
HOW TO MAKE THE MOST OF A SHARED MEAL:
PLAN THE LAST BITE FIRST.

LIONEL LEVINE AND KATHERINE E. STANGE

Abstract. If you are sharing a meal with a companion, how best to
make sure you get your favourite fork-fulls? Ethiopian Dinner is a game
in which two players take turns eating morsels from a common plate.
Each morsel comes with a pair of utility values measuring its tastiness
to the two players. Kohler and Chandrasekaharan discovered a good
strategy — a subgame perfect equilibrium, to be exact — for this game.
We give a new visual proof of their result. The players arrive at the
equilibrium by figuring out their last move first and working backward.
We conclude that it’s never too early to start thinking about dessert.

Introduction

Consider two friendly but famished acquaintances sitting down to dinner
at an Ethiopian restaurant. The food arrives on a common platter, and each
friend has his own favourite and not-so-favourite dishes among the spread.
Hunger is a cruel master, and each of our otherwise considerate companions
finds himself racing to swallow his favourites before his comrade can scoop
them up. Each is determined to maximize his own gastronomic pleasures,
and could not care less about the consequences for his companion.

An Ethiopian Dinner is a finite set

D = {m1, . . . ,mn}, mi = (ai, bi)

whose elements are called morsels. Each morsel mi is an ordered pair of
real numbers (ai, bi). Two players, Alice and Bob, take turns removing one
morsel from D and eating it. Each morsel can be eaten exactly once, and
the game ends when all morsels have been eaten. Alice’s score is the sum of
the ai for the morsels mi she eats, while Bob’s score is the sum of the bi for
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the morsels mi he eats. We assume that the players’ preferences are totally
ordered, that is, ai 6= aj and bi 6= bj for i 6= j.

In such a game, the players are not adversaries; in fact, the game may
end quite peaceably and successfully for both players if they have dissimilar
tastes. The question we are interested in is this: if a player acts rationally to
maximize her own score, and assumes that her meal partner does the same,
what should be her strategy?

Eating your favourite morsel on the first move of an Ethiopian Dinner is
not necessarily a good strategy. For example, if the dinner is

D = {(1, 2), (2, 3), (3, 1)},
then Alice’s favourite morsel is (3, 1). If she takes this morsel first, then Bob
will take (2, 3), leaving Alice with (1, 2) for a total score of 4. Instead Alice
should snag (2, 3) on the first move; after Bob takes (1, 2), Alice can finish
up with (3, 1) for dessert and a total score of 5.

If deciding on the first move in an Ethiopian Dinner appears complicated,
the last move is a different matter. The subject of this paper is a strategy
discovered by Kohler and Chandrasekaharan [6], which we call the crossout
strategy. Its mantra is:

“Eat your opponent’s least favourite morsel on your own last
move.”

To arrive at this strategy, each player reasons informally as follows: My
opponent will never choose her least favourite morsel, unless it is the only one
left; therefore, unless this is my last move, I can safely save my opponent’s
least favourite morsel for later.

This reasoning predicts that if, say, Bob has the last move of the game,
then Bob’s last move will be to eat Alice’s least favourite morsel. Because
this is a game of perfect information, both players can use this reasoning
to predict with certainty the game’s last move. We now cross out Alice’s
least favourite morsel from the dinner D to arrive at a smaller dinner D′

in which Alice has the last move. The same reasoning now implies that on
her last move, Alice will eat Bob’s least favourite morsel in D′. We then
cross out Bob’s least favourite morsel from D′ and proceed inductively, al-
ternately crossing out Alice’s least favourite and Bob’s least favourite among
the remaining morsels until all morsels have been crossed out. The crossout
strategy is to eat the last morsel to be crossed out.

What makes a strategy good? To convert the informal reasoning above
into a proof that crossout is a “good” strategy, we need to define what makes
a strategy good! The appropriate notion of good strategy depends on the
class of games one is considering. Ethiopian Dinner is a nonzero-sum game:
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Figure 1. Plot of the score pairs for all possible outcomes
of a permutation dinner D of size 14. The large red dot • at
upper right represents the score Alice and Bob receive if they
both play the crossout strategy. The orange dots • represent
scores for strategy pairs of the form (s, c) for s arbitrary: these
are all of the outcomes Alice can obtain playing against Bob’s
crossout strategy. According to Theorem 1, among these out-
comes she does best when she herself plays crossout. Black
dots represent the outcomes of all other strategy pairs. Pro-
duced using Sage Mathematics Software [10].

one player’s gain may not be the other’s loss. In such a game, the basic
requirement of any pair of good strategies (one for Alice, one for Bob) is
that they form a Nash equilibrium, which means that neither player can
benefit himself by changing strategies unilaterally.

