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Setting

Let X1, X5,... beiid., S, =X1+ ...+ X,.

We investigate the rate at which P(S, > na) — 0 for
a>pu=E[Xj] < oc.

We define the moment-generating function ¢() = E[eX].

Eventually, we will see that if ¢(8) < oo for some 6 > 0, then
P(S, > na) — 0 exponentially fast.

SLLN? CLT? Chebyshev?
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Convergence rate y(a) - Part |

1
— lim = >
v(a) nll_>moo p log P(S, > na)
We first need to show that v exists. Let m, = P(S, > na). Then,
Tm+n = P(5n+m > (”+m)a) > P(Sm > ma, 5n+m_5m > ”a) = TmTn,

where the inequality holds, because

Sn>ma, Spym— Sm > na
= Spim = Sm+ Sn+m — Sm > ma+ na= a(m+ n)

and the equality because S, = X1 + ... X}, and
Sntm — Sm = Xm+1 + - .. Xptm are independent.
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Convergence rate ~y(a) - Part Il

Set 7, = log(mn).

Lemma: Tmyn > Tm +7p = "2 — sup,, 7® as n — oo.
. H Tn Tm H

Proof: limsup ™» < sup 72 gives <.

If Vm: Iiminf%’ > %’" then > holds as well.

Write n = km + [, where 0 </ < m. Then
Tn = Tkm+l = Tm + T(k—1)ym+1 = -+ = KTm + 7.

If we now divide both sides by n = km + /, we find that

Tn k Ty km Tm T  Tm
— > — = — = —. U
n _<km+l>Tm+n <km+/> m+n m
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Convergence rate ~y(a) - Part IlI

We have now seen that wp4, = 7,7, implying that

Tntm = 10g(Tntm) > log(mmmn) = log(mm) + log(mn) = Tm + Tn

But we have also seen that 7,4, > Ty + T, implies that
n m H n — 1
™ — sup,, ™. Since ™ = log P(S, > na),

v(a) = lim L 1og P(Sn > na) = sup log(P(5m = ma))

n—oo N m m

< 0 exists.

P(S, > na) < 73"
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Understanding ~(a) better

v(a) = —c0oe P(X1 >a)=0< P(S,>na)=0Vn
v(a) = —oo = P(S, > na) =0 Vn: note that
y(a) > ©BPE=)y ) o6 log(P(S, > na)) = —o

P(S, > na) =0¥n = P(X;>a)=0:
set n=1, X; are i.i.d.

P(Xi>a) =0 = 7(a) = —oc:
P(X; > a)=0,s0Vn: P(S, > na)=0, so lim, o log(0) _ _ o
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Bound for v(a)

We seek to bound «y(a). By Chebyshev's inequality:

eG”aP(S,, > na) < Ee?Sr
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eG”aP(S,, > na) < Ee’" = E <H egX")
i=1
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Bound for v(a)

We seek to bound «y(a). By Chebyshev's inequality:

e@naP(Sn > na) < Ee@Sn — E <H e@X,‘) _ H EeGX,' — (¢(9))n
i=1 i=1
Rearranging,
eH""’P(Sn > na) < (¢(0))" = P(S, > na) < exp[—n(ad — k(0))]

for k(0) = log ().
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Bound for v(a)

We seek to bound «y(a). By Chebyshev's inequality:

e@naP(Sn > pa) < Eef5 — E <H egxi) = HEeQXi = (Qb(e))n
i=1 i=1

Rearranging,
e™2P(S, > na) < (6(0))" => P(S, > na) < exp[—n(ad — r(0))]
for k(0) = log $(8). Hence,

y(a) < — {ab — k(0)}

for some fixed 6. We want af — x(0) > 0.
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Moment Generating Functions

Definition
The moment generating function (MGF) for a random variable X
is defined to be ¢(#) = EeX.

MGFs vs. Characteristic Functions

e Characteristic functions can be thought of as the MGF of iX
e Characteristic functions always exist and is complex valued.

e MGFs does not necessarily exist for all # and is real valued.
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Moment Generating Functions

Definition
The moment generating function (MGF) for a random variable X
is defined to be ¢(#) = EeX.

MGFs vs. Characteristic Functions

e Characteristic functions can be thought of as the MGF of iX
e Characteristic functions always exist and is complex valued.

e MGFs does not necessarily exist for all # and is real valued.

