18.312: Algebraic Combinatorics Lionel Levine

Lecture 12
Lecture date: March 17, 2011 Notes by: Lou Odette

This lecture:

e A continuation of the last lecture: computation of uyy,, the Mobius function over the
incidence algebra of partition lattices.

e The zeta polynomial of the poset P.
e Finite Boolean algebras.

e A review of selected questions from the midterm.

1 Computing pu,, continued...

In lecture 11 we discussed partition lattices, and showed that intervals [o, 7] of the lattice
were isomorphic to a direct product of k posets, where k is the number of blocks of 7. In
particular, given an interval [o, 7] of II,, if 7 has k blocks, each the (disjoint) union of A
blocks of o, then

[U,T]EiILM Xoeee X]IAk

Using our earlier lemma for the Mobius function of a direct product we can write
ur,, o, 7] = I, X s XL, (1)
where

HIT, = MITy (07 i)

Lemma 1 (lattice recurrence) Let L be a lattice with |L| > 2, and recalling that a co-atom
is a mazrimal element of L — {1}, fix a co-atom a € L. Then

Z ,u(:v,i):()

z€Ll
xAa=0
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Proof:

We use the following facts about the Mobius algebra A (L) which we discussed in lecture 11:

ro= Z‘Sy (2)

y<w
0o = Y pulyx)y (3)
y<zx
o 5x y L =1
020y = { 0 , otherwise (4)

From equations (2) and (4) and the assumption that the co-atom a # 1

ad; = Z(Sy 51:0éa61:201x:0

y<a zeL

and since ad; is identically zero, all coefficients of ad; in the natural basis of A (L) are zero,
in particular the coefficient ¢; of 0 vanishes. From the multiplication rule for A (L) and
using equation (3) applied to J; we can also write

0=ady=a p(y1)y=> n(y1)(ary) (5)

y<i y<i

so if we restrict the sum in equation (5) to y € L such that (a A y) = 0, then we can equate
the sum of the Mobius functions with the coefficient ¢, which is identically zero.

a

Applying Lemma 1 to L = 1I,,, we can pick co-atoms a; with partitions whose two blocks
are {i} and [n] — {i}. The lemma condition = A a; = 0 implies that either z = 0 or = has a
total of n — 1 blocks, n — 2 blocks that are singletons, and one block of two elements, one
of which is 7. Denote partitions of this sort by z;. The lemma then states that for each
co-atom a € {a;};_,

n—1
Z HIT, ($7 i) = pII, (6) i) + Z:U’Hn (l‘i) i) =0
i=1

z€L
zAa=0

~

which after re-arranging and using the fact that [aci,i] ~ II,,—1 (so pm, (.%‘Z',l) =
ML,y (07 1) = :U’Hn—1) gives

n—1
un, (0.) = = pn, (2i,1)
i=1

= - (n - 1) HIT,,
= (-1)"tn-1)
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and so, using equation (1), we see that in general

pr, (0-77_) = HIO,, X X luHAk
= [ 0¥ -1
1€[k]

Example 2 The Hasse diagram of 114 is shown below:

1/z2/3/4

HASSE DIAGRAM OF 114

and the corresponding matriz of Mdébius function values is

112|314 12 2
12|34
13|24
14|23
1|23]4
1]24|3
112|134
1234
124]3
12|34
184]2
13|24
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=
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e

-
-

14|23
11284
1284

[sNeoNeoNeolololoNoNeoNeNeNeNeRNeN
coocoococoococococoor |
[oNeoNoNololoNoNoNoNoNoNol N
[eNeoNoNololoNoNoNeoNoNol T NoNe]
CO0O0O0CO0O0OO0O0O0OROOO
cococococcor~rocoooO
[oNoNoNololoNoNol  NoloNoNoNo]
[eNeoNoNoNeleNeN el
coocococorocol o
corocoocococooco!l |l cor
ol NeoNololoNoNo)

|

-

where the rows of the matrix are labeled with the partition represented by the corresponding
vertex of the Hasse diagram.

We have 0 = 1|2|3|4, i.e. the partition with four blocks, and the values of (0, ) are in
row 1 of the matriz above, while 1 = 1234, the partition having a single block (row 15 in
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the matriz). The co-atoms each have two blocks, and their Mdbius function values are in
rows 8 though 14, and so per Lemma 1, if we choose the co-atom a = 123|4 (with u(a,-)
values in row 8), then the elements of © € Tly such that x AN a = 0 are the vertices labeled
14]23,1]24(3,1|2|34 (rows 4,6, 7 respectively). From the Mébius function we can confirm

6=p0,1) = —(u@1)+p(6,1)+u(71)
= —(2+2+2)

Similarly, if we choose co-atom a = 12|34 (row 10) then the elements of x € 11y such that
xAa =0 correspond to rows 3,4,5,6,12,13. From the Mébius function values in those rows
of the matrix we can confirm

—62#(6,1): Z u(x,i)

2€{3,4,5,6,12,13}

2 Zeta polynomial of a poset.

For a poset P with minimum and maximum elements 0, 1 respectively, define a function of
n as follows

Z (P,n) E#{multichains: O=zo<m < - <axp,=1

xiGP} (6)

then using the ideas we developed for incidence algebras we can write this polynomial in n
in terms of the zeta function on P, i.e. as (" (0, 1). By contrast with (6), the zeta functions
is well formed for all n € Z.

