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Given a finite binary word a = a1 . . . an and an irrational number α ∈
[0, 1], we say that a has uniform density α if

⌊(s − r)α⌋ ≤
s∑

i=r+1

ai ≤ ⌈(s − r)α⌉

for all 0 ≤ r < s ≤ n; in other words, the proportion of 1’s in every subword
of a is close to α. Let Dα denote the set of all such words.

We will see that Dα is closely related to the infinite binary sequence whose
n-th term is

sn(α, t) = ⌊t + nα⌋ − ⌊t + (n − 1)α⌋.
The basic relationship between Dα and s(α, t) is the following.

Theorem 1. Dα is the set of all finite subwords of s(α, t).

Proof. If a is a subword of s(α, t) – say it begins at the k-th place – then
for any 0 ≤ r < s ≤ n we have

s∑

i=r+1

ai = ⌊t + (k + s)α⌋ − ⌊t + (k + r)α⌋,

which is the number of integers in the half-open interval (t + (k + r)α, t +
(k + s)α]. This interval has length (s − r)α, so it contains either ⌊(s − r)α⌋
or ⌈(s − r)α⌉ integers. Hence a ∈ Dα.
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For the converse, suppose a ∈ Dα. Then we need to show that a is a
subword of s(α, t). Note that truncating the first k characters from s(α, t)
yields s(α, t + kα). Since the fractional parts of the multiples of α are dense
in [0, 1], it’s enough to find an interval I ⊂ [0, 1] such that for any u ∈ I , the
sequence s(α, u) begins with a. Let

I = (
n

max
r=1

mr, 1 +
n

min
r=1

mr),

where mr =
∑

r

i=1
ai − rα. We need to check that I is in fact an interval,

i.e. that its right endpoint exceeds its left endpoint. Since a ∈ Dα, for any
1 ≤ r < s ≤ n we have

ms − mr =
s∑

i=r+1

ai − (s − r)α < 1,

so the min and max differ by less than 1 as desired.

Finally, let’s check that s(α, u) begins with a for all u ∈ I . If u ∈ I , then
mr ≤ u < 1 + mr for every r = 1, . . . , n. Hence

r∑

i=1

ai ≤ u + rα < 1 +
r∑

i=1

ai;

in other words, there is an integer between u + (r − 1)α and u + rα if and
only if ar = 1. Thus sr(α, u) = ar, r = 1, . . . , n. This completes the proof.

Corollary 1. If a ∈ Dα, it occurs not just once, but infinitely many
times in s(α, t).

Proof. Wherever a occurs in s(α, t) – say it ends at the k-th place – we
can substitute t + kα for t in the theorem to get a later occurrence of a.

Corollary 2. If a1 . . . an ∈ Dα, then a1 . . . an0 ∈ Dα or a1 . . . an1 ∈ Dα.
Proof. If a1 . . . an ∈ Dα, then it occurs somewhere in s(α, t), where it is

followed either by a 0 or a 1.

While Theorem 1 gives an equivalent description of Dα, it doesn’t pro-
vide any means of constructing words of uniform density. For a more direct
approach, we can arrange the elements of Dα in a tree (Figure 1).
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01 10 11

011 101 110 111

0110 0111 1011 1101 1110

01101 01110 10110 10111

0 1

11011 11101

011011 011101 101101 101110 110110 110111 111011

01101110110110 0111011 1011011 1011101 1101101 1101110 1110110

Figure 1: Words of uniform density
√

2/2 of length ≤ 7

We draw a branch from word a down to word b if b can be obtained
by appending either 0 or 1 to a. By Corollary 2 above, this tree has no
terminating branches. Thus each word a1 . . . an in the tree is the top node
of either one or two branches accordingly as one or both of a1 . . . an0 and
a1 . . . an1 are in Dα. If a is the top node of two branches, call it a “splitter.”
From Figure 1 we see that when α =

√
2/2, the first few splitters are

1, 11, 011, 1011, 11011, 011011, . . .

