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Abstract

Prediction markets provide a rare setting where results of mathe-
matical probability theory can be related to events of real-world inter-
est and where one can compare theory to data. The paper discusses
two simple mathematical results – the halftime price principle and the
serious candidates principle – and corresponding data from baseball
and the 2012 Republican Presidential Nomination race.

1



1 Introduction

Outside the context of games of chance based on artifacts with physical sym-
metry (dice, lotteries, roulette wheels etc) it is surprisingly difficult to find
interesting real-world data that illustrates undergraduate probability calcu-
lations. The majority of examples and exercises in undergraduate probabil-
ity textbooks are either “just mathematics” (X’s and Y ’s without attempt-
ing a real-world story) or unmotivated (“consider an urn containing 5 black
balls, 3 white balls and 2 blue balls”) or enter a curious fantasy world where
tossed coins can be biased, where darts can hit a board or a stick can be
split with uniform distribution, where people choose majors or desserts at
random – none of which are any more realistic than Jedi Knights or spherical
cows. An notable exception is the recent book by Grinstead-Peterson-Snell
[2] which gives a careful introduction to four topics (streaks, the stock mar-
ket, lotteries, and fingerprints), combining mathematical probability models
with relevant data. The purpose of this article is to publicize another topic,
prediction markets. We state below two very simple results from mathemat-
ical theory, and will give their mathematical derivation and compare with
some data. As well as being (hopefully) interesting to Monthly readers, one
could regard this article (in the spirit of [2]) as supplementary material for
an undergraduate probability course.

A prediction market (browse intrade.com for better understanding) is
essentially a venue for betting whether a specified event will occur (perhaps
before a specified time), where the betting is conducted via participants
buying and selling contracts with each other rather than with the operators
of the market. In other words it is structured like a stock market rather
than a bookmaker. As we will discuss briefly in section 4, the mathemat-
ics of prediction markets is very similar to that of stock markets, but in
several respects prediction markets are conceptually simpler and therefore
more suitable for an introductory level treatment. In a typical prediction
market (details vary between markets in unimportant ways) a contract will
expire at 100 or 0, depending on whether or not the specified event occurs.
At any time one can see posted offers to buy and to sell, say at 56.8 and
57.2, and if you wish to buy a contract you can either pay the posted 57.2
and buy instantly, or post an offer to pay (say) 57.0 and wait to find out
if anyone is willing to sell at that price. The key conceptual point is that
the current market price, 57 in this example, can be interpreted as a con-
sensus probability (57 percent, of course) that the event will happen – see
section 3.2 for discussion. And the special feature of prediction markets, as
a topic within undergraduate mathematical probability, is as the essentially
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unique context in which one has substantial real-world data interpretable
as showing probabilities and fluctuations of probabilities over time. In the
remainder of this article we refer to “price” of a contract, which the reader
must always interpret as “the probability of the event occurring, given what
is currently known”. The price obviously will fluctuate as relevant real-world
information becomes known; how it will fluctuate is unknown in advance,
and hence random; we use “price” rather than “probability” to avoid the
linguistic confusion involved in talking about probabilities of probabilities.

Figure 1. Two prediction market price charts.

The two charts above show price fluctuations of two specific contracts. These
involved two different contexts and time scales for prediction market con-
tracts – a few hours duration for a sports match or a year-long run-up to an

3



election. The first concerned whether the home team would be the winner
of a baseball game on August 31, 2008 and the second concerned whether
Newt Gingrich would be chosen as Republican U.S. Presidential Nominee in
2012.

We now state two “principles”, by which we mean assertions, based solely
on mathematical arguments, about how prices in prediction markets should
behave.

The halftime price principle. In a sports match between equally good
teams, at halftime there is some (prediction market) price for the home team
winning. This price varies from match to match, depending largely on the
scoring in the first half of the match. Theory says its distribution should be
approximately uniform on [0, 100].

