DOUBLE JUMP PHASE TRANSITION
IN A RANDOM SOLITON CELLULAR AUTOMATON
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ABSTRACT. In this paper, we consider the soliton cellular automaton introduced in [21]
with a random initial configuration. We give multiple constructions of a Young diagram
describing various statistics of the system in terms of familiar objects like birth-and-death
chains and Galton-Watson forests. Using these ideas, we establish limit theorems showing
that if the first n boxes are occupied independently with probability p € (0,1), then the
number of solitons is of order n for all p, and the length of the longest soliton is of order
logn for p < 1/2, order /n for p = 1/2, and order n for p > 1/2. Additionally, we uncover
a condensation phenomenon in the supercritical regime: For each fixed j = 1, the top j
soliton lengths have the same order as the longest for p < 1/2, whereas all but the longest
have order at most logn for p > 1/2. As an application, we obtain scaling limits for the
lengths of the kh longest increasing and decreasing subsequences in a random stack-
sortable permutation of length » in terms of random walks and Brownian excursions.

1. INTRODUCTION

In 1990, Takahashi and Satsuma proposed a 1+ 1 dimensional cellular automaton of fil-
ter type called the soliton cellular automaton, also known as the box-ball system [14,21]. It
is defined as a discrete-time dynamical system (X) sen, Whose states are binary sequences
X, :N — {0, 1} with finitely many 1’s. We may think of the states as configurations of balls
in boxes where box k contains a ball at stage s if X;(k) = 1 and is empty if X(k) = 0. The
update rule X; — X1 is defined as follows: At the beginning of stage s, each ball has been
moved a total of s times. To reach stage s+ 1, successively move the leftmost ball which
has been moved a total of s times to the first empty box on its right, continuing until all
balls have been moved. Alternatively, at each stage s = 0 a ‘ball carrier’ starts at the origin
and sweeps rightward to infinity. Each time she encounters an occupied box, she pushes
the ball to the top of her stack. Each time she encounters an empty box and her stack is
nonempty, she pops the topmost ball from her stack into the box. In keeping with this
picture, we will refer to the stages of the box-ball system as sweeps henceforth.
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As a concrete example, the system initially having balls in boxes 2,3,5,6,7,11 evolves
through sweep s =3 as

s=0/ 0110111000100000000000O0 ...
11 0001000111011 000000000 ...
2/ 0000100000100111100000 ...
3 00000100000100000111160 ...

In this model, a (non-interacting) soliton of length k is defined to be a string of k con-
secutive 1’s followed by k consecutive 0’s. During one sweep, such a soliton travels to the
right at speed k. The physical interpretation is that of a traveling wave with velocity equal
to its wavelength. If a k-soliton precedes a j-soliton with j < k, then the two will even-
tually collide, resulting in interference. The outcome depends on the congruence class of
their initial distance modulo their relative speed, k — j. The case of three or more inter-
acting solitons can be described similarly [21]. It is easy to see that since we have finitely
many balls initially, after some finite time the system consists of non-interacting solitons
whose lengths are nondecreasing from left to right. This final macrostate of the system can
be encoded in a Young diagram having j® column equal to the length of the j™ longest
soliton.

In this paper, we start the soliton cellular automaton from a random initial configura-
tion and study the limiting shape of the resulting Young diagram. We have two parame-
ters, n € N and p € (0,1). Let X"P be a random coloring of N so that each site in [1, n] is
1 with probability p and 0 with probability 1 — p, independently of all others, and all sites
in (n,00) are 0. Let A’*? be the corresponding random Young diagram and denote its i
row and jth column by p;(n) and A;(n), respectively. (Thus A;(n) gives the length of the
j™ longest soliton and p;(n) the number of solitons of length at least i.) We are going to
observe that each fixed row has order n for all values of p, but the column lengths vary
drastically according to whether p is less than, equal to, or greater than 1/2. The asymp-
totics of the rows and columns of A’»” are summarized in the following table. For the
precise meaning of the Landau notation employed, see Subsection 1.1

i>1,j > 2 fixed pi(n) A;(n) ()
Subcritical phase (p < 1/2) 0(n) O(logn) O©(logn)

Critical phase (p = 1/2) 0(n) G)(\/ﬁ) G)(\/E)

Supercritical phase (p > 1/2) o(n) O(logn) o(n)

FIGURE 1. Double jump phase transition for the order of the longest j solitons
(j fixed as n — oo) in the random box-ball system. All entries are up to constant
factors that do not depend on . In the sub- and supercritical phases the A; are
concentrated, and the constant factor depends only on p (and not on j). In the
critical phase the A ; are not concentrated, and the constant factor depends on j.
The implied constants may depend on indices 7 and j.

Erdds and Rényi coined the term double jump to describe the emergence of a giant
component in the random graph G(n, c/n) at ¢ = 1. The phase transition in the random
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box-ball system is analogous to the phase transition in G(n, p/n(1 — p)). There, it is well
known that all connected components are of size O(log n) for p < 1/2; connected compo-
nents of size O(n?/3) emerge at p = 1/2; and for p > 1/2, the largest component is of size
©(n) while the rest have size O(logn).

1.1. Landau notation. We use O(-),Q(+), ®(-) in the sense of stochastic boundedness: Given
{an}j’f:l cR* and a sequence {Wn}‘;f:l of nonnegative random variables, we say that W,, =
O(ay) if for every € > 0, there is a C € (0,00) such that P{W,, > Ca,} < ¢ for all n. We say
that W,, = Q(ay) if for every € > 0, there is a ¢ € (0,00) such that P{W,, < ca,} < € for all
n, and we say W, = O(ay) if W,, = O(a,) and W), = Q(a,). All implied constants ¢, C may

depend on p but not n.

1.2. Main results. We adopt the notation R* = [0,00) and Ny = N U {0} throughout. Fix
p€(0,1), and let &1,¢o,... be an i.i.d. sequence with P{¢; =1} = pand P{{; = -1} =1-p.
Define X” € {0,1}N by

XP(k)=1{¢ =1},
and for each n € N, set X"P = XP1|; ,,;. The interpretation is that X"” corresponds to an
arrangement of balls in boxes where boxes 1, ..., n are each occupied independently with
probability p, and boxes n+1,n+2,... are empty.

For each fixed n = 1 and p € (0,1), we consider the box-ball system (X;);>¢ with the
random initial configuration Xy = X™”. Recall that the soliton lengths in this system are
denoted by A,(n) = Ay(n) = .... This information can be summarized by the Young dia-
gram A™P whose j® column has length 1;(n). The length of its i row, p;(n), equals the
number of solitons in the system having length at least i. In particular, p;(n) gives the
total number of solitons.

Many properties of this Young diagram can be described in terms of the simple random
walk {S k}EO:O defined by Sp =0and Sy =¢&; +...+ k. Our first result shows that the j longest
rows are of order n for any p € (0, 1).

Theorem 1. Let X"P be as above. Then the following obtain.

(i) (SLLN for rows) Let ¢ = inf{k > 0 : Sy = 0} be the first return time of Sy t0 0. Then for
any fixedi =1,

M—»P{ max Sk:i}>0 a.s. as n— oo.
n O<k=<c¢
(ii) (CLT for the first row)
p1(n)—np(l-p)
Vnp(l-p)[1-3pd-p)]
where Z ~ A (0,1), the standard normal distribution.

=>7

Denote by C(R) the space of continuous functions f : R — R endowed with the topology
induced by the sup-norm, and let Cy(R) be the subspace of C(R) consisting of nonnega-
tive compactly supported functions f such that f = 0 on (—oo,0]. For any interval I € R
containing 0, denote by C(I) and Cy(I) the space of restrictions f|; where f € C(R) and
f € Cy(R), respectively. For b € I, define the operator &}, : C(I) — C(I) by

Ep(H@)=f(r)— min f(s),
bAt<s<bvt
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where y A z = min(y,z) and y Vv z = max(y, z) for each y,z € R. We call b the pivot of &,.
Define m: Cy(I) — R by m(g) = sup{x € I : g(x) = max(g)}, the location of the rightmost
global maximum of g. Finally, define the excursion operator & on Cy(I) by £(g) = Eng) (8).
See Figure 6 for an illustration.

We now state the main result of the paper.

Theorem 2. Let X"P be as above. Then
() (Subcritical phase) For p <1/2, set@ = (1—p)/p > 1. The longest soliton length A, (n)
(1-2p)*

is concentrated around i, :=logg (v n) in the sense that for all x e R,

exp(-07%) < lim infP {A1(m) < x+ py} <limsupP {11 (n) < x + p,} < exp(-0~ D),
—o0 n—oo

Furthermore, the sequence {A j(n) — py} is tight for each j = 1, and A j(n) = ©(logn)

foreach fixed j = 1.

(ii) (Critical phase) For p = 1/2, let B = {Bs}o<t<1 be a standard Brownian motion on
[0,1]. Then for each fixed j = 1,

nY2(11(n), A2(n),..., A¢(n)] = [max|B|, max&(|B|),..., max&’/ "L (|B)],

where = denotes both weak and moment convergence. In particular, A j(n) = ©(,/n)
foreach fixed j = 1.

(iii) (Supercritical phase) For p > 1/2,
M) —R2p-1)n

2y/pd-pn

Furthermore, setting u = p/(1—p) > 1, we have that for any € > 0, ¢ > 1 and all
sufficiently large n

= Z~N(0,1).

P{Al (n)>Q2p-1-¢) n)} >1— Cn—Slog/,L/Z’

and for any fixed j = 2,

P{A;(n) < (¢+5/logu)logn}=1- cn ElosH/8,

We call the joint statement in Theorem 2 (iii) a condensation phenomenon because in
the supercritical regime, a linear number of balls condense into the longest soliton while
the next j longest solitons each have O(logn) balls with high probability.

