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This report is both a summary and a critique of the article Invention and
Inventivity Is a Random, Poisson Process: A Potential Guide to Analysis of
General Creativity by John C. Huber from the Institute of Invention and Inno-
vation. The article studies human creativity through measuring the number of
patents issued to each individual inventor throughout his/her inventive career.
By taking samples from different groups of inventors, the article draws the con-
clusions that the time pattern of patents for most inventors is random and fit
the Poisson Process (Huber, 1998).

1 Motivation

In the field of psychology, the study of creativity has always been a very impor-
tant aspect. From a theoretical point, it helps us understand humans’ cognitive
capacities. From a practical point, identifying creative people and promoting
people’s creative capacity are of particular interest to organizations such as
technological firms and universities. According to Huber, most studies of cre-
ativity have been focusing on qualitative characteristics such as personality and
social background. Thus, the quantitative approach adopted by this article is
very innovative and leads the study of inventivity to a new direction for future
studies.

2 Basic Models

2.1 Variables

In order to build the model, precise definitions are given to the variables that
are to be measured.

2.1.1 Measure of Creativity

Creativity embodies the idea of novelty and innovation, thus by nature it’s hard
to provide a standard measurement for it. To resolve this difficulty, Huber uses



the number of patents issued to each inventor and the occurrence of each patent
in time. This reflects the fact that the issuance of patents follows a standard
criterion nationwide, regardless of the field from which the invention comes, and
therefore is able to give an objective measurement for creativity.

2.1.2 Duration of Inventive Careers

In a theoretical Poisson Process, the starting point is generally assumed, and
the end point can be arbitrarily cut off. However, in reality, since inventors
will always start and end their inventive career at some point in their life, it
is necessary to specify this boundary of time. For simplicity, Huber makes the
first patent as the starting point and the last patent as the end point. Of course
such an arrangement does not take into consideration the 'unknown number of
years of inventive effort with zero patents before and after the period’ (Huber,
1998). However, when there are enough inter-occurrences of patents, a Poisson
Process should still be observed.

2.1.3 Inventivity

Let T be a specific time period, then each inventor’s inventivity over T is defined
as followed:

Numb Patents in T
Inventivity(T) = umber of Patents in

T (in years)

Note that when T=1, the inventor’s inventivity is just the number of patents
issued during that year. Similarly, we can define an inventor’s inventivity over
his/her entire career duration as:

Total Number of Patents

Duration of Inventive Career

Average Inventivity =

2.2 Structure of the Model

Rather than modeling the time pattern of patents directly as a Poisson Process,
Huber splits the process into two layers. At the top layer, patents are separated
according to the years they are issued, and the number of patents in each year
is counted. At the next level, if indeed the time pattern of patents is a Poisson
Process, then the number of patents in each year should be a sample taken from
the same Poisson distribution. Two different tests are conducted at each layer
to test our hypothesis.

2.2.1 Test of Runs

This text aims at testing whether at the top layer, the number of patents in each
year is random and independent of time. We give an easy example to illustrate
the point. A vector consisting of the time sequence of patents can be generated
after we’ve calculated the number of patents in each year. For an inventor with



a total of 5 patents in a duration of 10 years, a typical vector will look like (1,
0,1,1,0,0,1,0,0, 1). By definition, a run is a sequence of one or more years
with the same number of patents. As in our example, the vector has 7 runs.
Next, since the expected number of runs can be calculated for each specific type
of vectors, then the vector’s deviation in terms of the number of runs from the
expected value is in fact a measure of its un-randomness. In our example, for 5
patents over 10 years, the expected number of runs is 6. Therefore, the vector
we have been examining has a high degree of randomness.

2.2.2 Goodness-of-fit Test

After confirming that the number of patents are in general random across differ-
ent years, we can then proceed to conduct a goodness-of-fit test to the Poisson
distribution by the chi-square method, since such a statistical test aims at de-
termining whether a sample is taken from a certain distribution.