Generating Moments with MGFs
(d / efx dF(x)) = ( / x"e% dF(x)) = ExV.
df —00 0=0 —oo 0=0
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Generating Moments with MGFs

Example: X ~ Unif(0, 1)

1 0
1
o(0) = Ee?X = / e dx = ¢
0 0

We obtain moments by differentiating and evaluating at § = 0:

d (e -1 e®(9—1)+1
Ex_de<9> e-1+l

0_ 02
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Generating Moments with MGFs

Example: X ~ Unif(0, 1)

1 0
1
o(0) = Ee?X = / e dx = ¢
0 0

We obtain moments by differentiating and evaluating at § = 0:

d [e? -1
EX_de(e )

d? (e —1
2—7
EX_d92< 0 >

9 -1)+1 1
0 02 0 2’
e?(6% — 20 +2) -2

0_ 03
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Generating Moments with MGFs

Example: X ~ Unif(0, 1)

EX

EX?

EX"

1 0
-1
o(0) = Ee?X = / Xx =S 7
0 0
We obtain moments by differentiating and evaluating at § = 0:
_d<e9—1> _fO-n+1 1
do 0 0 62 o 2
Cd? el =1\ f(P-20+2)-2| 1
- do? 0 0 N 63 0 -3
dm (e —1\| 1
don 0 o n+1
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Restriction on the Distribution of X;

Assumption H1

The moment generating function ¢(f) = Ee?*i < oo for some
6 > 0.
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Restriction on the Distribution of X;

Assumption H1

The moment generating function ¢(f) = Ee?*i < oo for some
6 > 0.

Note that ¢(0) = 1 for any distribution and let
0_ =inf{0: $(0) < oo}
04 =sup{f : $(0) < oo}
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Restriction on the Distribution of X;

Assumption H1

The moment generating function ¢(f) = Ee?*i < oo for some
6 > 0.

Note that ¢(0) = 1 for any distribution and let

O_ =inf{0: ¢(0) < o0} <0,
04 = sup{f : $(0) < oo} > 0.
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Restriction on the Distribution of X;

Assumption H1

The moment generating function ¢(f) = Ee?*i < oo for some
6 > 0.

Note that ¢(0) = 1 for any distribution and let

O_ =inf{0: ¢(0) < o0} <0,
04 = sup{f : $(0) < oo} > 0.

Remarks
If 6_ <0, then

e moments of all orders are finite, and

e the tails of the distributions of X; are exponentially bounded.
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(H1) Implies = EX; # o0

Proof.
Let F(x) = P(X; < x) and fix 6 from (H1). If § > 1, (H1) directly
bounds 1. Else, then x > e in the interval (r1, r2). Hence:

EX; < EX;H = / x dF (x),
0

< / " dF(x) + / et dF (x),

n 0
< rn+ (Z)(e)a

< Q.

Good check that a > u is sound.
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Decay Bound

Lemma (Exponential Decay Bound)
Ifa> p and 0 > 0 is small, then a0 — k(0) > 0.

Motivation

ab — k(0) = [) (a— #/(x)) dx and #(0) = log $(0) = 0.

(1) k(6) is continuous at 6 = 0.

(2) k is differentiable over (0,6).

(3) K'(f) = pas § — 0.

So there exists some 6y > 0 such that af — x(#) > 0 for 6 € (0, 6p).
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Decay Bound Proof - Part |

Condition (1)
Let F(x) = P(X; < x). For 0 < 0 < 6y < 64, then we can
dominate e?* < 1+ e%*. By the DCT:

lim / e dF (x) = / dF(x) = 1.

This implies that ¢(6) is continuous at § = 0 hence () is
continuous at § = 0.
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Decay Bound Proof - Part Il

Condition (2)

For |h| < ho,

Hence, x'(6)

then [e™ — 1| = )fohx e’ dy‘ < | hx|e™*. Consider,

50) = fim AN =00

hx_l
= Iim/e : - e™ dF (x),

= /xegx dF(x), for @€ (0,04).