Our main results have an interesting application in the context of random pattern avoid-
ing permutations. For each n €N, let &, be the set of all permutations on {1,2,---, n}. For
any permutation o € &, denote by p;(0) (resp., 11(0)) the length of a longest increasing
(resp., decreasing) subsequence in (1), 0(2), ..., 0(n). Given two permutations o € G,
and 1 € G with 1 < k < n, we say that o is 7-avoiding if no subsequence of ¢ has the
same relative order as 7. Denote by &, the set of all 7-avoiding permutations in &,,. It
is well known that o € &, is stack-sortable (resp., stack-representable) if and only if it is
231-avoiding (resp., 312-avoiding) [19]. Note that o is 231-avoiding if and only if o 1lis
312-avoiding.
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In a classic work [19], Rotem studied properties of stack-sortable permutations chosen
uniformly at random among all such permutations of a given length. He showed that if "
is a permutation in 23! chosen uniformly at random, then

Elp1 M= (n+1)/2, EM(EM]=vVan+0(1)

Our corollary is an extension of the above result both to the higher moments and to the
k™ longest increasing and decreasing subsequences of =”. Namely, for a given o € &,,,
let 0 = 01,02,...,0 be a sequence of permutations such that ¢, is obtained from o
by deleting a longest decreasing subsequence. Define 1;(0) = A1(0;) for each j = 1, and
define p; (o) for each i = 1 similarly.

Corollary 3. LetX" be a uniformly chosen random stack-sortable permutation of length n.

(i) SupposethatT|', T}, .-, T!" is a sequence of rooted trees where T|" is chosen uniformly
at random among all rooted plane trees on n+1 nodes, and forr = 1, T!", | is obtained
from T} by deleting all leaves. Then

(P1(E™), p2(E™),...,pi(E™] =4 [# of leaves in T|",# of leaves in Ty, ..., # of leaves in T"].

Furthermore, let {S k}EO:O be a simple symmetric random walk with Sy =0 and let ¢ =
inf{k > 0: Si = 0} be the first return time of Sy t0 0. Then for any fixedi = 1,
pi(Z")
2n

—»IP{ max Sk:i}>0 a.s. as n— oo.

0<k=<¢

(ii) Let B® = (B{")o</<1 be a standard Brownian excursion on [0,1]. Then for each fixed
i=1,

n 2 (EM, (2, ..., 4;(EM] = V2[max B¥, max& (BY),..., max&! ! (B¥)],
where = denotes both weak and moment convergence.

1.3. Outline and organization. Broadly speaking, we proceed by observing correspon-
dences between various combinatorial objects related to box-ball configurations such as
Motzkin paths, rooted forests, and 312-avoiding permutations (Figure 2). We can then
interpret the rows and columns of the Young diagram associated with a box-ball config-
uration in terms of these objects (Figure 3). This allows us to reformulate the original
soliton problem in other languages and vice versa.

horizontal collapsing

- - i —_— >
box-ball h restr‘/cted Rooted forests
configurations Motzkin paths S
contour process
push/pop stack u
operation
312-avoidin
Mg < > Dyck paths < > Rooted trees
permutations

Hoffman, Rizzolo, Silvken [8]

FIGURE 2. Correspondences and inclusions between six combinatorial objects.
Objects in the same row are in bijective correspondence.
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For us, Motzkin paths provide the most useful framework, especially in the random
setting. This is because the random box-ball configuration X'*? can be viewed as the in-
crement sequence of the first n steps of a simple random walk driven by the Bernoulli(p)
measure. The corresponding random (h-restricted) Motzkin path is the same simple ran-
dom walk except that downstrokes at height 0 are censored. The problem then essentially
boils down to studying properties of the excursions of such censored random walks by us-
ing various limit theorems. The results for random Motzkin paths can then be translated
back to solitons or permutations.

This paper is organized as follows: In Section 2, we describe relations between box-
ball configurations, Motzkin paths, and rooted forests, and show how to construct the
Young diagram from these objects. We state three important lemmas concerning Motzkin
paths, their associated Young diagrams, and the ‘column length functionals.” In Section 3,
we discuss a correspondence between random box-ball configurations, a birth-and-death
chain, and a Galton-Watson forest, and then prove Theorem 1. The proof of Theorem
2 is given in Sections 4, 5, and 6. In Section 7, we discuss a connection between box-
ball configurations and pattern-avoiding permutations and prove Corollary 3. Finally, in
Appendix A, we prove the three lemmas stated in Subsection 2.2.

Box-ball
configurations

312-avoiding

Rooted forests )
permutations

Motzkin paths

i th row length of
Young diagram

Number of solitons
of length > i

Number of subexcursions
of height > i

Number of leaves after
trimming leaves i times

Length of i th longest
increasing subsequence

Jj th column length
of Young diagram

Length of j th
longest soliton

Maximum height after
applying excursion
operator j times

Maximum height after
contracting longest path
Jj times

Length of j th longest
decreasing subsequence

FIGURE 3. Interpretation of rows and columns of the Young diagram associated
with four combinatorial objects.

2. CONSTRUCTING THE TIME-INVARIANT YOUNG DIAGRAM

In this section, we establish some important statements about the Young diagram which
will be used crucially in later sections.

2.1. Motzkin paths. We begin with a bijection between box-ball states and a class of lat-
tice paths we call h-restricted Motzkin, a minor variant of the bijection with Dyck paths
in [22]. Recall that a Motzkin path of length ¢ is a lattice path from (0,0) to (¢,0) which
never crosses below the x-axis and uses only (1,1), (1,—1), and (1, 0) steps (which we refer
to as ‘upstrokes,’” ‘downstrokes,” and ‘h-strokes,’ respectively). We call an infinite lattice
path Motzkin if it is obtained by appending infinitely many h-strokes to a Motzkin path of
finite length. Finally, we say that a Motzkin path h-restricted if its h-strokes occur only on
the x-axis.
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The bijection maps a (compactly supported) configuration X : N — {0, 1} to the h-restricted
Motzkin path I'(X) defined by linear interpolation of its heights on Ny, which are given re-
cursively by I'(X)p = 0 and

+1 ifX(k+1)=1
T(X) 1 —TXe=4-1 ifX(k+1)=0andT'(X); =1
0 ifX(k+1)=0andI'(X); =0

for all k = 0. The inverse map from paths to configurations proceeds by writing a 0 for
each downstroke or h-stroke and a 1 for each upstroke. See Figure 4 for an illustration.

I'(X,) r(Xy)

X, /0/0lO|1/0/0/O|2|2/2|0|1|12/0 O0|O0OflO|O|O0O/O0O/O0/ O0]O
X, |l0Ol0O/O/O/2|0|0|O0|O0/O/1 0|0O|2|2|2|1|/0/0/0]|0|O0]|O

FIGURE 4. The top shaded row shows an initial box-ball configuration Xy, and
the black path is I'(Xp). To update, balls are placed at downstrokes of I'(Xp), re-
sulting in the configuration X; and the grey path I'(X}).

The shape of this path tells us how to evolve the system by a single sweep: A ball is
picked up at each upstroke and deposited at each downstroke. Specifically, label the balls
1,...,m from left to right. (This labeling applies only to states, not the system as a whole.
In subsequent sweeps, the label of a particular ball may change.) Then the j® upstroke
occurs at the site where the carrier picks up the ball labeled j. The site at which she de-
posits ball j is determined by drawing a horizontal line from the center of the j® upstroke
to the first downstroke on its right. From this description, we see that the height of the
path at any site equals the number of balls in the carrier’s stack after she visits that site.
When the sweep is completed, the new state of the system corresponds to the path formed
by converting each downstroke to an upstroke and then uniquely completing the path so
that it is h-restricted Motzkin (Figure 4). Formally, the box-ball state X, is given in terms
of the Motzkin path I'(X;) by

Xs1(k+1) = T (X9 g1 - T Xe)g = -1} ¢))

where 1 is the indicator function.

2.2. Hill-flattening and excursion operators. We describe two methods of constructing
a Young diagram A(T") associated with a (not necessarily h-restricted) Motzkin path I'. As
usual, we denote the i row and j™ column by p;(I') and A j (@), respectively.

First we give the row-wise construction using the hill-flattening operator # defined on
the set of all Motzkin paths. To begin, we say that an interval [a, b] with a,beNgand a< b
is a hill interval of the Motzkin path I if for every ce [a,b], ;-1 =T —1 =Tp,1. We write
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& (') for the collection of all hill intervals of I', and denote the number of hill intervals by
p([) =|#(T)|. The hill-flattening operator ./ is then defined by

I'y—1 if kis contained a hill interval of T

A
D {F k otherwise

for k € Ny.

A hill of T is the graph of I' over [a — 1, b + 1] with [a, b] a hill interval. Thus hills consist
of a single upstroke, followed by zero or more h-strokes, followed by a single downstroke.
Call a hill with no h-strokes a peak. Then the hill-flattening operator .#, when applied
to I, flattens each hill of T' by replacing the upstroke and downstroke with h-strokes and
then lowering any intermediate %-strokes so that the path remains connected.

Note that each application of the hill-flattening operator decreases the maximum height
of the Motzkin path by 1 and never increases the number of hills, so

p(D) = p(AD) = p(A*I)) = -+ = p(A™ (D)) = 0.

We define the Young diagram A(I') associated to the Motzkin path I as having i row of
length p; (') = p(%i_l(F)) for 1 =i < maxI'. Here repeated applications of / are de-
noted by #7L(f) = #(#7 (f)) with #? the identity operator. In particular, given a box-
ball configuration X : Ny — {0, 1} of finite support, we can construct the Young diagram
A(T(X)). See Figure 5 for an illustration.