The serious candidates principle. Consider an upcoming election with
several candidates, and a (prediction market) price for each candidate, and
suppose initially all these prices are below b, for given 0 < b < 100. Theory
says that the expected number of candidates whose price ever exceeds b
equals 100/b.

The mathematics involved here is simple and has undoubtedly been folklore
for generations, though we are not aware of previous discussion in the spirit
of this article. We invented the names above: candidates become serious
(rather than fringe) when their chance of election exceeds some threshold.

For each principle we will explain the theory and then show some data.
We assume the reader is familiar with basic notions from an undergraduate
textbook such as [3, 6, 7]. Explaining the second principle will involve the
concept of martingale, typically not encountered until a second course in
probability (e.g. Chapter 6 of [8] or Chapter 6 of [4]), but ultimately so
widely useful that one can give a graduate course on mathematical proba-
bility with martingales as the central topic [9]. We give only the minimal
account of martingales needed here. Every textbook introduction to martin-
gales we know treats them as mathematical objects without explicit relation
to real-world data, but an instructor of a course introducing martingales
could continue our style of illustrating other mathematical results about
martingales with real-world prediction market data, and some examples can
be found in [1].
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2 The halftime price principle

To elaborate this principle we imagine a sport in which (like almost all team
sports) the result is decided by point difference, and for simplicity imagine
a sport like baseball or American football where there is a definite winner
(ties are impossible or rare). There will be point differences (points scored
by home team, minus points scored by visiting team) Z1 and Z2 in the first
half and the second half. Consider Z1 and Z2 as random variables. By
“equally good” we mean after taking home field advantage into account;
in other words that there is initially a 50% probability of the home team
winning.

A fairly realistic mathematical model of this scenario is to assume
(i) Z1 and Z2 are independent, with the same distribution;
(ii) their distribution is symmetric about zero; that is, their distribution
function F (z) satisfies F (z) = 1− F (1− z).
For mathematical ease we add an unrealistic assumption (to be discussed
later)
(iii) the distribution is continuous.

Under these assumptions we can do a calculation. The probability that
the home team wins, given the first half point difference is z, is

P (Z1 + Z2 > 0|Z1 = z) = P (Z2 > −z) by independence

= F (z) by symmetry

and therefore the price at halftime, which is the conditional probability of
the home team winning, given the observed value of Z1, is

P (Z1 + Z2 > 0|Z1) = F (Z1) (1)

(for readers unfamiliar with this conditioning notation, it is explained in
section 3.1). But as a textbook fact (e.g. [7] page 234), for a continu-
ous distribution it is always true that F (Z1) has uniform distribution on
(0%, 100%).

That is the mathematical justification for the principle. One can think
of various defects in the model, most obviously the fact that in real sports
the points are integer-valued, but for reasons explained below we suspect
this does not make a huge difference, even in the worst case of a low-scoring
sport like soccer.
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2.1 A little data

Errors using inadequate data are much less than those using no
data at all. [Charles Babbage]

In the Figure 1 baseball match chart, the initial price was near 50 and the
price at half-time (for baseball we simply used halfway through the match
duration) was around 62.

In 30 baseball games from 2008 for which we have the prediction market
prices as in Figure 1, and for which the initial price was around 50%, the
prices (as percentages) halfway through the match were as follows.

07, 10, 12, 16, 23, 27, 31, 32, 33, 35, 36, 38, 40, 44, 46

50, 55, 57, 62, 65, 70, 70, 71, 73, 74, 74, 76, 79, 89, 93.

Figure 2 (left) compares the distribution function of this data to the (straight
line) distribution function of the uniform distribution.

50 1000 price 50 1000 price

Figure 2. The left diagram shows the empirical distribution function for the

baseball data; the right diagram shows the theoretical distribution function in the

soccer model.

The data appears roughly consistent with our halftime price principle. We
do not attempt formal tests of significance (“goodness of fit”), which are
not informative in our context of an approximate theoretical prediction and
limited data.
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Caveat. The simplicity of the stated halftime price principle depends on
the teams being equally good. For unequal teams the distribution of halftime
price will depend on the distribution of the point differences Zi as well as
the initial price.