A Nash equilibrium represents a stable, predictable outcome: Alice can
declare, “I am playing my equilibrium strategy, and you’d do best to play
yours.” If Bob responds rationally by playing his own equilibrium strategy,
then both players know how the game will turn out.

A game may have many equilibrium strategy pairs, some with better
outcomes than others, so one tends to look for equilibria with further de-
sirable properties. Which properties again depends on the class of games
being considered. In the lingo of game theory, Ethiopian Dinner is a perfect-
information non-cooperative game in extensive form. That is, both players
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know the values a1, . . . , an and b1, . . . , bn (perfect information); the play-
ers may not bargain or make side deals (non-cooperative); and the players
alternate making moves (extensive form).

Non-cooperative games model situations in which the players have no
way of communicating (perhaps our dinner guests don’t speak a common
language?) or are forbidden to collude. For instance, airlines are forbidden
by law from colluding to fix prices. Colluding to fix the outcome of a meal
is still legal in most countries, but Alice might nevertheless be dissuaded by
cultural taboo from making propositions like “If you pay me fifty cents I
promise not to eat any more spinach.”

An Ethiopian Dinner with n morsels is certain to end in n moves. A widely
accepted notion of a good strategy for games of this type (perfect informa-
tion, non-cooperative, extensive form, finite length) is the subgame perfect
equilibrium. This is a refinement of the Nash equilibrium which requires that
the strategies remain in equilibrium when restricted to any subgame. In our
case, a subgame is just a subdinner consisting of a subset of the morsels,
with the same player moving last. A subgame perfect equilibrium is robust
in the sense that even if one player, say Bob, makes a “mistake” on a partic-
ular move by deviating from his equilibrium strategy, Alice can confidently
continue playing her equilibrium strategy because the same strategy pair
is still an equilibrium of the resulting subgame. See, e.g., [8] and [9] for
background on these concepts.

Let c be the crossout strategy described above for Ethiopian Dinner. We
will give a new proof of the following theorem, which is due to Kohler and
Chandrasekaharan [6].

Theorem 1. The pair (c, c) is a subgame perfect equilibrium.

In other words, if Alice plays crossout, then Bob cannot benefit himself by
playing a different strategy; and vice versa.

Figure 1 illustrates Theorem 1 in the case of a particular permutation
dinner, that is, a dinner of the form

D = {(1, b1), (2, b2), . . . , (n, bn)}

where b1, . . . , bn is a permutation of the numbers 1, . . . , n. Each dot in the
figure represents the outcome of a strategy pair, with Alice’s score plotted
on the horizontal axis and Bob’s score on the vertical axis, for the following
permutation dinner of size 14:

D ={(1, 6), (2, 14), (3, 10), (4, 3), (5, 7), (6, 5), (7, 9), (8, 8),

(9, 4), (10, 13), (11, 12), (12, 11), (13, 2), (14, 1)}.
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To visualize Theorem 1, note that the large red dot • in Figure 1, which
represents the outcome when both players play crossout, is rightmost among
all possible outcomes achievable by Alice given that Bob plays crossout (such
outcomes are indicated by orange dots •).

Crossout is an efficiently computable equilibrium. In games arising
in the real world, for instance in evolutionary dynamics and in economics,
the appeal of the Nash equilibrium concept is twofold. First, it can explain
why we observe certain strategies and not others. Second, even in the case of
a game that has multiple equilibria and lacks a well-defined “best” outcome,
knowing an explicit equilibrium provides certainty. Alice simply announces
her intention to play crossout, refers Bob to the proof of Theorem 1 and
trusts that his own best interest compels him to follow suit. What might
have been a tense evening with an unpredictable outcome becomes a more
relaxed affair in which each player can predict in advance which morsels she
will be gobbling up.