[
[T 11

|
N2 ANE W)
Z

Q)
&

FIGURE 5. Construction of Young diagram via hill-flattening procedure applied
to the Motzkin path associated with a box-ball configuration X. The bottom row
is the configuration X and the black pathisI' = I'(X). Trapezoidal regions with la-
bel i are the hills of 71 ~1(T'), each of which becomes a distinct cell in the i™ row
of A(T). The resulting Young diagram A(I') is depicted in the upper left corner.

Now consider a box-ball system (X;)>¢ started from a configuration Xy : Ng — {0, 1}.
The following lemma says that for each s = 0, the corresponding Young diagram A(I'(X,))
is independent of s and its column lengths correspond to the lengths of the solitons.

Lemma2.1. A(T'(X)) = AT (Xs4+1)) forall s = 0. Moreover, A(T'(Xp)) = A(Xp).

Next, we give the column-wise construction of A(I'). The key observation is that the j th
longest column length, which we denote by A}, is obtained by successively applying the
excursion operator to I" j — 1 times and then taking a maximum.
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Lemma 2.2. LetT" be a Motzkin path and let A ;(T') denote the length of the j™ column of
AM). Then

A;(0) =max&/7'(I), 1=j<pD).

In particular, if (X;) sen, is any finitely supported box-ball system with initial configuration
Xo:N—{0,1}, then

Aj(Xo) = max &7 (' (Xo)).

Lemma 2.2 gives the following column-wise construction of A(I'). Let m = m(I') be the
location of the rightmost global maximum of I', and set A, (I') = Iy, the maximum height
of I'. To find A, (I'), one first computes &(I') by traversing I to the left and right of m as
follows: Starting with height 0 at m, move to the left, remaining at height 0 until the first
local minimum, and then record the sequence of strokes until the original lattice path
returns to the height of this minimum. Then repeat the process, staying at height 0 until
encountering a local minimum and then recording the path of the second such excursion.
Continue to the beginning of the path and then repeat the procedure moving to the right
from m. The resulting path precisely records all ‘subexcursions’ which are not subsumed
by the maximum (m, T'y). A2(I), the length of the second column of A(I), is equal to the
maximum of &(I"). Continuing in this fashion gives 1 i = max&’/~1(I) for all j= 1

I'Xo)

€M (Xp)]

/20 0/0f2/2|0j2j2|1/0/0|1|2|/O0O/0|1|/0O/1|0|0|0]|O

Qo ay a; a3 m by b, by b,

FIGURE 6. The black path is I'(Xp), the red path is &(I'(Xy)), and m is the location
of the rightmost maximum of I'(Xj). The k™® box in the bottom row is Xo(k), and
the red Young diagram is constructed from the red path via hill flattening. The a
and b terms are defined in the proof of Proposition A.2.

In light of Lemma 2.2, it is natural to call max&/~! the j™ column length functional. A
crucial advantage of extracting the column length A ; from the functional max&/ ! is that
this operation is continuous with respect to the topology of Cy(R"), as stated in the lemma
below. This enables us to take various scaling limits of the system.

Lemma 2.3. For any interval I R", functions f,g € Co(I), and j =1,
max&’ 7' (f) ~max& 7 ()| <21 f - glloo-

We relegate the proofs of Lemmas 2.1, 2.2, and 2.3 to Appendix A in order to maintain
the flow of the paper.
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Remark 2.4 (Depth process with drains). In private communication with Jim Pitman, we
learned that an operator equivalent to &, was used in studying Brownian paths and con-
tinuum random trees. In our context, given a Motzkin path I', flip it upside down and con-
sider it as a bucket filled to the top with water. Given b € R*, put a hole at point (b, —I'(b)).
This will drain some of the water, and —&, (') (x) gives the water level at each x € R*. For
instance, the red path in Figure 6 can be obtained from the black one in this way with
drain at b = m(I'). A similar procedure can be defined with multiple drains. This opera-
tion was applied to Brownian paths to study, for example, the line-breaking construction
of the continuum random tree in a Brownian excursion [1]; sampling bridges, meanders,
and excursions at independent uniform times [15]; and developments in the tree setting
with different metaphors such as “forest growth” and “bead crushing” [16, 17].

2.3. Rooted forests. In this subsection, we develop an alternative perspective for con-
structing the Young diagram from an associated rooted forest. The idea is to collapse a
Motzkin path to a rooted forest by horizontal identification. Intuitively, one paints the
underside of the graph of each excursion with glue and then compresses it horizontally
to obtain a tree. Then the original Motzkin path can be viewed as the contour process (or
Harris walk in the random setting) of the rooted forest so constructed. This point of view
will be especially useful for thinking about the arguments in Section 6.

To begin, recall that a rooted forest is a sequence of vertex-disjoint trees {T;};>; such
that each T;j is rooted at a vertex r; € V(T;). The level of a vertex v € T; is defined as
¢(v) = d(v,r;) where d is the graph distance. Given a Motzkin path I, we define a rooted
forest §(I) as follows: Let G(I') = (V, E) be the graph with vertex set V = {(k,I's)} keNy < I\I%
and adjacency relation

(@ T2 (b,T}) <> |a—b|=1and T, T}, not both 0.

In words, G(I') is obtained from I" by removing the h-strokes at 0. Clearly each component
of G(I') is isomorphic to a path beginning and ending at height 0, and there are only finitely
many such paths since I" has finite support. Arranging the components from left to right
so that their vertex labels are increasing, let P; denote the ith component from the left.
Define an equivalence relation ~ on the vertex set of G(I') by

(a,Ty) ~ Ty —=T,=Tp<TI forall te€a,b],

and write T; = P;/~ for the resulting rooted tree (see Figure 7). The rooted forest associ-
ated with T'is §(I') = {Tj}i>1.

We can recover I' from §(I') by keeping track of the levels of the vertices explored in
depth-first search. This exploration process begins at the root of T; and visits nodes from
bottom to top and from left to right in such a way that it back-tracks to the parent of the
current node only if there is no child left to visit. After exhausting all nodes in T3, the
particle moves to the second tree T3, and so on.

More concretely, let ¢ : Ng — V(F) be the function which maps k to the location of the
depth-first search at step k so that 1(0) = ry, t(k + 1) is the leftmost unvisited child of i(k)
if such a child exists, and t(k + 1) is the parent of (k) if its children have all been visited
(where the parent of r; is taken to be r;. ). The depth-first-search ordering of the vertices
of § is given by u < v if min{k : 1(k) = u} < min{k : (k) = v}. Finally, the contour process on
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§ is the function H(F) : Ng — Ny which maps k to the level of ((k) in §§. By construction,
we have

H(F) (k) =level of (k) =T
for all k € Ny.

Now we discuss how to recover the Young diagram A(I') from the corresponding rooted
forest §(I'). In the previous subsection, we constructed the diagram from the Motzkin
path via successive applications of the hill-flattening and excursion operators. In terms
of rooted forests, these operators can be interpreted in terms of ‘trimming’ and ‘lopping.’
Namely, let Y be the collection of all rooted forests with finitely many vertices and con-
sider the trimming operator 9 : Yo — Y, which deletes all leaves of the input forest. (See
Figure 7.)

[ 111

___________________________________ ORI
.../@. i \ ................... .I..
Pl PZ P3P4 PS Tl TZ T3 T4 TS

FIGURE 7. Rooted forest §(Xp) corresponding to the box-ball configuration Xy
given in Figure 5. Each connected component of G(I'(Xy)) (left) becomes a tree
rooted at a blue node (right) by identifying vertices connected by the red hori-
zontal lines. Flattening hills of I'(X) corresponds to trimming leaves from §(Xp).
Both procedures produce the Young diagram A(Xj) shown in the middle.

Next, the lopping operator £ : Yo — Y is defined as follows: Given a rooted forest
§ =1{Ti} € Yy, find the rightmost node of maximal level, say vy, € V(T). Set g = 1(v,) and
let ¥ be the unique path from ry to v,. Now let §; and §» be the rooted forests induced
from § such thatV(g1) = «([1,g]) and V(§2) = t([g,00)). Then Z(§) is obtained by first
deleting all edges contained in the copies of y from § and §», and then taking the union of
the resulting rooted forests with components ordered according to the depth-first search.
(See Figure 8.)

The following proposition shows that these operators are compatible with each other
and gives a way to construct the Young diagram A(I") from §(I).

Proposition 2.5. For each Motzkin path T, we have the following:

O FrED)=7(FD).

i FEM)=2L(FD). |

(iii) Foreachl <i<maxT, p; = # ofleavesin THEMm) . .

(iv) Foreachl< j<p(I), A; = maximal level of nodes in LITLHED).

Sketch of proof. For (i), note that leaves in the forest correspond to hills in the path, so
applying # to I results in the forest obtained by applying 9 to §(I'). For (ii), observe
that & only affects the rightmost excursion of maximum height in I', £ only affects the



12 LIONEL LEVINE, HANBAEK LYU, AND JOHN PIKE

FIGURE 8. The rooted forest § = §(I'(Xp)) on the left appeared in Figure 7, and
the one on the right is £ (§). Numbers next to nodes indicate depth-first-search
ordering and g = 13. Note that the maximum height of § and £ (§) correspond
to the first and second columns of A(Xjp), respectively.

rightmost tree of maximum height in §(I'), and the ‘bushes’ growing off of the ‘trunk’ of
this tree correspond precisely to the subexcursions in the corresponding path component
which are not subsumed by the maximum.

Now assertion (i) shows that F(A# 1)) = 7" 1F X)) forall 1 < i < maxT, and piisthe
number of hill intervals of #/~1(I'), which equals the number of leaves in F(A#'~1(I) =
T =1(F D), and (iii) follows. Finally, given a rooted forest §, denote by |5l the maximal
level of nodes in §. Then ||F ()| = maxT, so (ii) implies

||5£"‘1(3(r))|| = ||g(g"—1(r))|( = max&' () = 1;(D). O

We remark that Proposition 2.5 (iv) holds if we replace the lopping operator £ by the
much simpler one which simply contracts the rightmost longest path into a single root.
However, for this contraction operator Proposition 2.5 (ii) no longer holds.