= % exists for 6 € (0,0,).
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Decay Bound Proof - Part Ill

Condition (3)
Note that we will use the DCT with the inequality:

e9x <1+ eeox‘

Hence,

$(0) :g@o/eex dF (x) :/<Im}Je > dF(x) = /dF(x) =1,
¢'(0) zeligqo/xeex dF (x) :/ <I|m0e > dF(x) = /XdF(X) = 1.

So, K'(0) — pas 6 — 0. O
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An Upper Bound

We just showed there exists 0y € (0, 6;.) such that
af —r(0) >0 for 0 € (0,6p)

Earlier we have shown that for any 6 € (0,6,.),
P(S, > na) < exp(—n{al — k(6)})

where k(6) = log ¢(0).
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An Upper Bound

We just showed there exists 0y € (0, 6;.) such that
af —r(0) >0 for 0 € (0,6p)

Earlier we have shown that for any 6 € (0,6,.),
P(S, > na) < exp(—n{al — k(6)})

where k(6) = log ¢(0).

— lim Llog P(S, > na) < —{a0 — x(0)}

n—oo N
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An Upper Bound

We just showed there exists 0y € (0, 6;.) such that
af —r(0) >0 for 0 € (0,6p)

Earlier we have shown that for any 6 € (0,6.),
P(S, > na) < exp(—n{al — k(6)})

where k(6) = log ¢(0).

— lim Llog P(S, > na) < —{a0 — x(0)}

n—oo N

The expression in the braces gives an upper bound on the rate of
the exponential decay whenever it is positive.
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An Upper Bound

We just showed there exists 6 € (0, 6) such that
af —r(0) >0 for 0 € (0,6p)

Earlier we have shown that for any 6 € (0,6,.),
P(S, > na) < exp(—n{a® — k(0)})

where k(6) = log ¢(0).

1
im — > < - —
= nIl_}ﬁ;O p log P(S, > na) < —{af — k(0)}
The expression in the braces gives an upper bound on the rate of
the exponential decay whenever it is positive.
Each feasible 8 gives such a bound, so it is natural to find out the
best bound by maximizing a# — x(0) over (0,6).
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When Things Are Nice

We find the maximum of #a — k(0) at its critical point

_9(9)
¢(0)

d
520~ logg(0)} = 2

The maximum occurs when a = ¢'(6)/¢(6).
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When Things Are Nice

We find the maximum of #a — k(0) at its critical point

d _ ¢
glad —logo(0)} =a~— 5(0)

The maximum occurs when a = ¢/(6)/é(6).
Assumptions we need to make:
e There exists exactly one critical point.

e The critical point is a maximum.
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Justify the Assumptions

For any ¢(0) < oo, define

Fo(x) = 50 / e dF(y
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Justify the Assumptions

For any ¢(0) < oo, define

Fo(x) = 50 / e dF (y

Claim: Fy is a distribution function for § € (0_,6..).
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Justify the Assumptions

For any ¢(0) < oo, define

Fo(x) = 50 / e” dF(y

Claim: Fy is a distribution function for § € (0_,6..).
Proof:

1
Al = 5 / 1oy (y) € dF(y)

By Dominated Convergence Theorem, Fy(—o0) =0 and Fyg(oo) = 1. It is
non-decreasing because e” is non-negative. It is right-continuous
because

|Fox + €) — Fo(x)] = / Lpeeq(y) € dF(y) 1 0

L
¢(0)

again by Dominated Convergence Theorem. OJ
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Distribution Fy

We can compute the mean of distribution function Fy we just
defined.
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Distribution Fy

We can compute the mean of distribution function Fy we just
defined.

[ xeia) = s [ xet a0 - f;((j)) _ (0)
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Distribution Fy

We can compute the mean of distribution function Fy we just
defined.

[ xebu) = S5 [ xe () - fb((j)) _ (0)

Outline of proof:

The second equality was proven in the previous section.
Let u be the (Lebesgue Stieltjes) measure induced by Fy, we have

u((a, b)) = ¢(9) S Lap)(v) € dF(y) from definition.
(1) The collection of sets W|th the property

w(E) = ¢>(9 flE e” dF(y)
forms a o-algebra, so it includes the Borel sets.
(2) For general measurable function g,
[ &(x) dFo(x) = 5i55 [ &(v) €™ dF(y).