To reap these benefits, the players must be able to compute an equilibrium
pair, not just know that one exists! A recent strand of research, popularized
by the slogan “if your laptop can’t find it, then, probably, neither can the
market,” has explored the tendency for equilibria to be extremely difficult to
compute [4]. The general existence proof for subgame perfect equilibria [8,
VIII.2.10] uses a backward induction from the last move: if converted naively
into an algorithm, it would seem to require searching through all possible
move sequences in order to find an equilibrium. This kind of brute force
search is typically out of the question even for games of moderate size. (For
example, an Ethiopian Dinner of n morsels has n! possible move sequences.)
For this reason, it is always interesting to identify special classes of games
that have efficiently computable equilibria. The crossout equilibrium for
Ethiopian Dinner is an example: if both players play the crossout strategy,
then they eat the morsels in reverse order of the crossouts. In this case, the
entire move sequence of the dinner can be worked out in the order n log n
time it takes to sort the two lists a1, . . . , an and b1, . . . , bn.

Proof of equilibrium

Dinners and strategies. A dinner is a finite set of morsels

D = {m1, . . . ,mn}.

Each morsel m ∈ D comes with a pair of real numbers uA(m), uB(m) repre-
senting its utility to Alice and Bob. We often write m as an ordered pair,

m = (uA(m), uB(m)) .
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We adopt the convention that Bob has the final move by default. Since
moves alternate, the first move is determined by the parity of n: Alice has
the first move if n is even, and Bob has the first move if n is odd.

A strategy is a map assigning to any non-empty dinner D a morsel s(D) ∈
D to be eaten by the first player. Suppose that P ∈ {Alice, Bob} is a player,
D is a dinner, and that P plays strategy s. If it is P ’s turn to move, he
selects morsel s(D) and receives payoff uP (s(D)). The remaining dinner is
D−s(D), with his opponent to move. Suppose his opponent plays strategy t.
Play continues in this manner, and the score vDP (s, t) of player P is defined
by the recurrence

vDP (s, t) =


v
D−s(D)
P (s, t) + uP (s(D)) if P plays first in D,

v
D−t(D)
P (s, t) if P plays second in D,

0 if D = ∅.
(1)

where for m ∈ D, the dinner D − m denotes D with morsel m removed.
Since D has finitely many morsels, equation (1) defines vDP (s, t) uniquely.

Our convention in denoting a player’s score is that his own strategy is
always the first listed in the ordered pair.

Formally, we can regard Ethiopian Dinner as a single game whose positions
comprise all finite dinners. A pair of strategies (s, t) is a subgame perfect
equilibrium for this game if

vDA (s′, t) ≤ vDA (s, t) and vDB (t′, s) ≤ vDB (t, s)

for all strategies s′ and t′ and all finite dinners D.

The Crossout Strategy. After giving the formal definition of the crossout
strategy described in the introduction, we explain how to visualize it using a
“crossout board” and prove the lemma that lies at the heart of our argument,
the Crossout Board Lemma (Lemma 2).

Let D be a set of n morsels. Write `A(D) for Alice’s least favourite morsel
in D, and `B(D) for Bob’s least favourite morsel in D. Let D1 = D, and

Di+1 = Di −mi, i = 1, . . . , n− 1

where

mi =

{
`A(Di), i odd

`B(Di), i even.

The sequence of morsels
m1,m2, . . . ,mn

is called the crossout sequence of D. Note that

m1 is Alice’s least favourite morsel in D
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Figure 2. Left: Example of a crossout board for a dinner
D with 8 morsels. Labels on the axes indicate the crossout
sequence. Right: The crossout board for the dinner D−m, in
which a morsel m has been removed. By the Crossout Board
Lemma, each label on the right is at least as far from the
origin as the corresponding label on the left.

m2 is Bob’s least favourite morsel in D −m1

m3 is Alice’s least favourite morsel in D −m1 −m2

m4 is Bob’s least favourite morsel in D −m1 −m2 −m3

· · ·

Now suppose D is a dinner, i.e., a set of n morsels with Bob distinguished
to move last. The crossout strategy c is defined by c(D) = mn. Note that if
both players play the crossout strategy, then they eat the morsels in reverse
order of the crossout sequence:

mn = c(D)

mn−1 = c(D −mn)

mn−2 = c(D −mn −mn−1)

...

m1 = c(D −mn − · · · −m2).

