & x = y \end{array}$$

3. does transitivity hold?

$$\begin{array}{ll} x \leq y \,\&\, y \leq z &\Rightarrow & x = x \wedge y \,\&\, y = y \wedge z \\ &\Rightarrow & x \wedge (y \wedge z) = (x \wedge y) \wedge z = x \wedge z \\ &\Rightarrow & x \leq z \end{array}$$

So, the three axioms above satisfy the requirements for a poset lattice. If we add the axiom

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

we can also describe a distributive lattice axiomatically.

Finally, we can add the following complement axiom. Assume $\exists \hat{0}, \hat{1}$ and $\forall x, \exists \neg x$ such that $\hat{0} = x \land (\neg x)$ and $\hat{1} = x \lor (\neg x)$. Then we can describe the Boolean algebra as follows

Theorem 4 If L is a finite Boolean algebra by axiomatic definition, then $L \simeq B_n$ for some $n \in \mathbb{N}$.

Proof:

By Birkhoff's Theorem, since L is a distributive lattice, we have L = J(P) for some poset P. If L is to be isomorphic to B_n then we need to show that P is an antichain, i.e. $P = \underline{1} + \underline{1} + \cdots + \underline{1}$ is the direct sum of n singletons, and has no order relations (there do not exist $x, y \in P$ such that x < y). To this end, assume the complement axiom holds so that for $I \in L = J(P)$

$$I \wedge (\neg I) = I \cap (\neg I) = \emptyset = \hat{0}$$
$$I \vee (\neg I) = I \cap (\neg I) = P = \hat{1}$$

and so the complement operator must be set-theoretic complement in this instance:

$$\neg I = P - I$$

However, if P has a nontrivial order relation x < y, then consider the principal ideal $I = \langle x \rangle = \{z \in P | z \leq x\}$. Its complement P - I is not an order ideal, since $y \in P - I$ and x < y but $x \notin (P - I)$. Therefore L does not satisfy the complement axioms unless P is an antichain. \Box

In logic, if L is a Boolean algebra, the elements of L can be interpreted as *propositions* or *sentences* with

$$\begin{array}{rcl} x \wedge y &\equiv& x \text{ and } y \\ x \vee y &\equiv& x \text{ or } y \\ \neg x &\equiv& \operatorname{not} x \\ \hat{0} &\equiv& \operatorname{FALSE} \\ \hat{1} &\equiv& \operatorname{TRUE} \end{array}$$

for $x, y \in L$.

Example 5 $B_1 \simeq \underline{2} = \{\hat{0}, \hat{1}\}$

Example 6 $B_n \simeq \underline{2} \times \underline{2} \times \cdots \times \underline{2}$ (*n bits*)

4 Midterm review.

Question 7 Midterm question M5.

Answer 8 $a_{n+2} - 4a_{n+1} + 4a_n = 0 \Rightarrow (E^2 - 4E + 4) a_n = (E - 2)^2 a_n = 0$, which then means that

$$a_n = r2^n + ns2^n$$

$$r = a_0$$

$$s = \frac{a_1}{2} - a_0$$

then

• (c)

$$b_n = 2^{-n} a_n$$

= $r + ns$
= $(r + ns) (1)^n$
 $\Rightarrow (E - 1)^2 b_n = 0$

• (d)

$$c_n = a_n - 2$$

= $r2^n + ns2^n - 2(1)^n$
 $\Rightarrow (E-2)^2 (E-1)c_n = 0$

• (e)

$$d_n = a_{2n} = r2^{2n} + 2ns2^{2n}$$
$$= r4^n + 2ns4^n$$
$$\Rightarrow (E-4)^2 d_n = 0$$

Question 9 Midterm question M1.

Answer 10 We want to show that $\binom{2p}{p} - \binom{2}{1}$ is divisible by p, for p prime. Framed as a necklace problem, consider necklaces \underline{a} composed of 2p beads with p red beads (say), and p blue beads. There are $\binom{2p}{p}$ necklaces that fit this description, and since p is prime, the possible stabilizers are C_1, C_2, C_p, C_{2p} , and

 $C_{2p} - no necklaces$ $C_p - 2 necklaces with alternative colors$ $C_2 - no necklaces except for p = 2$ $C_1 - \left(\binom{2p}{p} - 2 \right) necklaces$

the last number is divisible by 2p, and so also by p.

Answer 11 Writing the Vandermonde convolution

$$\sum_{k=0}^{p} {p \choose k} {p \choose p-k} = {2p \choose p}$$
$$2 + \sum_{k=1}^{p-1} {p \choose k} {p \choose p-k} = {2p \choose p}$$
$$\Rightarrow {2p \choose p} \mod p = 2$$

since

$$\binom{p}{k} = \frac{p!}{k! \, (p-k)!}$$

is divisible by p for $k \in [p]$. Thus

$$\binom{2p}{p} - 2 \mod p = 0$$