In particular, we can let g(x) = x. O
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¢"(0)

S6) — tim PO N =)

h—0 h

hx_l
= Iim/e ; x e dF (x)

h—0

ber / 2 " dF (x) = ¢(6) / x? dFy(x)
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¢"(0)

510) = 1y L0+ D =S 0)

hx
: e™ -1 0x
= /li;no/ xe dF(x)

ber / 2 " dF (x) = ¢(6) / x? dFy(x)

To apply the dominated convergence theorem, we fix small hg
and €. For h < hg

hx

’e — 1 ox < 2|eltho)x < %ee\x|e(0+ho)x
€

< %(e(0+h0+6)x + e(0+hofe)x)

T €



~v(a) MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations

Second Derivative Test

Recall that the function we are trying to maximize is af — x(0).
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Second Derivative Test

Recall that the function we are trying to maximize is af — x(0).

Its derivative is %{a0 — log #(0)} = a — &g))-
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Second Derivative Test

Recall that the function we are trying to maximize is af — x(0).

Its derivative is %{a0 — log #(0)} = a — %-
d ¢'(0)

Its second derivative is R OR
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Second Derivative Test

Recall that the function we are trying to maximize is af — x(0).
Its derivative is %{39 —log ()} =a— ﬂg)).
d ¢'(0)

do ¢(0) -

d¢'(0) _ ¢"(0) _ (¢>'(9)>2

do ¢(0)  #(0)  \¢(0)

= /x2 dFy(x) — (/xng(x))2 >0

Its second derivative is —
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Second Derivative Test

Recall that the function we are trying to maximize is af — x(0).
Its derivative is %{39 —log ()} =a— ﬂg)).
d ¢'(0)

do ¢(0) -

d¢'(0) _ ¢"(0) _ (¢'(9)>2

do ¢(0)  #(0)  \¢(0)

= /x2 dFy(x) — (/xng(X))2 >0

because the last expression is the variance of Fy.

Its second derivative is —
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Second Derivative Test

Recall that the function we are trying to maximize is af — x(0).
Its derivative is %{39 —log ()} =a— &99))_

Its second derivative is —%(Z((g)).

d¢'(0) _ ¢"(0) _ (¢’(9)>2

do ¢(0)  #(0)  \¢(0)

2
_ /x2 dFy(x) — (/Xng(x)) >0
because the last expression is the variance of Fy.

Assumption H2
X1 is not a point mass at p
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X1:/L:EX1

Why we need it

In this case, F is a jump function from 0 to 1 at u. So is Fy for all
0e(0_,04). %{30 —logp(0)} =a— % = a — p, so either
there are infinitely many critical points or none at all.
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X1:/L:EX1

Why we need it

In this case, F is a jump function from 0 to 1 at u. So is Fy for all
0e(0_,04). %{30 —logp(0)} =a— % = a — p, so either
there are infinitely many critical points or none at all.

Why we can assume it

The conclusion we want is actually trivial, since P(S, > na) =0
for all a > p.

We can assume F is not a point mass for the interesting cases. Fy
is not a point mass either, so variance of Fy > 0.
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Conclusion

We have j—;{aﬁ —logp(0)} = _%i’((g)) <0.



~v(a) MGFs & Decay Interval Optimal Bounds Ex. & 0,

Optimal Decay Theorem Simulations

Conclusion

é'(
50 is strictly increasing, and (0

_ ¢'(0a)
critical point that a = 50,

We have j—;{aﬁ logp(0)} = di%)) < 0.
¢'(0) ; )) —

1 < a, we have at most one
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Conclusion

¥(0)

We have j—;{aﬁ log #(0)} = dii( )) <0
50 is strictly increasing, and (( )) =<

1 < a, we have at most one

" _ ¢'(0a)
critical point that a = 50,

Note that the existence is not guaranteed.
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Conclusion

—‘Z((g)) is strictly increasing, and (( o) — M <a we have at most one

_ ¢'(0a)
critical point that a = 3(05)
Note that the existence is not guaranteed.

a6 — log ¢(0) is concave, so 0, maximize af — log ¢(#), which
means it gives the best bound on the rate of exponential decay.