Thus m1, which is Alice’s least favorite morsel in D, is eaten by Bob on the
last turn.
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Crossout boards. To prepare for the proof of Theorem 1, it is convenient
to illustrate the crossout sequence with a crossout board, as in Figure 2. We
display the dinner on a Cartesian coordinate plane: each morsel m = (a, b)
is graphed as a dot at coordinate (a, b). Since we assume that the players’
preferences are totally ordered, each vertical or horizontal line passes through
at most one morsel. The crossout sequence itself is indicated by writing the
number (or label) i on the a-axis below mi if i is odd, and on the b-axis to
the left of mi if i is even.

Figure 2 shows the crossout board of the dinner

D = {(1, 8), (2, 3), (3, 6), (4, 4), (5, 1), (6, 2), (7, 5), (8, 7)}

and of D−m, where m is the morsel (6, 2). It is helpful to imagine placing
the labels on a crossout board one at a time in increasing order. Alice starts
at the left and scans rightward, placing the label 1 below her least favorite
morsel. Then Bob starts at the bottom and scans upward, placing the label
2 to the left of his least favorite unlabeled morsel. The players alternate
in this fashion until all morsels are labeled. Note that the labels on each
axis appear in increasing order moving away from the origin. Alice always
performs the first crossout, because of our convention that Bob has the last
move. Hence, the odd labels appear on Alice’s axis and the even labels on
Bob’s axis.

The central lemma needed to show that crossout is an equilibrium is the
following.

Lemma 2 (Crossout Board Lemma). Let D be a dinner, and D̂ ⊂ D a

subdinner. For each k = 1, . . . , |D̂| the location of label k in the crossout

board of D̂ is at least as far from the origin as the location of label k in the
crossout board of D.

Proof. Let B be the crossout board for D, with crossout sequence

m1,m2, . . . ,m|D|.

Let B̂ be the crossout board for D̂, with crossout sequence

m̂1, m̂2, . . . , m̂|D̂|.

For morsels p and q of D, we write p<D q to mean that p appears before q

in the crossout sequence for D. If p and q are also morsels of D̂, then we
write p<D̂ q to mean that p appears before q in the crossout sequence for

D̂. In particular, for any 1 ≤ j, k ≤ |D̂| we have

mj <
D
mk ⇐⇒ j < k ⇐⇒ m̂j <

D̂

m̂k. (2)
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Figure 3. If label k is closer to the origin in B̂ than in B,
then m̂k must have been labeled already in B by some j < k,
i.e. m̂k<Dmk.

Given 1 ≤ k ≤ |D̂| let us say k is jumpy if the label k is strictly closer to

the origin in B̂ than in B. We will show that there are no jumpy labels.
Let P be the player who places the label k (so P is Alice if k is odd, Bob

if k is even). When P places the label k on board B next to the morsel
mk, this morsel is the closest available to the origin along P ’s axis. If k
is jumpy, then the morsel m̂k is closer to the origin along P ’s axis, which
means that m̂k is unavailable, that is, it was already labeled in B by some
j < k (Figure 3). Hence

k is jumpy =⇒ m̂k<
D
mk. (3)

Note also that if m̂k<D̂mk, then in the crossout sequence for B̂, both m̂k

and mk are available at step k and m̂k is chosen. Therefore, the label k is

placed closer to the origin in B̂ than in B. Hence

m̂k<
D̂

mk =⇒ k is jumpy. (4)

Now suppose for a contradiction that one of the labels 1, . . . , |D̂| is jumpy,

and let k be the smallest jumpy label. Since m̂k ∈ D̂ and D̂ ⊂ D, the morsel
m̂k also belongs to D. Let j be its label on the crossout board of D; that is,

mj = m̂k. (5)

Then

k is jumpy =⇒ m̂k<
D
mk by (3)

=⇒ mj <
D
mk by (5)

=⇒ j < k by (2)
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=⇒ m̂j <
D̂

m̂k by (2)

=⇒ m̂j <
D̂

mj by (5)

=⇒ j is jumpy by (4)

That is, j < k and j is jumpy. But k was the smallest jumpy label. This
contradiction shows that there are no jumpy labels, completing the proof.

�

The crossout scores χA(D) and χB(D) are the scores for Alice and Bob
when both play the crossout strategy; that is,

χA(D) = vDA (c, c) = m2 +m4 + · · ·+m2bn/2c

χB(D) = vDB (c, c) = m1 +m3 + · · ·+m2dn/2e−1.