Claim: Z (P, n) is a polynomial in n and can be shown to satisfy a linear recurrence.
Recall that (¢ — 1)" = 0 if P is of rank r, so let
Zn =27 (Pyn)

then Z,, satisfies the recurrence
(E-1)"Zz=0

which implies that Z,, is a polynomial ¢ () in n of degree < r, and in fact, the degree of ¢ (-)
is equal to 7.

This gives another way to compute M&bius functions, since Z (P, —1) = ¢~} (f), i) =Lu (0, i).

Example 3 (zeta polynomial on the Boolean algebra of rank r) Let P = B,., then the zeta
polynomial Z (B,,n) counts multi-chains of the form
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and by construction, each i € [r] appears for the first time in some S;, j € [n], which we can
choose independently. Thus the number of multi chains is n”, since there are n choices for
the set where i € [r] appears for the first time, and there are r elements of [r]. Thus

Z (B'I“v _1) = KB, (07 i) - (_1)T

3 Lattice Axioms.

We assert the following lattice axioms

’ rNVy=xzVy ‘ TANYy=xT Ny ‘
’x\/(yv,z):(x\/y)\/z ‘ J:A(yAz):(:L'/\y)/\z‘
’ rAN(xVy) == ‘ xV(zAhy) == ‘

where the axioms of the last line are referred to as absorption axioms. With the identification

r<y=xz=xANy
we can check the following lattice properties:
l. doesz <z =>zx=2ANx?
x = xV(xAz) by absorption
xA(zV(xAx)) = xAx by absorption again
= x
2.dox<y,andy <z =1x=1y?
r<y = z=zANy
y<x = yAhr=y
= =y

3. does transitivity hold?

r<y&y<z = z=xANy&ky=yAz
= sAYAz)=(xAy)Az=xAz
= <z

12-5



So, the three axioms above satisfy the requirements for a poset lattice. If we add the axiom
xA(yVz)=(xAy)V(zxAz)
we can also describe a distributive lattice axiomatically.

Finally, we can add the following complement axiom. Assume 30,1 and Vz, 3=z such that
0=z A(-z) and 1 =2 V (—z). Then we can describe the Boolean algebra as follows

Theorem 4 If L is a finite Boolean algebra by axiomatic definition, then L ~ B, for some
n € N.

Proof:

By Birkhoff’s Theorem, since L is a distributive lattice, we have L = J (P) for some poset
P. If L is to be isomorphic to B, then we need to show that P is an antichain, i.e.
P=1+4+1+4---41is the direct sum of n singletons, and has no order relations (there do
not exist z,y € P such that < y). To this end, assume the complement axiom holds so
that for I € L = J (P)

IND=IN(=I) = =0
IV(-)=In(-I) = P=1
and so the complement operator must be set-theoretic complement in this instance:
-I=P—-1.
However, if P has a nontrivial order relation x < y, then consider the principal ideal I =
(x) = {z € P|z<x}. Its complement P — I is not an order ideal, since y € P — I and

x <ybutx ¢ (P —1I). Therefore L does not satisfy the complement axioms unless P is an
antichain. O

In logic, if L is a Boolean algebra, the elements of L can be interpreted as propositions or
sentences with

rAy = xzandy

rVy = xory

-r = notx
0 = FALSE
1 = TRUE

for z,y € L.
Example 5 By ~2 = {@, i}

Example 6 B, ~2x2Xx---x 2 (n bits)
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4 Midterm review.

Question 7 Midterm question M5.

Answer 8 ani2 — 4dapy1 + 4a, = 0 = (E2 —4F + 4) a, = (E — 2)2 an, = 0, which then
means that

a, = 12" +ns2"
r = Qo
- u
s = 9 ag
then
e (c)
b, = 2 "a,
= r+mns
= (r+mns)(1)"
= (E-1)%b,=0
* (d)
cpn = ap—2
r2" +ns2™ —2(1)"
= (E-22*E-1)e¢, =0
o (e)
dn = agy = 122" + 2ns2%"
= r4" + 2ns4™

= (E—4)%d, =0
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Question 9 Midterm question M1.

Answer 10 We want to show that (2;’) — (?) is divisible by p, for p prime. Framed as a
necklace problem, consider necklaces a composed of 2p beads with p red beads (say), and
p blue beads. There are (25) necklaces that fit this description, and since p is prime, the
possible stabilizers are C1,Ca, Cp, Cap, and

Cyp — no necklaces
Cp — 2 necklaces with alternative colors
Cy — no necklaces except for p =2

ch - <<2p> —2> necklaces
b

the last number is divisible by 2p, and so also by p.

Answer 11 Writing the Vandermonde convolution

2062 - ()

k=
p—

2 (065 = ()

= o

since

is diwisible by p for k € [p]. Thus
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