We have j—;{ae —logp(0)} = _di ¢’((9)) <0.
) _
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Preview

Before discussing the existence of 8,, We will:

e examine the moment generating functions ¢(f) of some
familiar distributions,
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Preview

Before discussing the existence of 8,, We will:

e examine the moment generating functions ¢(f) of some
familiar distributions,

e derive the form of x/(8) = ¢/(6)/®(6), which is used to
optimize our upper bound on the probability of a large
deviation for a particular a > p,
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Preview

Before discussing the existence of 8,, We will:

e examine the moment generating functions ¢(f) of some
familiar distributions,

e derive the form of x/(8) = ¢/(6)/®(6), which is used to
optimize our upper bound on the probability of a large
deviation for a particular a > p,

e discuss some properties of moment generating functions
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Ex 1. Normal Distribution

For X ~ N(0,1),
»(0) = Eexp(0X) = /e6’<(27r)_1/2 exp(—x?/2)dx
= exp(6?/2) /(27r)1/2 exp(—(x — 0)?/2)dx.

The integrand is the density of a normal distribution with mean 6
and variance 1, so ¢(#) = exp(#?/2),60 € (—o0, 00).
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Ex 1. Normal Distribution

For X ~ N(0,1),
»(0) = Eexp(0X) = /e6’<(27r)_1/2 exp(—x?/2)dx
= exp(6?/2) /(27r)1/2 exp(—(x — 0)?/2)dx.

The integrand is the density of a normal distribution with mean 6
and variance 1, so ¢(#) = exp(#?/2),60 € (—o0, 00).
Thus ¢'(0)/¢(0) = 6, and

Fo(x) = e92/2/ eey(27r)*1/2e*y2/2dy7

—0o0

is a normal distribution with mean 6 and variance 1.
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Ex 2. Exponential Distribution with parameter A

If 0 <\,

#(0) = E exp(0X) = / e xe ™ Mdx
0

= \/(A—0).
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Ex 2. Exponential Distribution with parameter A

If 0 <\,

#(0) = E exp(0X) = / e xe ™ Mdx
0

= \/(A—0).

Thus ¢'(0)/¢(0) = 1/(\ — @), and
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Ex 2. Exponential Distribution with parameter A

If 0 <\,

¢w):Ea@wxy:/m}”AeA&u

0
— /(A —0).
Thus ¢'(0)/¢(0) = 1/(\ — @), and
Fo(x) = A0 e e NVdy

is an exponential distribution with parameter A — 6.
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Ex 3. Perverted Exponential

Let g(x) = Cx3e™* for x > 1, g(x) = 0 otherwise, and choose C
so that g is a probability density. Then

#(0) = Eexp(6X) = /eaxg(x)dx

e / X360 Dy

is finite if and only if § < 1.
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Ex 3. Perverted Exponential

Let g(x) = Cx3e™* for x > 1, g(x) = 0 otherwise, and choose C
so that g is a probability density. Then

#(0) = Eexp(6X) = /eaxg(x)dx

e / X360 Dy

is finite if and only if § < 1.
When 0 <1,

q;’((ﬁ /11 /szdx// Cx3dx = 2.




~v(a) MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations

Properties of Moment Generating Functions

Let xo = sup{x : F(x) < 1}. If xg < oo, then:
e ¢(f) < oo forall 6 >0,
o §(0)/6(8) — %0 a5 0 1 o0,
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Properties of Moment Generating Functions

Let xo = sup{x : F(x) < 1}. If xg < oo, then:
e ¢(f) < oo forall 6 >0,
o §(0)/6(8) — %0 a5 0 1 o0,

Outline of proof

If xo < oo, then P(X > x¢) = 0.
Then ¢(0) = [ e*dF(x) = [*_e’dF(x) < oo for all 6.
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Properties of Moment Generating Functions

Let xo = sup{x : F(x) < 1}. If xg < oo, then:
e ¢(f) < oo forall 6 >0,
o §(0)/6(8) — %0 a5 0 1 o0,

Outline of proof

If xo < o0, then P(X > x0) = 0.
Then ¢(0) = [ e*dF(x) = [*_e’dF(x) < oo for all 6.