2.2 A soccer model

To investigate theoretically the effect of discrete points, take a standard
model for soccer, where we suppose the teams score goals at the times of
independent Poisson processes of rates λ1 and λ2 per match-duration, with
a shoot-out to determine the winner if the score is tied at the end. One can
readily adapt the previous calculation to this model. Taking λ1 = λ2 = 2
for instance, Figure 2 (right) shows the distribution function of the halftime
price in this model, in comparison to the (straight line) distribution function
of the uniform distribution.

Here the discrete distribution of halftime price arises from the discrete
distribution of halftime point difference (likely to be 1 or 0 or −1). This
reminds us of other defects of the model. In practice the prediction market
prices depend not only on halftime score but on other factors, such as quan-
titative (e.g. shots on goal) and qualitative assesments of each team’s play
in the first half. All these vary from match to match and will tend to smooth
out the distribution. We conjecture that data on halftime soccer prices for
equally-matched teams would in fact have a roughly uniform distribution,
as with the baseball data above.

3 Prediction markets and martingales.

From the very broad field of martingale theory let us extract several points
to emphasize.

1. The notion of your successive fortunes (amounts of money you have)
during a sequence of bets at fair odds can be formalized mathematically
as a martingale. The gambling interpretation enables proofs of theorems
concerning martingales to be expressed in very intuitive language. Then the
mathematical definition and theorems can be used (if their hypotheses are
satisfied) for random processes arising in contexts completely unrelated to
money or gambling.

2. One theorem about martingales says that the overall result of any
system for deciding how much and when to bet, within this “fair odds”
setting, is simply equivalent to a single bet at fair odds. So one can prove
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theorems about martingales by inventing hypothetical betting systems and
analyzing their possible outcomes.

3. There are plausible reasons to believe that prediction market prices
should behave like martingales.

In the next two sections we say a few words about these points. The
reader willing to accept them may jump ahead to section 3.4 where we use
them to derive quickly the serious candidates principle.

3.1 Martingales

For our purposes, a fair bet (more accurately, a bet at fair odds) is one in
which the expectation of your monetary gain G equals zero; that is

E[G] = 0

where a loss is a negative gain. This ignores issues of utility and risk-aversion
which we won’t consider. In other words, in order for you to receive from
me a random payoff X in the near future, the “fair” amount you should
pay me now is E[X], because then your gain (and my loss) X − E[X] has
expectation zero. If a bet is fair, then doubling the stake and payoff, or
multiplying both by −3 to bet in the opposite direction, is again a fair bet.

A formal definition of martingale is a process, that is a sequence of real-
valued random variables, satisfying

E(Xn+1|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = xn, all n ≥ 0, x0, x1, . . . , xn.
(2)

This is pretty hard to interpret if you’re not familiar with the probability
notation, so let me try to explain in words, in the context of gambling.
Imagine a person making a sequence of bets, and after the n’th bet is settled
his fortune is xn. After placing the next bet but before knowing the outcome,
the gain Gn+1 on that bet is random, and (2) says that

E(Gn+1|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = 0

i.e. that the expected gain on the bet, given what we currently know, equals
zero – the “fair” concept.

A textbook example ([5] ex. 10.2.6) of a martingale (Xn) arising in a
context unrelated to money or gambling concerns the Wright-Fisher model
in population genetics, where (without mutation or selection) the proportion
Xn of genes in generation n which are a particular allele forms a martingale.
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Developing the basic mathematics of martingales requires many small
steps to introduce and explain notation. Below we just give a verbal overview
and refer to the advanced textbook [9] for the mathematics.

Return to the gambling story above, where another gambler’s fortune is
the martingale (2). Imagine you are copying or modifying the bets of this
other gambler. A simple way to do so is to copy exactly what the gambler
does, but stop after the T ’th bet is resolved, where T can be chosen on
the fly, that is depending on what has happend so far but not foreseeing
the future. It is perhaps remarkable that there is a precise mathematical
definition ([9] 10.8) of a stopping time T capturing this idea. Following this
system, your gain is XT − x0. The basic form of the optional sampling
theorem for martingales ([9] A14) says that

E[XT ] = x0 for each stopping time T.