3. RANDOM BOX-BALL SYSTEM AND ASYMPTOTICS FOR THE ROWS

In this section, we describe random objects corresponding to the random box-ball sys-
tem introduced in Subsection 1.2 and prove Theorem 1.

3.1. Harris walks. Fix p € (0,1), and let £1,¢»,... be an i.i.d. sequence with P{{; =1} =p
and P{¢; = -1} =1-p. Let XP,X™P € {0, 1}N be as in Subsection 1.2, and let {Sk}%ozo be
the associated random walk, where So = 0 and Sy = ¢; +--- + {,,. The Harris walk {Hk}fzo
associated with X? is defined by Hy = 0 and Hy = (Hy_1 + {i) v 0 for k = 1. In other words,
H. is a simple random walk with increments ¢ ;, except that downsteps at 0 are censored.

This defines an irreducible and aperiodic birth-and-death chain on Ny with transition
probabilities P(x,x+1) = p, and P(x, (x — 1) v0) = 1 — p. One readily verifies that the chain
is reversible with respect to the measure p(x) = 6~ where 6 = (1 — p)/p. Note that the
sum Y ;-1 0 converges if and only if p > 1/2, so the chain is transient for these values of
p and recurrent for p < 1/2. It is null recurrent when p = 1/2 since then ¥ j»; 7% = oo,
and it is positive recurrent for p < 1/2 as the latter sum converges in this case. (See [10] for
background on recurrence criteria.) In the ergodic regime, p < 1/2, we can normalize y to
obtain the stationary distribution 7 (x) = [(1 -2p)/(1 — p)]0~~*.
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Note that the random Motzkin path I'(X"*P) is given by the trajectory of the Harris walk
up to time n, completed by appending downstrokes at the end until the height reaches
0 and appending h-strokes thereafter. More precisely, if we define H : R* — R™ to be the
linear interpolation of the Harris walk, H(#) = H;} + (t — [£]) (H|s+1) — H|1), then we have

[(X™P)(x) = H(x)1{g,) + max(0, H(n) — x + n)1{n,c0)-
Moreover, an easy induction argument shows that for all k € N,

Hk = Sk — min Sr.
O<r=<k

Thusif S: R* — Ris the linear interpolation of the random walk {S}Zo, then H = &y(S). This
observation also shows that, marginally, Hy =4 maxo<j< S;.

3.2. Galton-Watson forests. Following the procedure outlined in Subsection 2.3, one can
construct a random rooted forest F(X"™P) = F(I'(X"P)) from the trajectory of the trun-
cated Harris walk I'(X"P), and it turns out that F(X""P) has the same law as the sub-forest
of a Galton-Watson forest with mean offspring number p/(1 — p) consisting of the first n
nodes revealed by depth-first search.

To be precise, let {¢ j?} jk=1 be an array of i.i.d. Np-valued random variables, and define
the sequence {Zy} x>0 by Zp =1 and

g (’f“+---+(§:1 if Z, >0
170 if Z, = 0.

The interpretation is that Z; is the population size in the k™ generation of a species in
which individuals survive for a single generation and produce an i.i.d. number of offspring
before dying. ¢ 5?“ is the number of offspring of the j™ individual in generation k, and
the common law of the {’s is called the offspring distribution. The family tree T for this
population is known as a Galton-Watson tree. We will be interested in Galton-Watson
trees with offspring distribution

PUS =xi=p 1 -p), xeNy,

which is the number of independent Bern(p) trials preceding the first failure. Note that
[E[(;?] = p/(1 - p), so T is subcritical if 0 < p < 1/2, critical if p = 1/2, and supercritical if
1/2 < p < 1. The law of a Galton-Watson tree with Geometric(1 — p) offspring distribution
will be denoted by GWT (p).

We call a sequence of i.i.d. Galton Watson trees Fow = {Ti}i>1 a Galton-Watson forest,
and write GWF(p) for the law of a forest of i.i.d. GWT(p) trees. It is well known that for 0 <
p < 1/2, each component T; is finite with full probability, so the depth-first-search visits
all nodes in the forest. However, for p > 1/2, each component has a positive probability of
being infinite, so almost surely there exists an index I < oo such that |T;| <ocoforall i < I
and |T;| = co. Thus for p > 1/2, the depth-first-search cannot pass beyond the leftmost
infinite branch in T7 (see Figure 9).

Now let §, ~ GWF(p). Write §,p for the vertex-induced subforest of §, on the set of
nodes (([1, n]) € V(§p) which are visited by the depth-first-search in the first n steps, and
write GWF (n, p) for the law of &, .
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Proposition 3.1. F(X™P) ~ GWF(n, p).

Proof. Let T = T'(XP) and § = §(T'). Denote by Z, the number of children of node v €
V(§). We are going to show that Z,’s are i.i.d. and they have the law of the number of
independent Bernoulli p trials before the first failure. This will imply that the Harris walk
{Hk}%":o is distributed as the contour process of §,. Then the relation between I'(X™?)
and H from the previous subsection yields the assertion.

Let §(X”) = {T;}i>1 and fix anode v € V(T;) for some i = 1. Let P; be the path compo-
nent in G(I') which is collapsed to T; via the equivalence relation ~. Note that the num-
ber of nodes in P; which are identified with v equals the number of children of v. Let
x = (aop,I'4,) be such a vertex of P; with ap minimal. If I' 11 — Ty, = {441 is 1, then the
depth-first search finds the first child of v; otherwise, v is childless and the search moves
to its parent or to the root of next tree T;,; depending on whetherI'y, =1 orI'y, = 0. If
¢ap+1 =1, then let a; = min{k = ap : 'y =T'4,} be the first return time to level I, after ap.
As before, the depth-first search finds the second child of v if and only if {,; +; = 1. Con-
tinuing thusly, we see that Z, has a Geom(p) distribution, and the proof is complete. [

Proposition 3.1 allows us to describe the joint distribution of the first i rows or the first j
columns in the random box-ball system started at X"»” in terms of Galton-Watson Forests.

Corollary 3.2. Suppose that § ~ GWF(n, p). For each i = 1, let|; andl; be the number of
leaves in I '~ 1(F) and the maximum height of £~ (), respectively. Then for any1<i <
max(['(X™P)) and 1 < j < p(T'(X™P)), we have

[p1(n), p2(n),---, pi(M)] =4 [I1,l2,-++, 1]

and
(A1), A2(n), -+, Aj(m)] =4 [b1,b2,---, bl

3.3. Asymptotics for the Rows. In this subsection, we prove our first main result, Theo-
rem 1. From the construction described in Subsection 2.2, we have that p; (n), the length
of the first row of AP, equals the number of peaks in I'(X""), which equals the number
of 10 patterns in X"P. In general, p;(n) is the number of subexcursions of height i in the
Harris walk {H k}Z:O’ and these can also be understood in terms of certain binary patterns
in the initial configuration.

We begin with a proof of the i = 1 case of Theorem 1 using arguments from renewal
theory. Strong laws for the other rows can be deduced similarly by considering analogous
(delayed) renewal processes, but we will find it more convenient to pursue an alternative
approach that will be of use in Section 7.

Proof of Theorem 1 fori = 1. First observe that the number of solitons in X™” is equal to
the number of 10 patterns, so p;(n) = 1{{,, = 1} + Njp(n) where Njp(n) is the number of
10 patterns in the first n terms. Because of the scaling, it suffices to prove that Nig(n) =
Y 1{E; =1,&;41 = —1} satisfies the asserted limit theorems.

Now Njp(n) counts occurrences of ‘head, tail’ patterns in a sequence of independent
coin flips, which we can think of as a renewal process. Let T} be distributed as the inter-
event times in this process. Then the elementary renewal theorem gives E[Ny¢(n)]/n —
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1/E[T10]. Since E[N1p(n)] = (n—1)p(1 — p), it follows from the strong law for renewal pro-
cesses that

Nip() 1
n E[Tho]
Renewal theory also shows that Njg(n) converges weakly to a standard normal ran-
dom variable when appropriately normalized [3]. To compute the variance, we write
w; = I{Ei =1,¢&1 = —1} and observe that E[W;] = p(1-p), E[W;Wj;1] =0, and E[W; W;] =
p?>(1 - p)?> when |i — j| > 1, hence

=pl-p)as..

n—1
E[Nio(n)*1= Y EIW/+ Y EIW;Wjl=(n-1Dpl-p)+(n-2)(n-3)p*(1l-p)?
i=1 li—jl>1
SO
Var (Nyo(n)) = E[N19(m)?] = E[N1o(m)]* = (n - 1) p(1 - p) — 3n—5)p*(1 - p)*.

The second part of the theorem follows upon invoking Slutsky’s theorem to simplify the
expression (Nyo(n) — E[Nyo(n)])/ Var(Nyo(n)) /2. O

Remark 3.3. The normal convergence of p; (n) can also be established using Stein’s method
for sums of locally dependent random variables (see [2, Ch. 9]). Though this approach is
more involved, it has the upshot of supplying a Berry-Esseen rate of order O(n~'/?). One
can show that a central limit theorem also holds for the other row lengths by a similar re-
newal theory argument, but the corresponding variance computations are not as straight-
forward.

To treat the i > 1 case, we need to establish some more notation and a useful lemma.
To begin, let y : No — Z be any nearest neighbor lattice path (so that |y+1 — il € {-1,0,1}
for all k € Ng). We say y has a subexcursion of height h on the interval [r, t] if y, =y <7y
forall r < s < t and max,<s<;ys—¥r = h. In this case, we say the subexcursion begins at r
and ends at s.