Furthermore,

¢'(0) _ 7 xe”™dF(x)

o(0) [0 efxdF(x)’
with F putting nonzero weight near xo. As 6 — oo, the tail is
growing faster than the rest, with the numerator scaled by xp.
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Interpretations

For the normal and exponential distributions,

sup{x : F(x) < 1} = o0.
e Thus we have ¢'(0)/#(0) — oo as 6 — 6, and
e we can solve a = ¢/(6)/4(0) for any a > p.
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Interpretations

For the normal and exponential distributions,

sup{x : F(x) < 1} = o0.
e Thus we have ¢'(0)/#(0) — oo as 6 — 6, and
e we can solve a = ¢/(6)/4(0) for any a > p.

In Example 3, we cannot solve a = ¢/(0)/¢(0) for a > 2
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Interpretations

For the normal and exponential distributions,

sup{x : F(x) < 1} = o0.
e Thus we have ¢'(0)/#(0) — oo as 6 — 6, and
e we can solve a = ¢/(6)/4(0) for any a > p.

In Example 3, we cannot solve a = ¢/(0)/¢(0) for a > 2

(H3) there is a 6, € (0,6,) so that
a=¢'(0.)/0(0.).
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Optimal exponential decay
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Optimal exponential decay

Theorem
Suppose that (H1), (H2) and (H3) hold. Then,

v(a) = nll_>ngo n~Llog P(S, > na) = —af, + log (6,).
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Optimal exponential decay

Theorem
Suppose that (H1), (H2) and (H3) hold. Then,

v(a) = Ii_}m n~Llog P(S, > na) = —af, + log (6,).
n—o0
Informally, the theorem states that if a = ¢/(6,)/¢(6,), then

(asymptotically) the probability of a large deviation decays as
exponentially fast as possible.
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Proof of Theorem
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Proof of Theorem

(limsup). Earlier using Chebyshev's inequality we observed that
P(S, > na) < exp(—n{af — log ¢(#)}), for 6 € (0,6,), and in
particular for 8,. This implies

limsup n~ ! log P(Sn > na) < —af, + log ¢(0,).

n—o0
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Proof of Theorem

(limsup). Earlier using Chebyshev's inequality we observed that
P(S, > na) < exp(—n{af — log ¢(#)}), for 6 € (0,6,), and in
particular for 8,. This implies

limsup n~ ! log P(Sn > na) < —af, + log ¢(0,).

n—o0

(liminf). The other direction requires a bit more work. Fix
A€ (04,04) and let X, X3\, ... bei.i.d. with distribution F
(well-defined by H1); set S = X + -+ + X\,
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Proof of Theorem

(limsup). Earlier using Chebyshev's inequality we observed that
P(S, > na) < exp(—n{af — log ¢(#)}), for 6 € (0,6,), and in
particular for 8,. This implies

limsup n~ ! log P(Sn > na) < —af, + log ¢(0,).

n—o0

(liminf). The other direction requires a bit more work. Fix

A€ (04,04) and let X, X3\, ... bei.i.d. with distribution F
(well-defined by H1); set S = X{* +--- + X;\. Before we proceed,
a short digression on...
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Abs. Cts. Measures & Radon-Nikodym Derivative
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Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, F) be a measure space equipped with two measures, ;1 and
v. By definition, we say that v is absolutely continuous with
respect to p if u(A) = 0 implies v(A) = 0 for all A € F, and we
write v < p.
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Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, F) be a measure space equipped with two measures, ;1 and
v. By definition, we say that v is absolutely continuous with
respect to i if p(A) = 0 implies v(A) =0 for all A € F, and we
write v < pu. If we simply say u is absolutely continuous then we
mean with respect to the Lebesgue measure.

Example

e Any measure is (trivially) absolutely continuous with respect
to itself.
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Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, F) be a measure space equipped with two measures, ;1 and
v. By definition, we say that v is absolutely continuous with
respect to i if p(A) = 0 implies v(A) =0 for all A € F, and we
write v < pu. If we simply say u is absolutely continuous then we
mean with respect to the Lebesgue measure.

Example
e Any measure is (trivially) absolutely continuous with respect
to itself.

e A finite measure p is absolutely continuous iff the function
F(x) = p((—o0, x])) is absolutely continuous as a function.
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Abs. Cts. Measures & Radon-Nikodym Derivative

Let (X, F) be a measure space equipped with two measures, ;1 and
v. By definition, we say that v is absolutely continuous with
respect to i if p(A) = 0 implies v(A) =0 for all A € F, and we
write v < pu. If we simply say u is absolutely continuous then we
mean with respect to the Lebesgue measure.