In the gambling context, this says that despite the fact you are using a
“system”, in this case just some rule for when to stop, your net result is a
fair bet. (This theorem and the theorem below have side conditions that
are automatically satisfied in our settings).

More generally you could start and stop copying the gambler many times,
or yet more generally you could bet varying multiples Hn of what the gam-
bler bets on the n’th bet. Following such a system, your gain Yn is de-
termined by the processes (Xn) and (Hn) via the formula Yn+1 − Yn =
Hn(Xn+1 − Xn) and is called a martingale transform ([9] 10.6) or discrete
stochastic integral. The key fact is that Yn behaves as a martingale and
that whenever you choose to stop, your gain YT has expectation zero ([9]
10.7). The latter result is often referred to via a phrase like “impossibility
of gambling systems” but we would prefer a more positive and informative
name, so let us call it the conservation of fairness theorem.

Notation: conditional probabilities as random variables. For an
event A and a random variable Y , the elementary notation for conditional
probabilities

P (A|Y = y) = g(y) for all y

(the left side is always some function of y) can be rewritten as

P (A|Y ) = g(Y ) (3)

We used this notation in the calculation (1).
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3.2 Prediction market prices are approximately martingales

Definitions and theorems about martingales, as outlined above, can be re-
garded as a part of pure mathematics, with the references to gambling being
just a side story to aid intuition. To now argue

there are plausible reasons to believe that prediction market
prices should behave like martingales

one must obviously leave pure mathematics at some point, and indeed any
serious treatment would enter realms of philosophy, psychology, economics
and empirical data. In a brief section here, we focus on where exactly the
pure mathematics ends and the other issues start.

First recall that general mathematical results about probabilities and
conditional probabilities of events can be derived from those for expectations
and conditional expectations of random variables by the device of identifying
an event A with its {0, 1}-valued indicator random variable 1A. Second,
outside very simple settings probabilities depend on “information known
at the current time n”, and the formalization of this notion within the
usual axioms of mathematical probability is as a collection (a sigma-field,
technically) of events, conventionally denoted by Fn, whose outcomes we
know. For an such collection F and any eventA we can define the conditional
probability P (A|F) as a random variable, extending the notation (3) which
is the case where the “information” in F is the value of Y . Here P (A|F) is
random in the “prior” sense – before we know which events in F actually
happened.

A benefit of going through this abstract setup is an easy theorem ([9]
10.4c) saying that, for any event A and any sequence Fn representing
“information known at the current time n”, the conditional probabilities
Xn := P (A|Fn) always form a martingale.

This is about as far as pure mathematics can take us. In thinking about
probabilities for the kind of interesting future real-world events exemplified
by results of sports matches or elections, there is longstanding philosophical
debate about whether such probabilities can or should be interpreted as any-
thing other than subjective opinions. But perhaps a more substantial issue
is that the way you or I might assess probabilities for such events, though
based on something one might call “information”, is manifestly not the way
envisaged in the axiomatic setup, which would involve first setting out all
the possible relevant events that (from the standpoint of some past time)
might have happened by now or in the future, then assigning probabilities
to every combination of events happening and not happening, then looking
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at which of these events did or did not happen by now, and finally doing
the required calculation.

In a real prediction market, different individual participants will assess
probabilities somewhat differently, and (amongst those willing to bet actual
money) the market price represents a balance point between willing buy-
ers and willing sellers, and it is reasonable to call this price a “consensus
probability”. So the central issue is

why should such consensus probabilities change in time in the
same way as conditional probabilities within the axiomatic setup
of mathematical probability?

Typical verbal arguments use an undefined notion of “information” and
simply jump over this issue, and we don’t know any satisfactory argument.
So it seems most appropriate to call the assertion

prediction market prices should behave like martingales

a hypothesis, and seek to see if its mathematical consequences are consistent
with empirical data. Obviously this is similar to the efficient market hy-
pothesis in finance, though as discussed in section 4 the setting of prediction
markets is conceptually simpler than stock markets.