Let {Sx}37 , be the simple random walk with increment distribution P{Sy.1 — Sg = 1} =
1-P{Sk+1— Sk = -1} = p. For each n = 1, define

n
N;(n) = Z 1{Sj has subexcursion of height i beginning at k = ¢}. )
/=0

The following lemma establishes a Chernoff-Hoeffding bound for N;(n).

Lemma 3.4. Let ¢ =inf{k > 0: Si = 0} be the first return time of Sy to zero. Fixi =1, and
set 1; = P{maxo<i<c Sk = i}. Then there exist constants C, D > 0 such that for each € > 0 and

n=1,
N;
[FD{ l(n)—l.li
n

2
>£}5Ce Demn,

Proof. Linearity of expectation gives
E[N;(n)/n] = P{Sy has subexcursion of height i beginning at k = 0} = ;.

Observe that the indicator variables in the definition of N;(n) have negative association.
Indeed, for a fixed interval J of integers, and fixed i = 0, consider the event

A(J) = {Random walk Sy, restricted to the interval J is a subexcursion of height 7 }.
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By the Markov property, the probability of an intersection of events A(J1), A(J2), - -+ equals
the product of the probabilities if the J;’s are disjoint, and 0 otherwise. This justifies the
negative association claimed above. Now the assertion follows from Chernoff-Hoeffding
bounds for negatively associated random variables (see, e.g., Proposition 5 of [6]). O

Proof of Theorem 1 fori = 1. To treat p;(n) for i > 1, we need to consider subexcursions
of height i in the truncated Harris walk {H}}'_ . The hill-flattening procedure produces a
unique column of length at least & for each such subexcursion, so p;(n) is the number of
height i subexcursions of H on [0, n]. Since the Harris walk Hy and the associated simple
random walk S over [0, n] share subexcursions of positive height, we may regard p;(n) as
the number of subexcursions of S occuring on [0, n]. Furthermore, we can approximate
pi(n) by N;(n) defined in (2) since the two only differ when H has a subexcursion of height
at least i beginning at or after n — i, hence |N;(n) — p;(n)| < 1. Therefore, the assertion
follows from Lemma 3.4 and the first Borel-Cantelli lemma. ([

4. TOP SOLITON LENGTHS IN THE SUBCRITICAL REGIME

In this section, we fix p € (0,1/2) and prove the following slightly stronger version of
Theorem 2 (i):

Theorem 4.1. Set0 = (1-p)/p,0=(1-2p)/(1-p), and i, =log, ((1-2p)on). Let A(n)
be the length of the j"* longest soliton in the random box-ball system X™P. Then for any
non-decreasing real sequence {x,} =1,

lim inf exp (6P {A(n) < x5+ un} =1,

and

limsup exp (" )P {11 (n) < x, +pn} < 1.

n—oo

Furthermore, for every fixed j =1 and x € R,

J=1g—kx
limsupP{A;(n) Sx+pn}5exp(_g—(x+1)) Y _
n—oo = k!

Remark 4.2. The first part of Theorem 2 (i) is the special case where the sequence {x,} is
constant and implies the tightness of {1 (1) — u,}. Also, the last part of Theorem 4.1 shows
that

xlirpmlilgriglf PAj(n)—pup>x)=1- xgrpmlirglsip PAj(n)—pun<x)=1.

On the other hand, 1;(n) < 1;(n), so we have

lim liminf P(A;(n) — pp < x) = lim liminf P(A;(n) —p, < x) 21,
X—00 n—o0 X—00 n—oo

hence {1;(n) — uy} is tight for each j > 1 as well. This implies A;(n) = ©(ogn) forall j = 1.
Thus Theorem 2 (i) follows from Theorem 4.1.
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We will find the more general statement of Theorem 4.1 useful in Section 6. Roughly
speaking, we proceed by showing that the Harris walk {H};2, has ©(n) excursions by
time 7. By relating the excursion heights to a gambler’s ruin problem, we argue that their
distribution has an exponential tail. Taking the maximum over the ©(n) excursions shows
that the law of 1, (n) is approximated by a Gumbel distribution after scaling appropriately.
To treat the j > 1 case, we appeal to the hill-flattening procedure described in Subsection
2.2.

To begin, set 71 = 0 and for k > 1, define 7 = inf{j > 7;_; : H; = 0} to be the time of the
k™M visit to 0. Thus 7 is the beginning of the k™ excursion above the x-axis, and 744 is the
end of the k™ such excursion. (In this section, if the random walk stays at 0, this counts as
an excursion of height 0.) Let

t
hk:sup{Ht:rk<tsrk+1}:sup{ Z Ei:rk<tsrk+1}v0
i=Tr+1

be the maximum height of the k" excursion. The strong Markov property ensures that
hi, hy,... are i.i.d. Np-valued random variables. To compute their distribution function,
F(x) =P{h; < x}, we observe that P{h; =0} = 1-p and P{h; < x} =P{1 < h; < x}+P{h; =0}
for x = 1. In order for the event {1 < h; < x} to occur, the random walk must begin with
an upstep and then visit zero before visiting x + 1. The latter occurs with the ‘gambler’s
ruin’ probability that a simple random walker, started at the origin and moving right with
probability p, hits —1 before hitting x, which is given by (6* - 1)/(0* —671) [7, Ch. 5.7].
Putting all of this together shows that F(x) = (1 - p) + p(6* - 1)/(6* - 671) for all x € N.
After a bit of rearranging, we get

F(x) = (1 ) 1(0,00) (X).

)
6[xJ+l -1
Now let k1., ..., B denote the order statistics of hy,-++, by, sothat By =+ = hypem

and {h1.m,..., W} = 1hy, ..., byt Then

j-1
Fim(0) :=Plhjm<x}= ). (m Fx)"*a-rFupk, j=1,...,m.

k=0 k

In particular, the maximum h;.;, has distribution function

1-2 m
P 1) 10,00) (X).

Fi.m(x) = (1 - QLxJT

Write M,, = sup{k : Tx4+1 < n} for the number of excursions completed by time »n and
let r,, = max{Z;: S ¢i : Tm,+1 < 1 < n} be the maximum height attained after the last
complete excursion. We are interested in the order statistics for hy, ..., hy,, 1, which we
denote by h;(n) = hy(n) = --- = hy,+1(n). We begin by showing that M), is sharply con-

centrated around its mean so that we can essentially treat it as a deterministic sequence.

Proposition 4.3. If M}, is the number of excursions of H completed by time n, then
M, 1-2p
n 1-p

a.s. asn— oo.
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Proof. We may write M, = Z,’C’ZI 1{H} = 0}, the number of visits to 0 in [1, n]. Since the
Harris chain is ergodic with stationary distribution 7(x) = [(1-2p)/(1— p)]0~* for p <1/2,
we can apply the Markov chain ergodic theorem to obtain

1-2p
l-p

a.s. |

M,
_"_,7[(0) —
n

The next ingredient in our argument is a simple stochastic monotonicity result.
Proposition 4.4. Seto = (1-2p)/(1—p), p € (0,1/2). For any real sequence {x,}n>1 and
any positive integer j, we have that for all e > 0,

limsupP {h;(n) < x,,} <limsupP{hj. g-e)n| < Xn}
n—oo n—oo

and
lilgrliol.}fp{h NOEENE lilgrliorgfﬂm{h jilo+en < Xn}.

Proof. Define
N (n,e) =supi{t: M;<(oc—-¢€)n}
and
NT(n,e) =inf{t: M;= (0 +¢&)n}.
It follows from Proposition 4.3 that there is an a.s. finite N such that
{hi,..., hMN’(n,e)} = {hl,...,th.H} < {hl,...,hMN+( }

with probability one for all n = N. Because r, < hp,+1, this means that, almost surely,
hjMy- e < 0j(0) < hjpmy. ., for nsufficiently large, hence

1n,€)

limsupP{h;(n) < x,} <limsupP{hj.py- ., < Xn}
n—o00 n—oo

and
lim infP{h;(n) < xn} 2 iminfP{hj.p. , , < Xnf.

The desired assertion follows by noting that Mn-(,.¢) = (0 —€)n] and M+ (n¢) = [(0+€) 1]
a.s. since 0 is a recurrent state of { Hy} O

With these results in hand, we are now in a position to prove the main results of this
section.

Proof of Theorem 4.1. Fix € > 0 and a non-decreasing sequence {x,},>1, and define y, =
logy ((1—2p)on). We first recall that for any deterministic sequence of integers {b,},

1-2p \b

P{hi.p, < Xpn+pnt=1- TS Lix,+p,200

Writing v, = (x,, + ) — | x5 + pnl, we have
1-2p 3 1-2p B g™ *n
OLintpnl+1 — 1 @Xntin@l-Va —1  gnOl-va—(1 —2p) 10— )
so, since 6 >1and 1—v, € (0,1], we see that
=t D 1-2p 6~
< < .
on—1-2p)~16=tn+D = glentinl+l 1 = gn—(1-2p)~10=%»

3)
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Next, we claim that for any sequence {b,},>1 with lim;_.o, b,/n = ¢ > 0 and any non-
decreasing sequence {y,},>1, we have

O~ ¥n by,
nh—r»goeXp ((0/0)9_3’”) (1 on- (1-2p)~16=In ) -
Indeed,
Q= In by

B_yn
on—(1-2p)~10=In

g~ In
c, log 1 - =)
o 0-Vnlby,

= G_y"(bnlé?_y”)log(l - ) +(clo)@ ¥

:B_Yn

Since 0 > 1 and {y};>1 is non-decreasing, 677" is bounded. The claim follows since a
Taylor expansion of the log term shows that

g~ In
log(1-grtm) .
lim =——.
n—oo 0= Vnlby, o

For the first assertion, Proposition 4.4 and the preceding claim with y, = x, + 1, b, =
(o — e)n] show that

limsup exp((1 —6/0)9_(x"+1))ﬂ3>{h1(n) < Xp+ pn}

n—oo

<limsup exp((1-&/0)0~ " +D)p {h1:lo—e)n) < Xn + Hn}

n—oo
( 1) 9_(xn+1) b
<limsup exp((1 —&/0)8~ ") [1 - =1.
nﬂoop p( ) ) on—(1-2p)~1g~Gan+D

Similarly, taking y, = x,, and b}, = [(0 + €)n], gives
lirgrlinf exp((1 +&/0)0 )P {hy(n) < xp + Wn}

= lim inf exp((1 + el0)07 " P{ Ry (o +eym < X+ n}
—00

=1.

