
18.312: Algebraic Combinatorics Lionel Levine

Lecture 21

Lecture date: April 28, 2011 Notes by: Jacob Bower

1 De Bruijn Sequences

Todays lecture begins with a discussion of De Bruijn sequences. We have the following
definition:

Definition 1 A binary De Bruijn Sequence of order n is a string of bits bi ∈ {0, 1}, b =
{b1, ..., b2n} such that ever string of lengh n, {a1, ...., an} ∈ {0, 1}n, occurs exactly once
consecutively in b. (In other words ∃!k such that bk = a1, bk+1 = a2, ..., bk+n−1 = an where
we take indices mod 2n.)

This definition can perhaps best be illustrated with the example:

Example 2 A De Bruijn sequence of order 3 is 00010111.

One can check by examination that all possible bitstrings of length three occur once and
only once in this sequence. Remarkably, it turns out that De Bruin sequences of order n
exist for all n. We will shortly see a theorem that enumerates them, but before we look
at this we first examine the definition of a De Bruijn graph, an object that will play an
essential role in our proof of our enumeration theorem.

Definition 3 A De Bruijn graph is a directed graph

DBn = ({0, 1}n−1, {0, 1}n),

that is, a graph with vertex set {0, 1}n−1 and edge set {0, 1}n where there is an edge from
a = {a1, ..., an−1} to a′ = {a′1, ..., a′n−1} iff:

a2 = a′1, a3 = a′2, ...an−1 = a′n−2.

This is equivalent to saying there is an edge from a to a′ iff a is a prefix of some string
b1...bn and a′ is a suffix of the same string.

We can again look at an example to illustrate this definition.
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Example 4 The graph of DB3 is:

With this definition we are ready to state and prove our theorem about the enumeration of
Be Bruijn sequences.

Theorem 5 Binary De Bruijn sequences of order n exist for all n, and there are exactly
22

n−1
of them.

Proof: To begin our proof we note that a De Bruijn sequence of order n is just an Eulerian
tour of DBn. We first wish to prove that an Eulerian Tour exists. To do this we note that
DBn is balanced. This is because we can take any sequence of length n− 1 and delete the
last digit, then add a 0 or 1 in front, giving us that indeg = 2 for each vertex. Similarly
we can take any sequence of length n− 1 and delete the first digit, then add a 0 or a 1 to
the end, giving us that outdeg = 2 for each vertex. Because indeg = outdeg = 2 our graph
is balanced. As we have seen in previously an Eulerian tour exists as long as a graph is
balanced, so we know that that for all n there exists a binary De Bruijn sequence of order
n.

Now that we have proved the existence of De Bruijn sequences we want to prove their
enumeration. From the equivalence of Eulerian Tours in DBn and De Bruijn sequences
combined with results we have found from graph theory we have:

#{DB sequences of order n} = #{Eulerian Tours of DBn}

=
∑
e∈E

τ(DBn, e)

=
∑
e∈E

κ(DBn, e)
∏
v∈V

(outdeg(v)− 1)!

=
∑
e∈E

κ(DBn, e)
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The last equation here comes from the fact that every vertex of the graph has outdeg = 2
as we discussed before. We thus want to count the number of spanning trees of DBn in
order to cound the number De Bruijn sequences. To do this we us a special trick. Consider
any two vertices v and w in DBn and count the number of paths of length n − 1 between
v and w. In particular let:

v = (v1, ..., vn−1)

w = (w1, ..., wn−1)

Looking at these there is only 1 way to append our two sequences. In particular we must
do it in the fashion:

(v1...vn−1)w1...wn−1

(v1(v2...w1)w2...wn−1

v1v2(v3...w2)w3...wn−1

...

v1...vn−1(w1...wn−1).

Because we have exactly one path from v to w of length n − 1 for all vertices v and w we
must have:

An−1 =

1 · · · 1
...

. . .
...

1 · · · 1


where A is the 2n−1 × 2n−1 adjacency matrix of DBn.

We should then see the Laplacian Matrix having eigenvalues of 0 with multiplicity 1 and 2
with multiplicity 2n−1.

Finally we apply matrix-tree-theory to arrive at the result:

#{DB sequences of order n} =
∑
e∈E

κ(DBn, e)

=
∑
e∈E

λ1 . . . λ(2n−1−1)

2n−1

=
∑
e∈E

22
n−1−1

2n−1

= 2n
22

n−1−1

2n−1

= 22
n−1

.

2
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Remark 6 One may note that the number of De Bruijn sequences is:

22
n−1

=
√

22n

where 22
n

counts the number of all possible bitstrings of length 2n. This leads to the question
if there is a bijection:

{pairs of DB sequences of order n} ↔ {all binary bitstrings of length 2n}.

