
Abelian Networks

Lionel Levine

Berkeley combinatorics seminar

November 7, 2011

Lionel Levine Abelian Networks

An overview of abelian networks

I Dhar’s model of abelian distributed processors

I Example: abelian sandpile (a.k.a. chip-firing)

Themes:

1. Local-to-global principles

2. Halting problem

3. Critical group

Joint work with:

Anne Fey (Delft), Yuval Peres (Microsoft), James Propp (Lowell),
Ben Bond, Giuliano Giacaglia, Linda Zayas-Palmer (MIT).

Lionel Levine Abelian Networks

Mathematical model of a distributed network

I Finite or infinite directed graph G .

I At each vertex v is an automaton (“processor”) with state
space Qv and input alphabet Av .

I Each processor has
I A single input feed.
I Multple output feeds, one for each directed edge (v ,u).

Lionel Levine Abelian Networks

Transition and message-passing functions

I Formally: for each v and each edge e = (v ,u), we are given
maps

Tv : Qv ×Av → Qv (new internal state)

Te : Qv ×Av → A∗u (messages sent along e)

where A∗ =
⋃

n≥0A
n.

I Input: User sends messages to one or more processors.

I Output: States of the processors when no messages remain.

Lionel Levine Abelian Networks

Transition and message-passing functions

I Formally: for each v and each edge e = (v ,u), we are given
maps

Tv : Qv ×Av → Qv (new internal state)

Te : Qv ×Av → A∗u (messages sent along e)

where A∗ =
⋃

n≥0A
n.

I Input: User sends messages to one or more processors.

I Output: States of the processors when no messages remain.

Lionel Levine Abelian Networks

Abelian Distributed Processors

I “In many applications, especially in computer science, one
considers such networks where the speed of the individual
processors is unknown, and where the final state and outputs
generated should not depend on these speeds. Then it is
essential to construct the network so that the order at which
messages arrive to the processors is immaterial.”

– Deepak Dhar (1998)

Lionel Levine Abelian Networks

A Wish List

Regardless of the order in which individual processors act:

I The halting status is the same.

I If the computation halts, then the final output is the same.

I The run time (number of messages processed) is the same.

I The local run times are the same.

I The specific local run times are the same.

But are there any interesting examples...?

Lionel Levine Abelian Networks

A Wish List

Regardless of the order in which individual processors act:

I The halting status is the same.

I If the computation halts, then the final output is the same.

I The run time (number of messages processed) is the same.

I The local run times are the same.

I The specific local run times are the same.

But are there any interesting examples...?

Lionel Levine Abelian Networks

A Wish List

Regardless of the order in which individual processors act:

I The halting status is the same.

I If the computation halts, then the final output is the same.

I The run time (number of messages processed) is the same.

I The local run times are the same.

I The specific local run times are the same.

But are there any interesting examples...?

Lionel Levine Abelian Networks

Are there any interesting examples...?

Yes!

Lionel Levine Abelian Networks

The abelian sandpile model (a.k.a. chip-firing)

I Start with a pile of n chips at the origin in Z2.

I Each site (x ,y) ∈ Z2 has 4 neighbors

(x±1,y) and (x ,y ±1).

I Any site with at least 4 chips is unstable, and topples by
sending one chip to each neighbor.

I This may create further unstable sites, which also topple.

I Continue until there are no more unstable sites.

I Bak-Tang-Wiesenfeld 1987, Dhar 1990, ...

I Björner-Lovász-Shor 1991, Biggs 1999, ...

Lionel Levine Abelian Networks

The abelian sandpile model (a.k.a. chip-firing)

I Start with a pile of n chips at the origin in Z2.

I Each site (x ,y) ∈ Z2 has 4 neighbors

(x±1,y) and (x ,y ±1).

I Any site with at least 4 chips is unstable, and topples by
sending one chip to each neighbor.

I This may create further unstable sites, which also topple.

I Continue until there are no more unstable sites.

I Bak-Tang-Wiesenfeld 1987, Dhar 1990, ...

I Björner-Lovász-Shor 1991, Biggs 1999, ...

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K 12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4 99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4 99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4 99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4 99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4 99K

1 4

1 0 1 4

41

4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Toppling to Stabilize A Sandpile

I Example: n=16 chips in Z2.
I Sites with 4 or more chips are unstable.