These scores are easy to read off from the crossout board: The unlabeled
morsel locations on a player’s axis are precisely the utilities of the morsels
he eats if both players follow the crossout strategy. Therefore, the crossout
scores χA(D) and χB(D) are obtained by summing the unlabeled locations
(marked with dashes in Figure 2) on the a- and b-axes respectively. For
instance, for the board D pictured in Figure 2, we have χA(D) = 4+5+6+8
and χB(D) = 3 + 5 + 6 + 8.

If we also wish to show the order of play, we can label the a-coordinate of
the morsel eaten by Alice in turn i with the symbol Ai, and the b-coordinate
of the morsel eaten by Bob in turn j with the symbol Bj as shown in Figure 4.
Alice’s score is the sum of the a-coordinates labeled with A’s, and Bob’s score
is the sum of the b-coordinates labeled with B’s.

In D of Figure 4 we see that Alice, who plays first, eats her favourite
morsel (8, 7) on her first turn. In the remaining game D− (8, 7), Bob moves
first but does not eat his favourite morsel (1, 8) until his last move (for such
is Alice’s loathing for it that he can safely ignore it until the end). An
interesting property of the crossout strategy, which we leave as an exercise
to the reader since it is not needed for the proof of the main theorem, is that
if both players follow it, then the first player eventually eats her favourite
morsel.

The Main Lemma. The next lemma shows that neither player can im-
prove his crossout score by choosing a different first morsel.

Lemma 3 (Main Lemma). Let D be a dinner, and let m be a morsel of D.
Let P be the player to move first in D. Then

uP (m) + χP (D −m) ≤ χP (D).
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Figure 4. A crossout board showing the sequence of play:
Alice eats the morsel above the label Ai on turn i, and Bob
eats the morsel to the right of the label Bj on turn j.

Proof. We compare the crossout boards for D and D −m. (An example is
illustrated in Figure 2.) In the latter, a morsel has been removed. Player P
is the second player to move in D −m, so he swallows one fewer morsel in
D−m than in D. This means the number of labels on P ’s axis is the same in
the crossout boards of D and D−m. By the Crossout Board Lemma 2, each
label on the board for D−m is no closer to the origin than the corresponding
label on the board for D. Therefore the sum of the labeled positions on P ’s
axis is at least as large in D −m as in D. Hence the sum of the unlabeled
positions on P ’s axis is no larger in D −m than in D. For D, this sum is
the crossout score χP (D). For the board D − m, this sum consists of the
score χP (D −m) plus the utility uP (m) of the removed morsel m. �

Proof of Theorem 1. Let D be a dinner of n morsels, and let c be the
crossout strategy. We induct on n to show that for any player P ∈ {A,B}
and any strategy s,

vDP (s, c) ≤ vDP (c, c).

The base case n = 1 is trivial because c is the only strategy: In a game with
one morsel, the only thing you can do is eat it!

On to the inductive step: Suppose first that P is the first player to move
in D. Let m = s(D). Then

vDP (s, c) = uP (m) + vD−mP (s, c) by (1)

≤ uP (m) + vD−mP (c, c) by the inductive hypothesis
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≤ vDP (c, c) by Main Lemma 3.

It remains to consider the case that P is the second player to move in D.
Letting m = c(D), we have by the inductive hypothesis and (1),

vDP (s, c) = vD−mP (s, c) ≤ vD−mP (c, c) = vDP (c, c)

which completes the proof.

Concluding Remarks

We have analyzed Ethiopian Dinner as a non-cooperative game, and found
an efficiently computable subgame perfect equilibrium, the crossout strategy.
Here we discuss its efficiency, and mention some variants and generalizations.

Pareto Inefficiency. A strategy pair (s, t) is called Pareto inefficient if
there exists another pair (s′, t′) that results in at least as good an outcome
for both players and a strictly better outcome for one of them. An equilib-
rium may be Pareto inefficient, as demonstrated by the famous Prisoner’s
Dilemma, in which both players do better by mutual cooperation than by
mutual defection even though mutual defection is the unique equilibrium [8].