If we understand where the splitters occur in the tree, then we under-
stand the whole tree. First of all, notice that there is at most one splitter
of each length. This is certainly true for length zero; suppose it fails for the
first time at length n. Then there is a splitter of length n − 1 (just trun-
cate the first character from any splitter of length n) and it’s unique. Call it
a1 . . . an−1. Then the only possibilities for splitters of length n are 0a1 . . . an−1

and 1a1 . . . an−1. But these can’t both be splitters, else 0a1 . . . an−10 and
1a1 . . . an−11 would both be in Dα, which is impossible.
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We’ll show that in fact there’s exactly one splitter of each length. Since
a1 . . . an is a splitter whenever a0a1 . . . an is, this means there is an infinite
binary sequence f1, f2, . . . such that for each n, the unique splitter of length
n has the form fnfn−1 . . . f1. So the question is, what’s this mystery sequence
f? As it turns out, the answer is sitting right in front of us. In this context,
what’s the most natural infinite binary sequence we can think of? Well, let’s
try s(α, t). But for what value of t? What’s the most natural real number
we can think of? Well, how about α? That’s right, this mystery sequence
f is none other than s(α, α)! In less dramatic terms, that’s s(α, 0) with the
initial 0 truncated. Thus

Theorem 2. For each positive integer n, there is exactly one splitter of
length n, namely sn+1(α, 0)sn(α, 0) . . . s2(α, 0).

Proof. Since we’ve already shown that there is at most one splitter of
length n, we need only show that sn+1(α, 0)sn(α, 0) . . . s2(α, 0) is in fact a
splitter. To do this, choose ǫ > 0 small enough so that s(α, 0) and s(α, 1− ǫ)
coincide to the first n + 1 places, excluding the first place. Note that for
sufficiently small ǫ, they do not coincide at the first place: s1(α, 0) = 0, while
s1(α, 1−ǫ) = 1. By Theorem 1, this means that both 0s2(α, 0) . . . sn(α, 0)sn+1(α, 0)
and 1s2(α, 0) . . . sn(α, 0)sn+1(α, 0) are in Dα. Since Dα is preserved under re-
versal, sn+1(α, 0)sn(α, 0) . . . s2(α, 0) is a splitter.

As trivial as it seems, truncating the initial 0 from s(α, 0) is in some
strange way the key to the proof.

Since there’s exactly one splitter of each length, the number of words of
length n in Dα is always one more than the number of words of length n−1,
which gives us the following rather counterintuitive result.

Corollary. The number of words of length n in Dα is n+1, independent
of α.

What is the significance of these results? In some sense, the sequence
s(α, 0) (or, if you like, s(α, α)) tells us everything we could ever want to
know about Dα. Not only does it describe Dα as a set (Theorem 1), it also
encodes the complete structure of Dα as a tree (Theorem 2).
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We conclude with some questions that deserve further thought. Given
real numbers α1, . . . , αn > 0 with

∑
n

i=1 αi = 1, we can say that an n-ary
word a1 . . . am has uniform density (α1, . . . , αn) if

⌊(s − r)αk⌋ ≤ |{r < i ≤ s : ai = k}| ≤ ⌈(s − r)αk⌉
for all 0 ≤ r < s ≤ m and all k = 1, . . . , n. Can we classify such sequences?
In particular, what is the n-ary counterpart to the sequence s(α, t)?

To make this question a little more precise, we can say that an infinite
binary sequence has uniform density α if all of its finite subwords do. Let
Uα be the space of all such sequences, with the topology induced by the
lexicographic ordering. Call two sequences in Uα equivalent if they agree in
all but finitely many places, and let Vα be the corresponding quotient space.
Then by an argument similar to that used in the proof of Theorem 1, it can
be shown that up to equivalence, the infinite binary sequences of uniform
density α are precisely the sequences s(α, t), 0 ≤ t < 1. Thus the space Vα

is homeomorphic to the circle S1. What is the analogous parameterization
for n-ary sequences?
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