3.3 Were there improbably many candidates for the 2012
Republian nomination whose fortunes rose and fell?

In the race for the 2012 Republian Presidential nomination there were many
candidates whose popularity rose and then fell noticably – Donald Trump,
Newt Gingrich, Sarah Palin, Rick Perry, Michelle Bachmann, for instance.
Almost all discussions of the race have shared the presumption that the num-
ber of such candidates was much larger than usual, and speculated on the
reasons, e.g. an “anyone but Romney” sentiment. But is that presumption
true?

We need to distinguish between two meanings. Opinion polls ask ques-
tions in a format “if you were voting tomorrow, who would you vote for?”.
Mathematics says nothing about how much such opinions may fluctuate over
a year-long campaign, just as mathematics says nothing about how much
fashions in popular music may fluctuate. One could devise some statistic
to measure these fluctuations and compare it empirically with the statistics
from previous races, but one cannot compare it to any theoretical prediction.

On the other hand, the theoretical argument that every prediction mar-
ket price should be a martingale is not affected by fashion or opinion poll
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results. So we can examine whether the prediction market prices in this
particular race behaved differently from how theory says prediction market
prices should behave, which would be an indication of some unusual aspect
of the 2012 race.

3.4 Argument for the serious candidates principle.

We want a model for prediction market prices for an upcoming election
(in the generalized sense of one candidate being chosen at a specified future
date, so this covers future Oscar winners, for instance, for which Intrade also
provides markets). The only assumption we need is that each candidate’s
price is a continuous-path martingale. Here continuous-path is not literally
true (prices are discrete) but corresponds to the idea of a “liquid market”
with small spread between bid and ask prices, which is reasonably accurate
for the election markets under consideration.

To restate the serious candidates principle:

Consider an upcoming election with several candidates, and a
(prediction market) price for each candidate, and suppose ini-
tially all these prices are below b, for given 0 < b < 100. Theory
says that the expected number of candidates whose price ever
exceeds b equals 100/b.

Here is the mathematical argument, based on a hypothetical betting system.
For each candidate, buy a contract on that candidate if and when their price
reaches b. The total cost of these contracts is bNb, where Nb is the random
number of candidates whose price ever reaches level b. Exactly one candidate
is elected, and your contract on that candidate earns you 100. So your gain
is 100 − bNb. The conservation of fairness theorem says the expected gain
equals zero, and the equation E[100−bNb] = 0 rearranges to E[Nb] = 100/b.

3.5 Data

The table shows the maximum Intrade prediction market price (to xxx
4/18/12) for each of the 16 leading candidates for the 2012 Republican
Presidential Nomination.

Romney 98 Perry 39 Gingrich 38 Palin 28
Pawlenty 25 Santorum 18 Huntsman 18 Bachmann 18
Huckabee 17 Daniels 14 Christie 10 Giuliani 10
Bush 9 Cain 9 Trump 8.7 Paul 8.5
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These numbers might well suggest to a non-mathematician that the number
of sometime-serious candidates was unusually large. But look at the table
below, which compares observed data with the mathematical prediction for
“number of candidate with maximum price ≥ b” for several values of b.

expected observed
b = 33.3 3 3
b = 20 5 5
b = 16.6 6 9
b = 12.5 8 10

The table indicates that the number of candidates whose fortunes rose
and fell in this “probability of winning” sense was scarcely more than would
be expected on mathematical grounds.