16 99K

12 11

1

1

8 22

2

2

4 33

3

3

4

4 0 4

4

4

99K

1 4

1 0 1 4

41 4

1 4

1 0 2 4

2 0 1

1

4

1 4 1

1 0 3 0 1

2 0 2

1

4

1

2 0 2

1 0 4 0 1

2 0 2

1

4

1

2 1 2

1 1 0 1 1

2 1 2

1

Stable.

Lionel Levine Abelian Networks

Abelian Property

I The final stable configuration does not depend on the order of
topplings.

I Neither does the number of times a given vertex topples.

Lionel Levine Abelian Networks

Sandpile of 1000000 chips in Z2

Lionel Levine Abelian Networks

Sandpiles as an abelian network

I State space
Qv = {0,1, . . . ,dv −1}

where dv is the outdegree of vertex v .

I Unary alphabet |Av |= 1. (think of messages as chips)

I Transition function:

Tv : Qv → Qv

q 7→ q+ 1 (mod dv)

I Messge passing function for each edge e = (v ,u):

Te(q) =

{
1 if q = 0

0 if q > 0.

Lionel Levine Abelian Networks

Sandpiles as an abelian network

I State space
Qv = {0,1, . . . ,dv −1}

where dv is the outdegree of vertex v .

I Unary alphabet |Av |= 1. (think of messages as chips)

I Transition function:

Tv : Qv → Qv

q 7→ q+ 1 (mod dv)

I Messge passing function for each edge e = (v ,u):

Te(q) =

{
1 if q = 0

0 if q > 0.

Lionel Levine Abelian Networks

Abelian networks

I Recall: directed graph G ; for each v and each edge e = (v ,u)
we have maps

Tv : Qv ×Av → Qv (new internal state)

Te : Qv ×Av → A∗u (messages sent along e)

I Input: User sends one or more messages to one processor.

I Output: States of the processors when no messages remain.

Lionel Levine Abelian Networks

Main definition

I An abelian network N is a directed graph G = (V ,E) with an
abelian processor Pv at each vertex v ∈ V .

I Processor Pv is called abelian if for any state q ∈ Qv and any
two inputs w ,w ′ ∈ A∗v such that |w |= |w ′|,

Tv (q,w) = Tv (q,w ′) and |Te(q,w)|= |Te(q,w ′)|

for all edges e = (v ,u).

I Note: the definition is local.

I Note: A unary processor (|Av |= 1) is trivially abelian.

Lionel Levine Abelian Networks

Main definition

I An abelian network N is a directed graph G = (V ,E) with an
abelian processor Pv at each vertex v ∈ V .

I Processor Pv is called abelian if for any state q ∈ Qv and any
two inputs w ,w ′ ∈ A∗v such that |w |= |w ′|,

Tv (q,w) = Tv (q,w ′)

and |Te(q,w)|= |Te(q,w ′)|

for all edges e = (v ,u).

I Note: the definition is local.

I Note: A unary processor (|Av |= 1) is trivially abelian.

Lionel Levine Abelian Networks

Main definition

I An abelian network N is a directed graph G = (V ,E) with an
abelian processor Pv at each vertex v ∈ V .

I Processor Pv is called abelian if for any state q ∈ Qv and any
two inputs w ,w ′ ∈ A∗v such that |w |= |w ′|,

Tv (q,w) = Tv (q,w ′) and |Te(q,w)|= |Te(q,w ′)|

for all edges e = (v ,u).

I Note: the definition is local.

I Note: A unary processor (|Av |= 1) is trivially abelian.

Lionel Levine Abelian Networks

Main definition

I An abelian network N is a directed graph G = (V ,E) with an
abelian processor Pv at each vertex v ∈ V .

I Processor Pv is called abelian if for any state q ∈ Qv and any
two inputs w ,w ′ ∈ A∗v such that |w |= |w ′|,

Tv (q,w) = Tv (q,w ′) and |Te(q,w)|= |Te(q,w ′)|

for all edges e = (v ,u).

I Note: the definition is local.

I Note: A unary processor (|Av |= 1) is trivially abelian.

