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 A social network is a group of people connected to one another via relationships 

and/or interactions. Examples of social networks are families, schools, organizations, and 

more recently, emerging online structures such as Myspace and Facebook. Social 

network analysis, which began to come to prominence in the 1950s, allows for the study 

of social networks using mainly graph theory, statistics and algebra. The field’s 

importance lies in the fact that the world is made of social networks of all different sizes, 

and so social network analysis can give light to almost any question involving human 

interaction. Whether it is understanding how information is spread through an educational 

social network, how outbreaks of diseases turn into epidemics, or how economic events 

or news affect an entire financial system, social network analysis is able to shed light. 

 

 Much of the major research in social network analysis thus far has been aimed at 

understanding 1) how social networks grow/decline, and 2) how information and 

innovations flow through these networks. Wasserman’s “Analyzing Social Networks as 

Stochastic Processes” (1980) was one of the first articles to propose a methodology for 

studying the change in network structure over time via stochastic processes, building on 



the ideas of authors such as Katz and Proctor (1959), Kauffman (1969), Holland and 

Leinhardt (1975). Wasserman’s major criticism of the discourse on social networks at the 

time was that they were being studied as static objects, and that any conclusions 

regarding longitudinal data were usually qualitative in nature. Assuming a network 

reaches equilibrium, he sought to understand 1) the ways in which the present structure of 

a network influences its future structure, and 2) the movement of networks toward their 

equilibrium states. 

 

 Wasserman proposed two stochastic models for social networks – the Reciprocity 

Model and the Popularity Model – based on Holland and Leinhardt’s (1977) modeling 

framework:  Let 

€ 

X(t) be a binary matrix-valued stochastic process describing 

relationship choices in a social network. Its elements, 

€ 

Xij (t), are equal to 1 if node i 

chose node j (ij), and 0 otherwise. As outlined by Wasserman, there are two major 

assumptions in this framework. First, 

€ 

X(t) is a continuous-time Markov chain with finite 

state space. This assumption guarantees us that the future state of the network, as 

characterized by its relationship ties, depends only on its current state and not past states. 

Second, the changes in relationship ties in the network are independent over small 

periods of time. This assumption makes it unlikely that more than one relationship 

change will occur at the same time during the extremely small time interval (t, t+h), 

especially as amount of time h approaches 0. As there are only two possible changes that 

can occur, the creation or destruction of a relationship, the transition probability matrix is 

fully defined by the following equations:

€ 

P{Xij (t + h) =1 | X(t) = x,Xij (t) = 0} = hλ0ij (x, t) + o(h)
P{Xij (t + h) = 0 | X(t) = x,Xij (t) =1} = hλ1ij (x, t) + o(h)

, where h represents the small 



amount of time passed in each interval, 

€ 

λ  represents the infinitesimal transition rates for

, and o(h) represents the probability of more than one change occurring 

simultaneously in the network.  

 

 Wasserman proposed two models based on this framework, the first of which is 

the Reciprocity Model. This model best applies to networks in which relationships are not 

symmetric – an individual may choose to be friends with someone, but this friendship 

may or may not be reciprocated. In order to quantify this aspect of relationships, 

Wasserman defined 

€ 

Dij (t) = (Xij (t),X ji(t)), the dyad for nodes (i,j), to be a continuous-

time Markov chain with state space D= {(0,0),(1,1),(0,1),(1,0)}, where (1,0), for instance, 

means that node i chose node j, but node j did not choose node i. Each dyad is generated 

by Q, the matrix of infinitesimal transition rates between the states of the network, as 

defined by the following time-homogenous equations: 

€ 

λ0ij (x,t) = λ0 + µ0x ji

λ1ij (x,t) = λ1 + µ1x ji
. From these 

transition rate equations, we can see that a choice ij depends only on whether or not 

ji already exists, how “important” that reciprocated tie is (as measured by the 

parameters

€ 

µ0,µ1), and the overall rate of change of the network (as measured by the 

parameters

€ 

λ0,λ1). The parameters of this model can be estimated by analyzing the change 

in dyadic ties over time in your actual social network.  Since X(t) is stationary in time 

(due to its time-homogenous transition rates), Wasserman was able to use properties of 

stochastic processes, such as the reversibility equations, to calculate the vector of 

equilibrium probabilities 

€ 

π(∞) for the four states of the reversible dyad process.  