Two technical points. In the table we used 100/b as “expected”, with-
out considering whether some initial prices might have been greater than b,
Data on initial prices is somewhat unreliable (because the contract may ini-
tially be thinly traded) but the only candidate whose initial price was clearly
above 10 was Romney at about 23. Correcting for this would make the “ex-
pected” numbers slightly smaller for small b. Of course for a campaign where
two candidates started with price 40 the “expected” numbers would be very
different. Another important general point is that, for long-duration con-
tracts, low prediction market prices overstate the true consensus probability
because of the “covering your position” requirement. That is, even if you
were certain an event would not happen, you might not be willing to sell
a contract for 3 because your sure gain of 3 is offset by the opportunity
or interest cost of the market requirement that you deposit 97 to cover a
possible loss. Correcting for this effect would make the “expected” numbers
in the table larger than shown for small b.

A bottom line conclusion. To the extent that mathematics can say
anything relevant, it says that the fundamental driving feature of the 2012
Nominee campaign was that it started without any clear favorite. The sub-
sequent fluctuations were then consistent with what theory predicts. In
other words, even if it is actually true that the month-to-month fluctuations
in opinion poll standings were greater than usual, we can see no sign that
this unduly influenced the smart money being wagered on the prediction
market.
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3.6 Another check of theory and data

A mathematician familiar with martingale theory might look at the Figure
1 chart for Newt Gingrich and wonder if it shows too many fluctuations
to be plausibly a martingale. For instance, the chart shows two separate
downcrossings from 20 to 10, in December 2011 and in late January 2012.
This mathematician has in mind the upcrossing inequality ([9] 11.3) which
limits the likely number of such crossings. We can conduct another check of
theory versus data by considering crossings. The relevant theory turns out
to be

Consider a price interval 0 < a < b < 100, and consider an up-
coming election with several candidates, and a (prediction mar-
ket) price for each candidate, where initially all these prices are
below b. Theory says that the expected total number of down-
crossings of prices (sum the numbers for each candidate) over
the interval [a, b] equals (100− b)/(b− a).

To gather data for the interval [10, 20], we need only look at the five candi-
dates in the table whose maximum price exceeded 20, and their numbers of
downcrossings of [10, 20] were

Palin (2); Romney (0); Perry (1); Pawlenty (2); Gingrich (2).
So the observed total 7 is in fact close to the theoretical expectation of
8. To derive the formula quoted, we again consider a hypothetical betting
system. For each candidate, buy a contract on that candidate if and when
their price reaches b. If the price subsequently falls to a then sell; but buy
again if the price reaches b, and continue. Exactly one of these contracts
will expire at 100, and the others will be sold at price a, the number Da,b

of these others being the number of downcrossings of [a, b]. So your gain
is (100 − b) − Da,b(b − a). The conservation of fairness theorem says the
expected gain equals zero, and the equation E[(100− b)−Da,b(b− a)] = 0
rearranges to E[Da,b] = (100− b)/(b− a).

4 Comparing prediction markets and stock mar-
kets

• In both markets the “market prices” is by definition the price at which
buyers and sellers are willing to trade. Assigning any other interpreta-
tion to the price of 1 share of Apple corporation is a matter of debate
– one interpretation from the rationalist school would be that it rep-
resents a consensus estimate of discounted future earnings, adjusted
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by an equity risk premium whose size depends on the risk premiums
imputed to alternative investments. In contrast the interpretation of
a prediction market price as the probability of the specified event is
much more definite.

• The prices in a prediction market must be between 0 and 100, and will
expire at 0 or 100 at a known time determined by an explicit event
outside the market.

• A prediction market is mathematically simpler because we need no
empirical data to make the theoretical predictions; for the analogous
predictions in a stock market one needs an estimate of variance rate.

• Compared to stock markets, prediction markets are often thinly traded,
suggesting they will be less efficent and less martingale-like.

• Standard economic theory asserts that long-term gains in a stock mar-
ket will exceed long-term rewards in a non-risky investment, because
inverstors’ risk-taking must be rewarded. In this picture, a stock mar-
ket is a “positive sum game” benefiting both investors and corpo-
rations seeking capital; financial intermediaries and speculators earn
their share of the gain by providing liquidity and convenient diversi-
fication for investors. In contrast the prediction markets currently in
operation are too small to have substantial effect on the real economy,
and so are zero-sum, in fact slightly negative-sum because of transac-
tion costs.
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