H_Xn b/n
on—(1-2p)~10=*n )
Letting € \, 0 and noting that h; (n) = 1;(n) completes the argument.

For the second assertion, let i, and b, be as before, and fix j € N and x € R. Recall that
for all n large enough that x = —u,,, we have

=L(b, 1-2p \F( 1-2p K
"J’{hf:bnf““”}:,;)(k)(l‘m) (m)

[, 1-2p bnf‘llbkl 1-2p \F( 1-2p
T gletmad+i g kz::oﬁ A TR T QLetual+1 7

> liminf exp((1+¢&/0)0™*") (1 —
n—oo
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<11

1-2p b"j_l(l—sla)k(ex 2(1- p)? )‘k

Y S (a-2p2n

where the final inequality used the upper bound in (3). Accordingly, we have

j-1 Q—kx
limsupP{h;(n) < x+p,} <exp(—-(1 —5/0)6_(“1)) Y —a —elo)k,
n—oo k=0 k!

and since Lemma 2.2 shows that A(n) = h;(n) for all 1 < j < My, the result follows upon
taking € \ 0. ([

5. TOP SOLITON LENGTHS AT CRITICALITY

In this section we observe that when p = 1/2, the (suitably scaled) Harris walk con-
verges weakly to a reflected Brownian motion at the process level. This then enables us to
deduce scaling limits for the top soliton lengths.

Theorem 5.1. Let {B(f) : 0 < t < 1} be a standard Brownian motion and define H"(t) =
H(nt)/v/n for0<t<1. Then forp=1/2,

{H"(t):0<st<1}=>{|B(1)|: 0=t <1} in C([0,1]),

where = denotes polynomial convergence. That is, if F : C([0,1]) — oo is any continuous
functional of polynomial growth (so there exists r = 1 such that |F(y)| < |lyl., for ally €
C([0,11)), then

JEI&OE[F(HH)] =E(F(IB]).

Proof. By Theorem 9 in [5], we only need to show that H” converges weakly to | B|. Recall
from Subsection 1.2 that the linear interpolation of the p = 1/2 Harris walk is given by
H(t) = &(S)(t) = S(t) —ming<,<; S(r) where S is the linear interpolation of symmetric
simple random walk.

Donsker’s Theorem shows that after scaling diffusively, S(t) converges weakly to a stan-
dard Brownian motion in the space C([0, 1]). That is, writing S"(¢) = S(nt)//n, we have

lim E[(F(S™)] =E[F(B)]
n—oo
for every bounded and continuous functional F: C([0,1]) — R.
A direct computation shows that for any fixed b € [0, 1], &}, is (2-Lipschitz) continuous

and satisfies &, (cf) = c&y(f) for all b, c = 0 (see Proposition A.5 (i) in Subsection A.3), so
for every bounded and continuous G: C([0,1]) — R,

,}i_{go[E[G(H")] = ’111_{{.10[E[G(é°0(8”))] =E[G(&(B))],

hence H" converges weakly to &(B). As

&o(B)(1) = B(1) - m'ntB(S) =q —B() - m'nt(—B(S)) = OmaXtB(S) - B(1),
= = =s<

0<s 0<s

Lévy’s M —B theorem (see [13, Ch. 2.3]) implies §,(B) =4 | B| and the proofis complete. [J
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Proof of Theorem 2 (ii). First recall that the Motzkin path T := I'(X"!/2) agrees with the
Harris walk H on [0, n], and has only downstrokes until it reaches height 0 on [1,00), hence
all of its peaks are contained in [0, n]. Recall also that the excursion operator deletes the
peak at the rightmost maximum and preserves all the other peaks. Thus by Lemma 2.2,
we have

n7 2 = 07 maxé ™ 0 = 0 max ™ (Hlg ) = max 677 (H").
,n <t<

Lemma 2.3 in Section 2 shows that the column length functionals max&/~!: C([0,1]) — R,
j = 1 are Lipschitz. In particular, they are functionals of polynomial growth. The weak and
moment convergence assertions then follow from Theorem 5.1 by taking F = 1{f; < x} and
F= f]’” for x € [0,1] and m € N, where f; = max&/~1. A stronger version of the second part
of the assertion is shown in Theorem 5.3 below. [l

To establish the order of the other top soliton lengths, we appeal to known results about
the marginal densities of the ranked maxima of | B| over all excursions. To state our conclu-
sions precisely, note that the continuity of B ensures that the random subset {f : B(t) # 0}
of [0,1] is a countable union of maximal disjoint intervals, called the excursion intervals
of B. We call an excursion interval (a, b) complete if B(a) = B(b) = 0, and incomplete oth-
erwise. All of the excursion intervals are complete except possibly the last one (g(1),1],
where g(t) =supf{0 < ¢ < 1: B(¢) = 0} is the last zero of B. Let

hij=zhy=--->0

be the ranked sequence of values sup, , 1) | B:| as (a, b) ranges over all excursion intervals
of B. The marginal distributions of the ranked heights over excursions in the reflected
Brownian bridge were first obtained by Pitman and Yor [18]. Lagnoux, Mercier, and Vallois
[12] pointed out that the probability that the maximum of reflected Brownian motion is
obtained during the last incomplete excursion is approximately 0.3069. Csaki and Hu [4]
obtained the following explicit expressions for the marginal densities of ranked maxima
of reflected Brownian motion over all excursions, including the final meander:

Theorem 5.2. Foreach j=1andy>0,

- i—1
P{hjzy}:2]+l (_l)k(k'i'l_i
k=0

where ®(-) is the standard normal distribution function.

(1-®(k+2j-1)y))

Accordingly, Theorem 5.1 and Lemma 2.2 imply

Theorem 5.3. At criticality, we have that for each x >0
[e.°]
lim P{A,(n) < xvn}=1-2) (-DF1 - @[2k+1)x)).
n—oo =0
Furthermore,

limsupP{A;(n) < xy/n} <1-2/*" 3 (—l)k(l”lfc_ 1)(1 —®[2k+2j - 1)x)).
n—oo k=0

In particular, forany j =1, A;(n) = o(/n).
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6. TOP SOLITON LENGTHS IN THE SUPERCRITICAL REGIME

In this section, we fix p € (1/2,1) and prove Theorem 2 (iii). The intuition is the fol-
lowing. According to Proposition 3.1, the top soliton lengths are encoded in the first
N ~ Binomial(n, p) edges of a Galton-Watson forest § = (T7);>1 ~ GWF(p). Since the off-
spring distribution has mean p/(1 — p) > 1 in the supercritical regime, the random index
I = min{i : |T;| = oo} is almost surely finite. For n large, about np nodes of the infinite
component 77 will be exposed by the Harris walk, which climbs up along the ‘leftmost’ in-
finite branch in T;. Hence A, (n) should behave like the maximum of a random walk with
positive drift, and A, is the maximum height of the first few finite components T3,..., T;_;
together with the ‘bushes’ attached to the infinite branch in 77. The A, (n) assertion fol-
lows by approximating { Hi} by {Si}. To see that the probability that A, (n) > clogn is small
for a suitable ¢ > 0, we appeal to a duality argument: A backward Harris walk started at
the last node will encounter a subcritical Galton-Watson forest, so its maximum height
should be ©(logn) (see Figure 9).

Va

T, T, T, Ty T

FIGURE 9. Supercritical Galton-Watson forest. T7 is the first infinite component
and the red ray is the leftmost infinite branch in 77 on which the usual Harris
walk climbs up. The grey contour is the backward Harris walk starting from the
last vertex of level N, which encounters a subcritical Galton-Watson forest.

To make the above sketch rigorous, we introduce the notion of a dual configuration.
Given a random box-ball configuration X"?, we define its dual as

X"P(k)=(1-X"P(n—k+1)1{l <k < n}.

Alternatively, if X™” is defined in terms of {1,¢>,...,¢,,0,0,..., then its dual is defined in
terms of -¢&;,—€,-1,...,—€1,0,0,.... For p € (1/2,1), the dual configuration has the same
law as the subcritical configuration X™!~P. Let ) j(n) be the length of the j® longest soli-
ton in the dual configuration. The key lemma in this section, Lemma 6.2, establishes that
A1(n) and A (n) can be approximated by S,, =¢1 +---+ ¢, and /Tj_l (n), respectively.
Positive drift ensures that S and H are not too different, so the first claim seems reason-
able since S should attain its maximum over [0, n] near n. To explain why the second claim
is true, let H e Co(R™) be the Harris walk for the dual configuration so that 2 1(n) = max H.
Now H and H are coupled in such a way that the latter is a time-reversal of &,(S), which is
approximated by &;,(H). Thus it all boils down to showing that the path &, (H) pivoted at
nis close to &(H) = &, (H), pivoted at the actual location m = m(H) of the rightmost maxi-
mum of H. But again the positive drift ensures that H attains its maximum near the end.
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Continuity of the excursion operator can then be used to show that the two paths must be
close to each other.

We begin with the observation that the maximum of the biased random walk {Si};_, is
near S,,.

Proposition 6.1. Fixe >0andu=p/(1—p)>1. Then foranyc>1
IP{lmkax Sk—8Sp>(e+ 1/logu)logn} < cp~€losn
=K=n

for all sufficiently large n.