Lionel Levine Abelian Networks

Diagramming a unary processor

v

u1

u2

u3

I Processor at v in a sandpile network:

u1u2u3 u1u2u3

0 1 2 0 1 2 0

I Processor at v in a toppling network:

u1u2u3 u1u2u3 u1u2u3

0 1 0 1 0 1 0

Lionel Levine Abelian Networks

A zoo of unary processors

I Rotor-router (PDDK 1996, WLS 1996, Propp 2000):

u1 u2 u3 u1 u2 u3

0 1 2 0 1 2 0

I Periodically mutating game (Eriksson 1996):

u1 u2 u3 u1 u2 u3

0 1 2 0 1 2 0

I Height-arrow model (Dartois-Rossin 2004):

u1 u2 u3 u1 u2 u3

0 1 2 3 4 5 0

Lionel Levine Abelian Networks

State diagram of a single abelian processor with input
alphabet {a,b} and output alphabet {c,d}

b

a

c

d

Lionel Levine Abelian Networks

Least Action Principle

I Execution sequence: word w = a1 · · ·an ∈ A∗ where A = tAv .

I Lemma: if w is legal and w ′ is complete, then

|w |a ≤ |w ′|a for all a ∈ A.

I Generalizes Diaconis-Fulton 1991 (and the proof is no
harder).

I w is legal for (N ,q0) if at least one message of type ai is
present after processing a1 · · ·ai−1, for i = 1, . . . ,n.

I w ′ is complete for (N ,q0) if no messages are present after
processing w ′.

Lionel Levine Abelian Networks

Least Action Principle

I Execution sequence: word w = a1 · · ·an ∈ A∗ where A = tAv .

I Lemma: if w is legal and w ′ is complete, then

|w |a ≤ |w ′|a for all a ∈ A.

I Generalizes Diaconis-Fulton 1991 (and the proof is no
harder).

I w is legal for (N ,q0) if at least one message of type ai is
present after processing a1 · · ·ai−1, for i = 1, . . . ,n.

I w ′ is complete for (N ,q0) if no messages are present after
processing w ′.

Lionel Levine Abelian Networks

Local Abelianness Implies Global Abelianness

Corollaries of LAP: For fixed (N ,q0),

I Halting status: If there is a complete word of length n, then
all legal words have length ≤ n.

I Run times: if w and w ′ are both complete and legal, then

|w |a = |w ′|a for all a ∈ A.

(i.e., w and w ′ have the same specific local run times!)

I Output: Any two complete legal words produce the same
output.

Lionel Levine Abelian Networks

Local Abelianness Implies Global Abelianness

Corollaries of LAP: For fixed (N ,q0),

I Halting status: If there is a complete word of length n, then
all legal words have length ≤ n.

I Run times: if w and w ′ are both complete and legal, then

|w |a = |w ′|a for all a ∈ A.

(i.e., w and w ′ have the same specific local run times!)

I Output: Any two complete legal words produce the same
output.

Lionel Levine Abelian Networks

Local Abelianness Implies Global Abelianness

Corollaries of LAP: For fixed (N ,q0),

I Halting status: If there is a complete word of length n, then
all legal words have length ≤ n.

I Run times: if w and w ′ are both complete and legal, then

|w |a = |w ′|a for all a ∈ A.

(i.e., w and w ′ have the same specific local run times!)

I Output: Any two complete legal words produce the same
output.

Lionel Levine Abelian Networks

Local-to-global principles

Theorem (Bond-L.; Giacaglia-L.-Propp-Zayas):

If each processor Pv is

abelian, then N is abelian.

irreducible, then N is irreducible.

a periodic rotor, then N is a periodic rotor.

a palindromic rotor, then N is a palindromic rotor.

Lionel Levine Abelian Networks

Local-to-global principles

Theorem (Bond-L.; Giacaglia-L.-Propp-Zayas):

If each processor Pv is

abelian, then N is abelian.

irreducible, then N is irreducible.

a periodic rotor, then N is a periodic rotor.

a palindromic rotor, then N is a palindromic rotor.

Lionel Levine Abelian Networks

Rotors

I A rotor is a unary processor (|Av |=1) that sends exactly one
output message for each input message.

I Single message input to a rotor network on graph G gives an
infinite walk in G .

I Invented by

Wagner-Lindenbaum-Bruckstein 1996 (“ant walk”)
Priezzhev-Dhar-Dhar-Krishnamurthy 1996 (“Eulerian walkers”)
Propp c. 2000 (“rotor walk”)

Lionel Levine Abelian Networks

Rotors

I A rotor is a unary processor (|Av |=1) that sends exactly one
output message for each input message.