 

€ 

X(t)



 The second model proposed by Wasserman was the Popularity Model. The time-

homogenous transition rates for the Popularity Model, 

€ 

λ0ij (x,t) = λ0 +π 0x+ j

λ1ij (x,t) = λ1+π1x+ j
, indicate that 

a node j gets chosen based only on the amount of nodes that have already chosen j (j’s 

indegree, as indicated by 

€ 

x+ j ), how “important” j’s popularity is (as measured by the 

parameters

€ 

π 0,π1), and the overall rate of change of the network (as measured by the 

parameters

€ 

λ0,λ1). Since the indegree of a node is representative of a node’s “social 

status” in the network, this allows for the understanding of how changes in relationships 

differ for the more popular nodes. Instead of studying the dyads of the network as a 

stochastic process, this model focuses on X(t)’s column processes. More specifically, 

Wasserman considers each column of the binary matrix X(t) as an independent and 

identically distributed stochastic process and extracts information about indegree from 

each column. This indegree process, 

€ 

I j (t) = Xij (t)
i
∑ , is itself a Birth-Death chain for 

which the equilibrium probabilities are well known and were multiplied in order to get 

the equilibrium probabilities of the entire process.  

 

 In order to “propose simple but substantively interesting models that serve as 

benchmarks or null models against which data on groups with complicated structure can 

be compared” (pg. 285), Wasserman tested the Reciprocity model against the data used in 

Katz & Proctor (1959), and tested both models against the Newcomb (1961) data. 

Overall, analyses resulting from the Reciprocity model were found to support the 

conclusions of the papers from which the data originated. With the focus of finding the 

order and distribution properties of the Markov chain needed to study dyadic changes, 



Katz & Proctor (1961) asked 8th graders which 3 students they wanted to sit with at four 

different times during the year. After estimating model parameters based on the empirical 

data, Wasserman came to many of the same conclusions as the original authors, including 

the existence of a “sex cleavage” in which the majority of relationship choices made were 

between the same genders. Wasserman also offered a method to incorporate/model this 

sex cleavage into the original Reciprocity Model, in order to further understand the lack 

of a reciprocity effect on same-sex relationships.  

 

 In Newcomb (1961), two fraternities of 17 freshmen each were asked to rate each 

of the other members on a scale of 1 to 16. After performing analyses on the binarized 

form of this data, Wasserman confirmed many of the qualitative assessments made by 

Newcomb. In particular, Wasserman found that there was a small effect of reciprocated 

choices on the creation of new choices, but an even larger effect on the disappearance of 

choices. In other words, an existing choice is more likely to disappear if that choice is not 

reciprocated. In addition, Wasserman confirmed that there was a tendency in the network 

toward reciprocation, and that those high-attraction reciprocated pairs are the more stable 

pairs of the network. The Popularity model, tested against the Newcomb data only, also 

resulted in the confirmation of many of Newcomb’s findings. Wasserman found that as 

networks approach equilibrium, the popular individuals (as defined by indegree) tend to 

remain so, and the less popular individuals might even become less popular.   

 

 Overall, both of these models seem to do well in fitting and explaining real social 

network data. Some major advantages of using stochastic processes to model network 



change include the available statistical measures that allow one to quantify long-term 

behavior of Markov chains, as well as the use of changeable parameters that can be 

adjusted to one’s particular data. In addition, some of the more contemporary models of 

social network growth stem from these ideas of reciprocity and popularity. Wasserman’s 

analysis of popularity offered early empirical evidence of what has come to be known as 

the “rich get richer” phenomenon or “preferential attachment”, quantitatively represented 

by the Power-Law distribution. Barabasi and Albert’s scale-free network model (1999), 

in particular, is based on this idea of preferential attachment, in which popular individuals 

tend not to just remain popular but become more popular over time. Snijders (1996, 

2010) extended Wasserman’s models such that changes in the network depend on both 

reciprocity and popularity, as well as activity (as measured by outdegree), balance (the 

extent to which friends share the same friends), transitivity (tendency of a node’s mutual 

friends to also become friends), and a combination of other network effects. 

 Still, there are some major drawbacks. Many of the assumptions of the models 

limit their applicability to real world data. First, the use of a Markov chain to model a 

social network can be very limiting. It is often unrealistic to assume that the 

creation/destruction of a relationship between two people is based only on the current 

status of that relationship and not the history of the relationship. The continuous-time 

assumption of the Markov chain may prove difficult when using longitudinal network 

data collected at discrete points in time, and the time-homogenous assumption requires 

that the real social network have fixed transition rates. Another assumption that may be 

unrealistic is that dyads are independent and identically distributed, with only one change 

in a network allowed to occur in a small period of time. An alternate model that allows 



for multiple changes in dyads can be found in Mayer (1977). In real networks, changes to 

the network often happen simultaneously and not always independently. Indeed, the 

assumption of dyadic independence precludes us from understanding the importance of 

other network effects, such as transitivity. A final issue is that these models do not allow 

for the change in size of the overall network. While the networks here are considered 

dynamic over time, the population is considered static - an unrealistic assumption for real 

social networks that persists in many network models today. Wasserman acknowledges 

many of these limitations, noting that one must take extra care to make sure their network 

can be modeled by its parameters.  
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