Proof. Let X” be the subcritical box-ball configuration obtained by switching 0’s to 1’s and
1's to 0’s in X, and denote X"»P = XP1(; ) for n € N. Note that X"*? has the same law as
X™1=P_ For each 1 < k < n, the associated random walk S; and Harris walk ﬁk satisfy
Sk=(=&)+-+(=&) = —St and

ﬁkzgk— min g,': maxSi—Sk.
1=i<k 1=i<k

Thus by Lemma 2.2, we have

max Si— Sy :ﬁn < max ﬁkzil(n),
1<k<n 1<k<n

where 1, (n) is the longest soliton length in the subcritical configuration X"P.
Now let p,, be the probability in the assertion and set x = (2p — 1)?/p < 1. Then
pn<1-P{Ai(n) <elogn+ log,, (xn)}.
As Theorem 4.1 implies

P{L(n) < Elogn+logﬂ(1<n)} S o CH T S C‘u—slogn

for all sufficiently large n, the assertion follows. ([

The following lemma establishes our key observation about the duality between the
supercritical and subcritical box-ball systems:

Lemma6.2. Fixe>0,jeN,andu=p/(1—-p)>1. Then foranyc>1

£

P{IA1(n) — Syl > (e +2/logw) logn} < cpzlo8n

and
P{|Aj+1(m) —zj(n)| > (e +4/logp)logn} < cu‘il"g”

for all sufficiently large n.

Proof. Fix n = j and define random variables

R =sup
keN

We first show that it suffices to establish the inequalities

min S;
1<i<k

and Q= max Si-S,.

1<k<n

M-,

<R+2Q, and ‘Ajﬂ(n)—ij(n)’szRMQn. )
Indeed, by considering whether or not R > €log(n), we get

P{R+2Q,> (¢+2/logwlogn} <P{R > elogn} +P{Q, > (¢/2+1/logu)logn}.
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Casing out according to the value of ¢; shows that for any integer k = 3, P{R < k} =
pP{R < k+ 1} + (1 - p)P{R < k — 1}, hence

P{R =k} = P{R < k}—P{R < k—1} = p(P{R < k+1}-P{R < k—1}) = p(P{R = k}+P(R = k+1}),

soP{R=k+1}= ;fl[P’{R = k}. It follows that P{R > ¢} = P{R = 3}#2_[/(1 — ) forall ¢ = 3.

In particular,
3

p —elogn
PiR>¢lognf < ———X—— 8

for n large. Since Proposition 6.1 shows that
+1 _¢
P{Q, > (e/2+1/logu)logn} < CT'u—élogn

as well, we see that it suffices to prove (4).
The first inequality in (4) follows from Lemma 2.2 and the triangle inequality upon ob-
serving that

=R.

min Si’ <sup
1=<i<k keN

min S;
1<i<k

< max |Hy — S| = max
1<k<n 1<k=n

max Hj— max S,
1<k<n 1<k<n

To establish the second inequality, let n* := m(S1jg,,;) denote the rightmost maximum of
S on [0, n], and define the sequence of random variables {Stto<k<n by Sp=Siforallk#n
and S, = S,-. As usual, let S denote the linear interpolation of Sk} By construction,
IS = Slloo = Qy- Also, observe that &,(S)(n) = 0 = &(S)(n), and for 0 < j < n, writing m; =
min{S;,...,Sy-1}, we have &,(S)(j) = S; — min{m;, S,} and éa(S)(j) = §j—min{m;j,Syp-} =
Sj—mj. Ifmin{m;, Sy} = Sy, then m; = S, + 1. It follows that

En(9)(j) = E(S)(j) + mj—min{m;, Sp} = E(S)(j) + S, < mj}.

Writing S = —(S,, — S,,—¢) for the random walk associated with the dual configuration,
we see that the Harris walk Hy can be written as

Hyc = (Sp—k=Sp) = min (Spj = Sp) = Spie= min_ §;=ES)(n=k)+ 1Su < My}
<js

n—k<i<n

forall 0 < k < n. As S, < m,_i implies Q, = IS - Slleo = 1, we have |Hy. —&(S)(n- k)| <
Q,, for all k. Since the functional max&7~! is invariant under time reversal, the above
observation together with the Lemmas 2.2 and 2.3 yields

)X,-(n) - mang(§)| - | max&’ 1 (H) - mang(§)| <2Q,.
Finally, the triangle inequality, Lemma 2.2, and Lemma 2.3 give
410 = 1) < [ max& () - max&7 ()] + | maxé! (5) - maxs’ (§)| +2Q,
<21 H=Slloo +2lIS = Slloo + 2Qy, < 2R + 4Q,,. O
Now we are ready to complete the proof of Theorem 2.

Proof of Theorem 2 (iii). First, we may write
Al(n)—(Zp—l)n_ AMn)-S, Shn—-2p-1n

= + .
2y p(l-pn 2ypd-pn  2y/p(1-p)n
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Since the first term on the right-hand side converges to zero in probability by Lemma 6.2
and the second term converges in distribution to a standard normal by the usual central
limit theorem, the first part of the assertion follows from Slutsky’s theorem.

Next, Lemma 6.2 tells us that we can approximate A (n) by S, and 1, (n) by A1(n). For
the former, we have

P{li(n)<@p-1-en} <P{S,<@2p-1-¢€/2)n} +P{ISp,— L (n)| >en/2}.

Since S, is a random walk with mean (2p —1)n and increments supported on {—1,1}, Ho-

effding’s inequality shows that the first term bounded above by 2e‘£27", which is less than
%1 121987 for n sufficiently large. Also, the second term is less than %lu‘ilog" by the
first part of Lemma 6.2.

We proceed similarly for the A ;(n) inequality. Since A (n) < A»(n) forall j = 2, it suffices
to show the assertion for j = 2. Breaking up the event in question according to the size of
21 (n), we can write

P{A2(n) > (€ +5/logw) logn} <P {1, (n) > (¢/2+1/log ) log n}
+P{|A2(n) — A, (m)| > (€/2 + 4/ log ) log n} .

Since Zl(n) =4 Il (n), the proof of Proposition 6.1 shows that the first term is eventually
bounded by cu~z'°8”. Finally, Lemma 6.2 shows that the second term is at most ¢y~ & 108"

for n large. U

7. APPLICATION TO RANDOM STACK-SORTABLE PERMUTATIONS

In this section, we discuss some relations between box-ball systems and stack-sortable
permutations and prove Corollary 3.

We begin by explaining (an equivalent version of) the construction of the time-invariant
Young diagram introduced in [22], which was built upon a connection between box-ball
configurations and stack-representable permutations. The first step is to map a box-ball
configuration X, of m balls to a 312-avoiding permutation o = 0(Xp) € G, using the
pushing and popping stack operations from [11, Ch. 2.2.1]. To do so, label the balls 1,...,m
from left to right so that the i™ ball gets label i. Then the one-line notation for o gives the
left to right labels of the balls after a single update Xy — X;. That is, we push the symbol
1 onto an empty stack at the first ball and then, advancing to the right, pop the top of the
stack off for storage at each empty box and push k onto the stack upon encountering the
k™ ball. See Figure 10 for an illustration.

To get a Young diagram from this stack-representable permutation o (Xp), one applies
the Robinson-Schensted (RS) algorithm (see, e.g., [20, Ch. 3.1]) to obtain a pair of stan-
dard Young tableaux, and records their common shape as RS(o(Xy)). Greene’s theorem [8]
relates the sum of the lengths of the first k rows (resp. columns) of the diagram of o to the
length of a longest k increasing (resp. k decreasing) subsequence in ¢, and we show in
Proposition 7.3 that more can be said about the individual row/columns lengths when o
is 312-avoiding.



26 LIONEL LEVINE, HANBAEK LYU, AND JOHN PIKE

2|5 2] 3]

o = 146532

N
w
N
w
N W Ut o
w
N

RS

[of ]~

(o)}

|/0f1/0/ 0/ O0O/1|1|1/0|2|2/0/0/0]|O

FIGURE 10. Construction of the 312-avoiding permutation corresponding to the
box-ball environment in the bottom row via push-pop operations. The second
row from the bottom indicates the labels of the balls, and the columns in the
upper table give the contents of the right-sweeping stack. The resulting permu-
tationiso=146532.

It was proven in [22] that RS(0'(Xj)) is invariant in s = 0 and its j® column length is
the j™ longest soliton length in the system. Thus, by Lemma 2.1, this construction gives
the same Young diagram which was obtained by hill-flattening operations applied to the
Motzkin path.

Proposition 7.1. Let Xy :Ng — {0, 1} be a finitely supported box-ball configuration. Then
RS(0(Xo)) = A(Xo) = AI'(Xo)).

The following proposition shows that there is a bijection between 312-avoiding permu-
tations of length n and Dyck paths of length 27 which ‘factors through’ box-ball configu-
rations in a natural way.

Proposition 7.2. Let G3'2 be the set of all 312-avoiding permutations and let Dyck,,, be the

set of all Dyck paths of length 2n.

(i)  There exists a bijection ¢ : Dyck,, — G312,

(ii) Foreacht € &3'2 andT € Dyck,, such that ¢(T') =1, there is a box-ball configuration
Xo such thatt = o (Xy) andT =T (Xp).

Recall that for a general permutation o, Greene’s theorem tells us that the sum of the
first k row (resp., column) lengths of RS(g) equals the length of the longest subsequence
of o obtained by taking a disjoint union of k increasing (resp., decreasing) subsequences.
The next proposition shows that if o is 312-avoiding, then we can in fact interpret the
length of the k™ row (resp., column) of RS(0) as the length of the k™ longest increasing
(resp., decreasing) subsequence in o. Proofs of Propositions 7.2 and 7.3 are given in Ap-
pendix A.4.

Proposition 7.3. Leto be a 312-avoiding permutation of lengthn = 1. Foreachk = 1, let py.
(resp., A) denote the length ofkth row (resp., column) of RS(0). Then py. (resp., Ai) equals
the length of the k™ longest increasing (resp., decreasing) subsequence in o.