Example

e Any measure is (trivially) absolutely continuous with respect
to itself.

e A finite measure p is absolutely continuous iff the function
F(x) = p((—o0, x])) is absolutely continuous as a function.

e Hence the Gaussian measure is absolutely continuous, but the
“Devil's staircase” measure is not (because it assigns positive
measure to the Cantor set).
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Abs. Cts. Measures & Radon-Nikodym Derivative
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Abs. Cts. Measures & Radon-Nikodym Derivative

Key result (Radon-Nikodym, 1930): if v and u are o-finite, and v
is absolutely continuous w.r.t y, then there exists a measurable
function f : X — [0, 00) such that for measurable subsets A C X,

V(A) = /A fd
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Abs. Cts. Measures & Radon-Nikodym Derivative

Key result (Radon-Nikodym, 1930): if v and u are o-finite, and v
is absolutely continuous w.r.t y, then there exists a measurable
function f : X — [0, 00) such that for measurable subsets A C X,

V(A) = /A fd

The function f is called the Radon-Nikodym derivative and we
write f = dv/du. It represents a sort of “rate of change of
measure”, which is why it's called a derivative.

Example
e Application to probability: Any distribution that admits a

density is absolutely continuous, and the Radon-Nikodym
derivative is the density function.



~v(a) MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations

Application to Current Theorem



v(a)

MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations

Application to Current Theorem

Recall that,

N
Fi(x) = oyl / dF(y
It follows that dFy/dF = e™ /().
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Application to Current Theorem

Recall that,

1 X
Fi(x) = ¢()\)/oo e)‘de(y).

It follows that dFy/dF = e /¢(\). In our case, since dF < dF)
and dFy < dF, we may write dF /dFy = e ™ $()\).
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Application to Current Theorem

Recall that,

Fi(x) = 1/X M dF(y).

It follows that dFy/dF = e /¢(\). In our case, since dF < dF)
and dF) < dF, we may write dF /dF\ = e **¢()\). Let F{ and

F" denote the distributions of S} and S, respectively. We claim

that the following is true:

dFy
dF "

(x) = e 6 (\)".
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Application to Current Theorem

Recall that,

Fi(x) = 1/X M dF(y).

It follows that dFy/dF = e /¢(\). In our case, since dF < dF)
and dF) < dF, we may write dF /dF\ = e **¢()\). Let F{ and

F" denote the distributions of S} and S, respectively. We claim

that the following is true:

dFy
dF "

The above arguments show that this holds when n =1 so
naturally...

(x) = e 6 (\)".
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Proof of Lemma

We will induct on n.
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Proof of Lemma

We will induct on n.

F'(z) = F" 1« F(z) = / h F(z = x)dF" !(x)

—00
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Proof of Lemma

We will induct on n.

F'(z) = F" 1« F(z) = / h F(z = x)dF" !(x)

—00

_ /_Z </_:X dF(y)> dF™1(x)
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Proof of Lemma

We will induct on n.

F'(z) = F" 1« F(z) = / h F(z = x)dF" !(x)

—00

_ /_oo </H dF(y)> dF™1(x)

_ / h / T e G )dF () dFI ()

[e.9]
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Proof of Lemma

We will induct on n.

F'(z) = F" 1« F(z) = / h F(z = x)dF" !(x)

—00

_ /_oo </H dF(y)> dF™1(x)

_ / h / T e G )dF () dFI ()

[e.9]

_ A A n
=E (1{sntl+xn*g}e Mot g(0) )
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Proof of Lemma

We will induct on n.

F'(z) = F" 1« F(z) = / h F(z = x)dF" !(x)

—00

_ /_oo </H dF(y)> dF™1(x)

_ / h / T e G )dF () dFI ()

[e.9]

_ A A n
=E (1{sntl+xn*g}e Mot g(0) )

— / T e ()

—00



~v(a) MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations

Proof of Theorem
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Proof of Theorem

Let b > a. Using the lemma, we observe that

nb
P(S, > na) > / e Mp(\)"dF{(x) > ¢(N)"e P (F{(nb)—F{(na)).