I Single message input to a rotor network on graph G gives an
infinite walk in G .

I Invented by

Wagner-Lindenbaum-Bruckstein 1996 (“ant walk”)
Priezzhev-Dhar-Dhar-Krishnamurthy 1996 (“Eulerian walkers”)
Propp c. 2000 (“rotor walk”)

Lionel Levine Abelian Networks

Output of a rotor network on Z2 on input of 1000000
messages to the origin.

http://rotor-router.mpi-inf.mpg.de/

Lionel Levine Abelian Networks

http://rotor-router.mpi-inf.mpg.de/

Local-to-global principles

Theorem (Bond-L.; Giacaglia-L.-Propp-Zayas):

If each processor Pv is

abelian, then N is abelian.

irreducible, then N is irreducible.

a periodic rotor, then N is a periodic rotor.

a palindromic rotor, then N is a palindromic rotor.

I A rotor is called periodic mod d if it has state space
Qv = Z/dZ and transition Tv (q) = q+ 1 (mod d).

Lionel Levine Abelian Networks

The halting problem for abelian networks

I Theorem (Bond-L.): A finite irreducible abelian network N
halts on all inputs if and only if all eigenvalues of its
production matrix have absolute value < 1.

I Production matrix: P = (pab)a,b∈A, where A = tAv and

pab = lim
n→∞

1

n
|Te(q,bn)|a

for a ∈ Av ,b ∈ Au,e = (v ,u).

I The limit does not depend on the initial state q.

Lionel Levine Abelian Networks

The halting problem for abelian networks

I Theorem (Bond-L.): A finite irreducible abelian network N
halts on all inputs if and only if all eigenvalues of its
production matrix have absolute value < 1.

I Production matrix: P = (pab)a,b∈A, where A = tAv and

pab = lim
n→∞

1

n
|Te(q,bn)|a

for a ∈ Av ,b ∈ Au,e = (v ,u).

I The limit does not depend on the initial state q.

Lionel Levine Abelian Networks

Transition monoids

I Each letter a ∈ Av induces a map δa = Tv (·,a) : Qv → Qv .

I The local monoid at vertex v is the submonoid Mv ⊂ EndQv

generated by {δa}a∈Av .

I Mv is commutative since δa ◦δb = δb ◦δa

Mv and finite if Qv is finite.

Lionel Levine Abelian Networks

Transition monoids

I Each letter a ∈ Av induces a map δa = Tv (·,a) : Qv → Qv .

I The local monoid at vertex v is the submonoid Mv ⊂ EndQv

generated by {δa}a∈Av .

I Mv is commutative since δa ◦δb = δb ◦δa

Mv and finite if Qv is finite.

Lionel Levine Abelian Networks

Structure of a finite commutative monoid M

I Let e ∈M be the product of all idempotents (e2 = e).

I Then eM is a finite abelian group with identity element e.

Example: cyclic monoid M = N/(k = n) for fixed k < n.

I e is the unique multiple of n−k between k and n−1.

I eM = {k,k + 1, . . . ,(n−1)}
eM ' Z/(n−k)Z (generated by e + 1).

Lionel Levine Abelian Networks

Structure of a finite commutative monoid M

I Let e ∈M be the product of all idempotents (e2 = e).

I Then eM is a finite abelian group with identity element e.

Example: cyclic monoid M = N/(k = n) for fixed k < n.

I e is the unique multiple of n−k between k and n−1.

I eM = {k,k + 1, . . . ,(n−1)}
eM ' Z/(n−k)Z (generated by e + 1).

Lionel Levine Abelian Networks

The critical group of an abelian network

I N : finite abelian network that halts on all inputs.

I View N as a single processor with

state space Q = ∏Qv ,

input alphabet A = tAv .

I The global monoid of N is the submonoid M ⊂ End(Q)
generated by {δa}a∈A.

I The critical group of N is the finite abelian group eM.

I Generalizes the Babai-Toumpakari construction of the
sandpile group.

Lionel Levine Abelian Networks

The critical group of an abelian network

I N : finite abelian network that halts on all inputs.

I View N as a single processor with

state space Q = ∏Qv ,

input alphabet A = tAv .

I The global monoid of N is the submonoid M ⊂ End(Q)
generated by {δa}a∈A.