It turns out there is, and this fact was proved by two MIT students, Kishore and Bid-
khori, illustrating the many open and accessible problems that exist in the exciting field of
combinatorics!

This concludes our discussion of De Bruijn sequences.

2 Pólya Theory

The general idea of Pólya theory is counting things up to certain equivalence classes. Let
us look at a very simple example to start.

Example 7 Let us consider the number of colorings of 5 squares in a line, one with each
of n colors. That is the number of colorings of:

It is straight forward to see that under no restrictions the number of colorings is n5, because
we can choose any of the n colors seperately for each of the 5 squares. As a less trivial
example let us impose the equivalence that two colorings are the same if they are mirror
images of each other. That is, we have equivalence:

.

Under this equivalence first let us consider the number of colorings that are equivalent to
themselves. This is all colorings of the form:
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.

Because we have three relevent colors to choose and n choices for each of them, there are
n3 such colorings. All other colorings have exactly one unique equivalent coloring, so we
take the remaining n5 − n3 colorings and divide them by 2 to account for the fact each one
of these is equivalent to exatly one other. We then conclude:

#{equivalence classes of colorings}

= n3(symmetric colorings) +
n5 − n3

2
(non-symmetric colorings)

=
1

2
(n5 + n3).

In general we have some finite set X where |X| = k, a group S ⊆ Sk (a subgroup of the
group of all permutations of X), and a finte set of colors C. Then the set of colorings
is Y = Cx = {f : X → C}. We then consider some action G that acts on Y , so that
G × Y → Y . We then wish to count the orbits |YG | (i.e. equivalence of colorings). As a
more complex example consider the following problem.

Example 8 Let us consider the case where X = [2]×[2] where we color with the set C = [n],
so that we are looking at a square of the form:

.

We wish to count the number of colorings under the action G = D8 which is equivalent
to saying any two colorings are equivalent if any reflection or rotation of one produces the
other. We can consider the following as examples of equivalence (where the last block is
NOT equivalent to the other three):

.
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We can then count the number of equivalence classes directly. We have the following classes
occuring with the following multiplicities.

n - because we have n choices for c1.

n(n − 1) - because we have n choices
for c1 then n− 1 choices for c2.

(
n
2

)
- because we must choose c1 and

c2 but we can restrict to c1 > c2 due
to symmetry.

(
n
2

)
- because we must choose c1 and

c2 but we can restrict to c1 > c2 due
to symmetry.

n
(
n−1
2

)
- because we must choose c1

from n colors, then choose c2 and
c3 but we can restrict c2 > c3 by
symmetry.

n
(
n−1
2

)
- because we must choose c1

from n colors, then choose c2 and
c3 but we can restrict c2 > c3 by
symmetry.

3
(
n
4

)
- because we choose 4 colors then

have to choose 1 of {c2, c3, c4} to be
opposite c1.
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To count the toatl number of colorings that are not equivalent under rotation or reflection
we sum up the multiplicities of the equivalences. Doing this we conclude:

#{non-equivalent colorings}

= n+ n(n− 1) +

(
n

2

)
+

(
n

2

)
+ n

(
n− 1

2

)
+ n

(
n− 1

2

)
+ 3

(
n

4

)
=

1

8
(n4 + 2n3 + 3n2 + 2n).

Theorem 9 The number of equivalence classes of colorings with n colors equals:

1

|G|
∑
π∈G

nC(π)

where
C(π) = # of cycles of permutation π.

Proof: This proof makes use of Burnside’s Lemma. 2

We may wish to generalize this theorem. Consider the vector:

I = (i1, ..., in),

where
n∑
j=1

ij = k.

We may then ask how many equivalence class of colorings exist such that color j occurs ij
times. We will call this number K(I). To study this we first present the defintion of the
cycle indicator.

Definition 10 The cycle inicator of the pair (X,G) is the polynomial:

Zg(z1, ...zk) =
1

|G|
∑
π∈G

z
C1(π)
1 . . . z

Ck(π)
k

where cj(π) = # { cycles of length j in π }.

With this definition we then have then general, weighted version of Pólya’s Theorem.
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Theorem 11 Suppose we are given I = (i1, ..., in) where

n∑
j=1

ij = k.

Call the number of equivalence classes of colorings such that color j occurs ij times K(I).
Let:

FG(r1, ..., rn) =
∑
I

K(I)rI

where rI = ri11 ...r
in
n . Then:

Fg(r1, ..., rn) = ZG(p1, ..., pk)

where:
p1 = r1 + ...+ rn

p2 = r21 + ...+ r2n

...

pk = rk1 + ...+ rkn.
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