For the permutation dinner shown in Figure 1, we see that (c, c) is Pareto
efficient because there are no dots lying (weakly) both above and to the right
of the crossout score (•). However, (c, c) is not Pareto efficient in general.
Among permutation dinners, the smallest counterexamples occur for dinners
of size 6, for which there are two:

{(1, 5), (2, 1), (3, 2), (4, 3), (5, 4), (6, 6)},
{(1, 5), (2, 1), (3, 2), (4, 4), (5, 6), (6, 3)}.

To see how common this phenomenon is, we used Sage Mathematics Soft-
ware [10] to check 10 000 randomly generated permutation dinners of size 16
for Pareto efficiency: All but 672 were Pareto efficient, and all but 241 were
weakly Pareto efficient (that is, no other strategy pair resulted in strict
improvements for both players). The improvement in scores achieved by al-
ternate strategies was small: the largest improvement for any player was less
than 8%. These findings provide some evidence that the crossout strategy is
reasonably efficient. See [2, Theorem 1] for a proof that crossout is Pareto
efficient with respect to a natural partial order on outcomes.

Generalized payoffs. The outcome of an Ethiopian Dinner is a partition
of the index set {1, . . . , n} into a set A = {i1, . . . , ibn/2c} of bn/2c morsels
eaten by Alice and a set B = {j1, . . . , jdn/2e} of dn/2e morsels eaten by Bob.
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We have assumed that the final scores (payoffs) for Alice and Bob take the
form

pA =
∑
i∈A

ai, pB =
∑
j∈B

bj.

This particular payoff function is not essential for the argument, however.
Let

fA : Rbn/2c → R, fB : Rdn/2e → R
be functions that are strictly increasing in each coordinate, and symmetric
with respect to permutations of the coordinates. Then the Ethiopian Dinner
game with payoffs

pA = fA(ai1 , . . . , aibn/2c), pB = fB(bj1 , . . . , bjdn/2e)

has crossout as its optimal strategy. Indeed, the proof we have given uses
only the relative order of the ai and the bj, and not their actual values.

One could also generalize the payoff function so that Alice’s payoff depends
not only on the morsels she ate but also on the morsels Bob ate, and vice
versa. A natural choice is

pA =
∑
i∈A

ai + β
∑
j∈B

bj,

pB = α
∑
i∈A

ai +
∑
j∈B

bj.

That is, Alice’s payoff is the sum of her own utilities of the morsels she
ate, plus β times the sum of the utilities to Bob of the morsels Bob ate.
Bob’s payoff is defined similarly. The parameters α and β measure the
“friendliness” or degree of common interest of the players. The scenario
of friends eating in an Ethiopian restaurant might correspond to values of
α and β strictly between 0 and 1. One can also imagine scenarios with
β > 1: perhaps Alice is Bob’s mother and the morsels in question are
brussels sprouts.

All of these games turn out to be equivalent to Ethiopian Dinner. Suppose
we are considering the payoffs pA and pB on the dinner D consisting of
morsels mi = (ai, bi) for i = 1, . . . , n. Translating all of a player’s utilities
by an additive constant has no effect on strategy, so we may assume that∑n

i=1 ai =
∑n

i=1 bi = 0. Then∑
j∈B

bj = −
∑
i∈A

bi,
∑
i∈A

ai = −
∑
j∈B

aj.

Now let D′ be the dinner consisting of morsels

m′i = (ai − βbi, bi − αai), i = 1, . . . , n.
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Any strategy s on D has a corresponding strategy s′ on D′ (which chooses
m′i whenever s chooses mi), and

pDP (s, t) = vD
′

P (s′, t′)

for both players P ∈ {A,B}. In other words, the modified payoff in D
equals the usual Ethiopian Dinner payoff in D′. Therefore the pair (s, s) is
an equilibrium for D, where s is such that s′ = c is the crossout strategy
on D′.

We distinguish two extreme cases:
If α = β = −1, then the game is zero-sum. In the terminology of com-

binatorial game theory, each morsel m = (a, b) is a switch {a| − b}, so the
full game is a sum of switches. The morsel (a, b) has temperature a+ b, and
optimal play proceeds in order of decreasing temperature (see [1] for back-
ground). The equivalent Ethiopian Dinner D′ has morsels (ai + bi, ai + bi) of
equal appeal to both players, and crossout on D′ gives the same decreasing-
temperature play.