I The critical group of N is the finite abelian group eM.

I Generalizes the Babai-Toumpakari construction of the
sandpile group.

Lionel Levine Abelian Networks

Identity element e of a sandpile network on Z521×Z521

Lionel Levine Abelian Networks

Irreducible monoid actions

I M×Q→ Q is irreducible if there is no partition

Q = Q1∪Q2

for Q1,Q2 disjoint, nonempty and MQ1 ⊂ Q1 and MQ2 ⊂ Q2.

Lionel Levine Abelian Networks

Recurrent states of a monoid action

Let M be a finite commutative monoid and M×Q→ Q an
irreducible action. The following are equivalent for q ∈ Q:

1. q ∈Mq′ for all q′ ∈ Q.

2. q ∈mQ for all m ∈M.

3. q ∈ eQ.

4. q = eq.

The states q satisfying these conditions are called recurrent.

Lionel Levine Abelian Networks

Example: spanning trees

I N : rotor network on graph G with sink vertex s.

I The rotor at each vertex v has period dv and serves each
neighbor once.

I State space: for each v , pick an edge e = (v ,u).

I Recurrent states: Spanning trees oriented toward s.

I The sandpile network on G has the same number of recurrent
states! Why?

Lionel Levine Abelian Networks

From monoid action to group action

If M is a finite commutative monoid, then any monoid action

M×Q→ Q

induces by restriction a corresponding group action

eM× eQ→ eQ.

Lionel Levine Abelian Networks

Freedom and transitivity

I Lemma: If µ : M×Q→ Q is an irreducible monoid action,
then the restriction of µ to eM× eQ is a transitive group
action

eM× eQ→ eQ.

If in addition µ is faithful, then this group action is free.

I (We say that µ is faithful if there do not exist distinct
m,m′ ∈M such that mq = m′q for all q ∈ Q.)

Lionel Levine Abelian Networks

Action of the critical group

Theorem (Bond-L.) Let N be a finite abelian network that halts
on all inputs. If each processor Pv is irreducible, then the action of
the critical group on recurrent states

CritN ×RecN → RecN

is free and transitive. In particular, #CritN = #RecN .

Lionel Levine Abelian Networks

Questions

I Halting problem: decide if N halts on a particular input.

I LAP shows that abelian networks can solve certain integer
programs. What else can they compute? What can’t they
compute?

I Understand the intricate patterns formed by sandpile and
rotor networks.

I Are some patterns “inherently nonabelian”?

Lionel Levine Abelian Networks

Questions

I Halting problem: decide if N halts on a particular input.

I LAP shows that abelian networks can solve certain integer
programs. What else can they compute? What can’t they
compute?

I Understand the intricate patterns formed by sandpile and
rotor networks.

I Are some patterns “inherently nonabelian”?

Lionel Levine Abelian Networks

Questions

I Halting problem: decide if N halts on a particular input.

I LAP shows that abelian networks can solve certain integer
programs. What else can they compute? What can’t they
compute?

I Understand the intricate patterns formed by sandpile and
rotor networks.

I Are some patterns “inherently nonabelian”?

Lionel Levine Abelian Networks

Thank You!

References:

I B. Bond, L. Levine, Abelian networks I. Foundations and examples,
2011. (draft available by request; will be posted soon at http:
//www.math.cornell.edu/~levine/abelian-networks-I.pdf)

I D. Dhar, The abelian sandpile and related models, 1998.
arXiv:cond-mat/9808047

I D. Dhar, Theoretical studies of self-organized criticality, Physica A,
2006.

I A. Fey, L. Levine, Y. Peres, Growth rates and explosions in
sandpiles, J. Stat. Phys., 2010. arXiv:0901.3805

I G. Giacaglia, L. Levine, J. Propp, L. Zayas-Palmer, Local-to-global
principles for rotor walk, 2011. arXiv:1107.4442

I J. Propp, Discrete analog computing with rotor routers, Chaos,

2010. arXiv:1007.2389

Lionel Levine Abelian Networks

http://www.math.cornell.edu/~levine/abelian-networks-I.pdf
http://www.math.cornell.edu/~levine/abelian-networks-I.pdf
http://arxiv.org/abs/cond-mat/9808047
http://arxiv.org/abs/0901.3805
http://arxiv.org/abs/1107.4442
http://arxiv.org/abs/1007.2389