3 Comparison with Experimental Results

In the article, the experimental data indeed is a good fit of the model. Accord-
ing to Huber, the tests of runs show that the probability that each increment
is independent exceeds 0.65, across different groups. And the goodness-of-fit
tests show that the probability that the time pattern of patents are Poisson
distributed is around 0.80. Furthermore, Huber also observes that this model
works well when we take into consideration the quality of the inventions. That
is, he analyzed a subgroup of inventors that have won several National Awards,
and the test results exhibit the same pattern.

4 Analysis of the Model

4.1 Advantages

This model successfully describes the time pattern of patents for individuals with
high out-put and long career duration. In particular, the model suggests that
there is an innate parameter for every inventor that is constant over time and can
be used to measure the level of creativity for that particular individual. From
the property of the Poisson Process, it also implies that despite the existence
of such a parameter, the time until the next occurrence of a patent is random
and independent of previous occurrences, suggesting that creativity cannot be
increased due to the demand on time constraints.

On the other hand, for companies hiring inventors, once this parameter is
known, several inferences can easily be made. Let an inventor’s time pattern of
patents be a Poisson Process with parameter A\, and let X be a random variable
that represents the inventor’s inventivity in each year. Then, X is a Poisson
distribution with parameter A x 1 = A\. We can then calculate:

1. An inventor’s expected inventivity in any year: E[X]=\.



2. An inventor’s variance of inventivity: Var[X]=A.

This way, although an inventor’s annual inventivity is random, the company
can still get a good sense of what to expect in the long run.

Furthermore, since the expected value of each patent and the variance of
this value can be easily determined, the company will then be able to estimate
the expected total value that a certain inventor will bring to the company. That
is, let V(t) be the total value of all the patents by some t. And since we know
the value of the ith patent, p; has E[p;]=u, and Var[p;]=c?, for i= 1, 2, ..., we
can then calculate:

1. An inventor’s expected value to the company by time t: E[V(t)|=uAt.

2. An inventor’s variance of value by time t: Var[V(t)]=Ate? + Atpu?

4.2 Drawbacks

This model does have several drawbacks. For example, it is very hard to de-
termine whether someone with only few patents over his/her career exhibits
such a pattern. With so few data, the sampling error will be rather large. And
yet this is the common scenario, since the number of patents among different
inventors exhibits a Pareto distribution, that is, the majority of the inventors
has only a few patents, while a small fraction of the inventors accounts for most
of the patents in the sample. Therefore, the model is only valid for theses top
inventors.

To remedy for this, we could do some modifications to this model. Instead
of first dividing an inventor’s career span into years, we could record the tim-
ing of each patent directly by dates and then conduct another goodness-of-fit
test to determine whether the inter-arrival times conform with the exponential
distribution. We’ll use the example in Section 2.2.1 again as an illustration.
With only 5 patents in 10 years, it is not possible to test whether a vector like
(1,0,1,1,0,0, 1,0, 0, 1) fits into a certain Poisson distribution since our 10
samples consists of five 1’s and five 0’s. However, if instead we represent this
same inventor’s time pattern of patents in a vector like (821, 210, 1210, 532),
with each number as the inter-arrival time (in days) of a new patent, then we’d
be able conduct a test to see whether the 4 numbers fit into a certain exponen-
tial distribution. This way, even with a relatively small amount of patents, we
would still be able to make some predictions.

5 Other Models

Consequently, while confirming the Poisson Process model for creativity, the
experimental results invalidate several other alternative models. For example, as
Huber mentioned, one might hope to see more examples of systematic patterns,
such as:



1. Increasing output rate over time, indicating learning.
2. Decreasing output rate over time, indicating senescence.

3. Regular, non-random output rate, indicating control and performance to
objectives.

4. Sharply peaked bursts of output, indicating breakthroughs.

However, Huber chooses the current model as he believes that the random-
ness in terms of the timing of the patents can all be accounted for in the Poisson
Process and that an inventor’s level of creativity is stable over time.
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