If α = β = 1, then the game is fully cooperative. Both players have the
same goal of maximizing their joint welfare. Since the game rules constrain
them to alternate moves, the optimal play is the following: order the morsels
m1, . . . ,mn so that ai − bi is a decreasing function of i. Alice takes morsels
m1, . . . ,mbn/2c, and Bob takes morsels mbn/2c+1, . . . ,mn. In this case, the
equivalent Ethiopian Dinner D′ has morsels (ai − bi, bi − ai) and crossout
on D′ gives the optimal strategy just described. Figure 5 shows examples
of crossout boards for a zero-sum (competitive) dinner and a cooperative
dinner.

We can measure the “cooperativeness” of a permutation dinner by its
inversions. Let π = (π1, . . . , πn) be a permutation of 1, . . . , n. For each pair
of indices i < j such that πi > πj, we call the pair (i, j) a left inversion
of π and the pair (πi, πj) a right inversion of π. Both players should be
pleased with a permutation dinner if it has a lot of inversions, because each
inversion represents a pair of morsels mi, mj such that Alice prefers mj while
Bob prefers mi. Hopkins and Jones [5] show that if the left inversions of π
are a subset of the left inversions of π′, then Alice’s crossout score for the
permutation dinner π′ is at least as good as for π. In fact they show more:
there is a bijection between the set of morsels Alice eats in π and the set
she eats in π′ such that each morsel eaten in π′ is at least as tasty to Alice
as corresponding one in π. (Alice prefers a prime piece of pie to an ordinary
one: after all, who wouldn’t?) Likewise, Bob prefers dinners with a lot of
right inversions. (Curiously, although right inversions are in bijection with
left inversions, set inclusion of right inversions induces a different partial
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Figure 5. Crossout boards for a fully competitive and fully
cooperative dinner.

ordering on permutations than does set inclusion of left inversions, as the
reader can verify for permutations of 3 elements!)

Cake cutting and envy-free division. There is a large literature on cake-
cutting [3] in which a cake (identified with the interval [0, 1]) comes equipped
with a measure for each player describing the utility to him of eating a given
piece. One problem is to find an envy-free partition of the cake, which
means that each player prefers the piece assigned to him over the pieces
assigned to the other players. When the cake is comprised of indivisible
slices, this criterion becomes impossible to achieve in general, and finding
an envy-minimizing allocation is a hard computational problem [7]. The
outcome of the crossout strategy is reasonably close to envy-free: the first
player is not envious, and the second player’s envy is bounded by the utility
of his favourite morsel. Another way of achieving an approximately envy-
free allocation is described in [7, Theorem 2.1]. The algorithm described
there is even faster than crossout, because it does not require sorting the
lists of utilities.

Open questions

We conclude by describing a few natural variants that we do not know
how to analyze.

Delayed gratification. Suppose that the utilities uA(m) and uB(m) de-
pend not only on the morsel m but on when it is eaten. A natural choice is to
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value a morsel eaten on turn i with λi times its usual value, for a parameter
λ < 1. Thus, a morsel declines in value the longer it remains on the plate
(perhaps the delicate flavours are fading). The choice of exponential decay λi

corresponds to the common assumption in economics that a payoff received
in the future should be discounted to its net present value according to the
prevailing interest rate: if the interest rate is α, then λ = 1/(1 + α). In the
resulting game, each player feels an urgency to eat her favourites early on.
Because time-sensitive payoffs break the symmetry assumption, our proof
of equilibrium does not apply. Can the crossout strategy be modified to
produce an equilibrium?

Inaccessible morsels. Ethiopian food is served atop injera, a layer of
spongy bread that can only be eaten once it is revealed. If the game is
played with the requirement that the order of consumption must respect a
fixed partial ordering on the morsels, the crossout strategy may not be an
allowable strategy. What should take its place?

Three’s a crowd. Ethiopian Dinner resembles the process of draft picks
in sports: each team participating in the draft has its own belief about
how much each player is worth, and the teams draft players one at a time
according to some predetermined order of play. Typically, many teams (more
than two!) participate in the draft. Brams and Straffin [2] point out a
number of pathologies in the case when the number of teams is greater than
two: for example, it may be to a team’s advantage to choose later in the
draft. The crossout strategy for Ethiopian Dinner does not seem to apply
when three or more people are sharing the meal, so we end with the following
question: Is there an efficiently computable equilibrium for Ethiopian Dinner
with three or more players?
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