na
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Proof of Theorem

Let b > a. Using the lemma, we observe that

nb
P(Sn > na) > / e MB(N)"dF(x) > ¢(N\)"e *"(F{(nb)—F{(na)).
By construction Fy has mean ¢(\)'/¢(\). So we choose b such
that a < ¢(\)'/p(N) < b. Then, by the SLLN, it follows that
F{(nb) — F{(na) — 1 as n — oo.
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Proof of Theorem

Let b > a. Using the lemma, we observe that

nb
P(Sn > na) > / e MB(N)"dF(x) > ¢(N\)"e *"(F{(nb)—F{(na)).
By construction Fy has mean ¢(\)'/¢(\). So we choose b such
that a < ¢(\)'/p(N) < b. Then, by the SLLN, it follows that
F{(nb) — F{(na) — 1 as n — oo. Therefore,

liminf n~ log(P(S, > na)) > —Ab + log ¢()).

n—o0



~v(a) MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations
Proof of Theorem

Let b > a. Using the lemma, we observe that

nb

P(Sn > na) > / e MB(N)"dF(x) > ¢(N\)"e *"(F{(nb)—F{(na)).
By construction Fy has mean ¢(\)'/¢(\). So we choose b such
that a < ¢(\)'/p(N) < b. Then, by the SLLN, it follows that
F{(nb) — F{(na) — 1 as n — oo. Therefore,

Iinlinf n~'log(P(Sy > na)) > —Ab + log ¢(\).

n—oo
Now take A > 6, to be arbitrary, and then b > a to be arbitrary to
finish the proof. O
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Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption
(H4). If ad — log ¢(0) cannot be maximized then assume xg = oo,
0+ < oo and ¢'(0)/p(6) T ap <ocash 16,
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Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption
(H4). If ad — log ¢(0) cannot be maximized then assume xg = oo,
0+ < oo and ¢'(0)/p(6) T ap <ocash 16,

Theorem
Assuming H1, H2 and H4, if ag < a < oo then,
v(a) = —aby + logp(04). That is, y(a) is linear for a > ap.
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Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption

(H4). If ad — log ¢(0) cannot be maximized then assume xg = oo,
0+ < oo and ¢'(0)/p(6) T ap <ocash 16,

Theorem
Assuming H1, H2 and H4, if ag < a < oo then,
v(a) = —aby + logp(04). That is, y(a) is linear for a > ap.

It can be shown that if EX; = 0 and ¢(#) = oo for all § > 0 then
n~tlog P(S, > na) — 0 for all a > 0.
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Sans H3

In the case when H3 cannot be assumed we suppose the following:

Assumption
(H4). If ad — log ¢(0) cannot be maximized then assume xg = oo,
0+ < oo and ¢'(0)/p(6) T ap <ocash 16,

Theorem
Assuming H1, H2 and H4, if ag < a < oo then,
v(a) = —aby + logp(04). That is, y(a) is linear for a > ap.

It can be shown that if EX; = 0 and ¢(#) = oo for all § > 0 then
n~tlog P(S, > na) — 0 for all a > 0. This shows that H1 is the
correct assumption to make.



v(a)

MGFs & Decay Interval Optimal Bounds Ex. & 0, Optimal Decay Theorem Simulations

Recap

To get a feel for what the answers look like, we revisit our
examples. Recall the notation

k(0) = log ¢(0) K (0) = ¢'(0)/4(0) 0, solves k'(0,) = a

v(a) = lim (1/n)log P(S, > na) = —af, + x(6,),
n—o0
that is,

P(S, > na) < M.
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Normal distribution
$(0) = exp(62/2), so
Kk(0) = 622 K'(0) =6 0,=a

v(a) = —ab, + r(6,) = —a°/2.
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Normal distribution
$(0) = exp(6?/2), so
Kk(0) = 622 K'(0) =6 0,=a

v(a) = —ab, + r(6,) = —a°/2.
P(Sn >na) fora=0.1

10000 Sample Paths

—10000 Simulations
— Theoretic Bound
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Exponential distribution with A =1
#(0) =M/ (A—10), so
k()= —log(l—0)  w(0)=1/(1—0)  6,=1-1/a

v(a) = —ab, + k(6,) = —a+ 1+ log a.
P(Sn >na)fora=1.5

10000 Sample Paths

—10000 Simulations
— Theoretic Bound
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