We are now able to prove Corollary 3 using similar ideas from the proof of Theorem 1
together with some known results on random Dyck paths and random walk excursions.
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Proof of Corollary 3. LetI be a Dyck path oflength 2n and let T = ¢(I') be the correspond-
ing 312-avoiding permutation. Proposition 7.2 enables us to choose a box-ball configura-
tion Xj such that 7 = 0(Xp) and I" = I'(Xp), and Proposition 7.1 implies that RS(z) = A(I).
If we denote by 2" and I'"* uniformly random elements of &3!? and Dyck,,,, this yields

RS(Z") =4 AT™). )

Now the contour process described in Subsection 2.3 gives a bijection between Dyck paths
oflength 2n and rooted plane trees with 7+ 1 nodes, so the first part of (i) follows from (5)
and Proposition 2.5.

Part (ii) also follows easily from known results. Indeed, it is well known that under dif-
fusive scaling the random walk excursion converges weakly to a standard Brownian ex-
cursion [1]. Moreover, by [5, Theorem. 9], the convergence is also polynomial in the sense
of Theorem 5.1). Thus (ii) follows from (5) and Lemmas 2.2 and 2.3.

Lastly, we establish the strong law for p;(I'"") stated in the second part of (i). To begin,
fix i = 1, and let (Si)x=0 be a simple symmetric random walk with Sy = 0. We may view
the uniformly random Dyck path T'"* of length 27 as the trajectory of Sy over the interval
[0,27] conditioned to stay non-negative and satisfy S»,, = 0. By (5) and the hill-flattening
procedure, p; (I'™") equals the number of subexcursions of I'* of height i. Let N;(n) and
U; be as in (2) and Lemma 3.4. Then p;(I'") < N;(2n) < p;T"™) +1, so for all n =1 and

£<1/2n,
N;(2n)
| >2¢€ < P — U
} { on M

g
PUN; 2n)/2n— p;i| > €}

P {Si is a Dyck path over [0,2n] }
It is well known that the number of Dyck paths of length 27 is the n Catalan num-
ber ﬁ (Zr?), so by Stirling’s approximation, P {Sy is a Dyck path over [0,2n] } ~ n=3/2//7.

Now by the Chernoff-Hoeffding bound (Lemma 3.4) with € = €(n) = y/3logn/2Dn \ 0,
pid")

we get
7|
2n

In particular, these probabilities are summable, so Borel-Cantelli I implies p; (I'") /21 — y;
a.s. as n — oo. This shows the assertion. O

A

>¢€ | Sk is a Dyck path over [0,2n] }

—Hi

> 28(11)} =0(n~%?).

APPENDIX A. PROOFS OF COMBINATORIAL LEMMAS

In this appendix, we provide proofs of Lemmas 2.1, 2.2, and 2.3, and Propositions 7.3,
which we have assumed in the earlier sections.

A.1. Time invariance of the Young diagram. Our proof of Lemma 2.1 is similar to the
argument from [22], which is formulated in terms of Dyck words intead of Motzkin paths.
The argument is simplified by Proposition A.1.

To begin, recall that given a box-ball configuration X; of finite support, the associated
lattice path I'(X;) is constructed by reading X, from left to right: Starting at height 0, in-
crease by 1 every time a 1 is encountered, decrease by 1 whenever a 0 is encountered at



28 LIONEL LEVINE, HANBAEK LYU, AND JOHN PIKE

positive height, and remain at height 0 otherwise. A simple but useful observation is that
reading X; from right to left produces the lattice path I'(X;_;). More precisely, let (Xs) r=0
be a box-ball system started from a finitely supported configuration X,. For each ¢ = 0,
let r¢ = max{k = 0 : X;(k) = 1} be the location of the rightmost 1 at time s. Construct a
(backward) lattice path f(Xs) :Np — Ny by f(XS);C =0for k= rgand

TX9ps1+1 ifXs(k+1) =1
TX)k={ T(Xks1 -1 if Xs(k+1) =0and F(Xy) g4 21
0 ifT(X) ps1 = Xs(k+1) =0

for 0 < k < rs. See Figure A.1 for an illustration. In this appendix, we denote the ordinary
lattice path I" by I" to emphasize the reading direction.

X;) I+ 1)

Il
I
&
<
Ll
=t
~

| h

ojlo[1]|o]o]ofo]1]o]ofo|1]|1]o0]o|1[2]0]1]0]1]1]2]0|0|0]0

FIGURE A.1. The environment is X; where X is the environment given in Fig-
ure 5. The black path is I'(X;) and the grey path is I'(X;). Notice that the latter
coincides with the black path in Figure 5.

Proposition A.1. Forallt=0,
I'(Xs+1) = T'(X5).

Proof. Fix t = 0, and observe that both paths are 0 on [r;4+1,00), so the assertion holds on
this interval. Now suppose the paths agree on [k + 1,00) for some k < r;41. We must show
that F(Xgs 1) = (X )

The definition of the box-ball dynamics shows that X, (k+1) = 1 ifand onlyif I'(X;) ;. —
1= f(Xs)k+1, hence

TXDk-TXkr1 =1 = Xenlk+D=1
= TXae-TXsDen =1
The induction hypothesis implies
F(X)k =T (X9 gs1 = Xer1(k+1) =0 and T(Xy) g1 =0
= X1 (k+1)=0and I'(Xs11)ks1 =0
= (X 1)k = T X5+ 1) k1
and
X9k —T (X1 =-1= Xe1(k+1) =1and ['(X) s =1
= Xe(k+1)=1and I (Xes1)ps1 =1
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“— f(Xs+1)k - i;(Xs+1)k+1 =-L

This establishes the assertion. O

To facilitate the proof of Lemma 2.1, it is convenient to reformulate the procedure for
building Young diagrams row by row: Rather than flattening hills, we can contract peaks
by deleting the upstroke-downstroke pair and then identifying the endpoints so that the
path remains connected. The number of hills after flattening is the same as the number
of peaks after contracting, so everything is exactly same as before. The advantage here is
that if one begins with an h-restricted Motzkin path, then the hills are always peaks and
the Motzkin paths are always h-restricted. Moreover, the contraction operation can be
understood in terms of the environment as deleting 10 patterns.

Proofof Lemma 2.1. The second part of the assertion clearly holds for all stable box-ball
configurations Xp : N — {0,1} of finite support. Since the system always stabilizes, the
second part follows from the time invariance as state in the first part.

Now let (X;) =0 be as before. To show the time invariance of A(Xj), recall that the con-
struction of A(X;) begins by counting the number of peaks in the path corresponding
X, = X, This is equal to the number of 10 patterns, which is equal to the number of
1-strings, which is equal to the number of 01 patterns. The length of the first row of A (Xj)
is given by this number. The peaks are then contracted by deleting the 10 patterns from
X; to obtain Xén and the process is repeated with I'(X, S(D). At each step, the 1-strings are
counted, the diagram is updated, and the 10 patterns are deleted, continuing until the
path consists only of h-strokes.

The key insights are that the number of 1 strings is the same regardless of whether the
environment is read from left to right or conversely, and that the number of 1-strings after
10 patterns are deleted is the same as the number of 1 strings after 01 patterns are deleted.
In the first case, each 1 string either decreases in length by 1 (possibly dissapearing), or it
merges with the string on its right. In the second, each string either decreases in length by
1 or merges with the string on its left.

olojojojo[o|o]|1]o|1][1|1]0|0|0][0|0]0]0

FIGURE A.2. The environmentis formed by deleting either 10 patterns or 01 pat-
terns from the environment in Figure A.1. The corresponding left-right (black)
and right-left (grey) lattice paths have the same number of hills as the flattened
paths in Figure A.1.
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Now for any fixed ¢ = 0, ['(X) and I'(X;+1) can be read off from X1 by proceeding from
right to left and from left to right, respectively. The update rule for the former is to count 1-
strings and then delete 10 patterns, and the update rule for the latter is to count 1-strings
and then delete 01 patterns. By the previous observations, both result in the same final
Young diagram.

At this point, it remains only to show that soliton lengths are given by the column
lengths of the Young diagram A(Xjp). To see that this is so, observe that the path I'(X;),
which corresponds to the first stable configuration, consists of a series of single peaks of
nondecreasing height, each as tall as the length of the associated soliton. As each flatten-
ing step reduces the height of the peaks by 1, we see that the number of rows of A(X;)
having length at least ¢ corresponds to the number of solitons of length at least ¢. There-
fore, the columns of A(X;) encode the soliton lengths, so the same is true of A(Xp) by
invariance. (]

A.2. Extracting column lengths with excursion operators. In this subsection, we prove
Lemma 2.2. The key observation is that the hill-flattening and excursion operators com-
mute on the space of Motzkin paths.

To begin, we need to establish a couple of technical results. First, for any interval I =R
and function f € Cy(I), we denote by supp(f) the closure of the set {x € I : f(x) > 0},
which is a finite disjoint union of closed intervals. Accordingly, we may write supp(f) =
I_I;lzl[c,-,di], where d; < c;jif i < j. We call J; := [¢;, d;] the i™ excursion interval of f.

Proposition A.2. Fix a Motzkin path T and let x € N be contained in a hill interval I of T.
Denote supp(&,(I')) = ;’:1 J; as above. ThenT — &, (') is constant on each J;. In addition,
F(&x(D) =L M)\ (I} andmax&/~1() =1 foralll < j < p(I).

Proof. To establish the first part, write M = T'y = 0, and define integers ap < a; < :+- <
amp—1 <aM:x:bM<bM_1<---<b1 <b0by

ai=max{k<x:Tr=i}, bj=minfk=x:T=1i}

foreach 0 =i < M. In words, they are the first locations where I" has height i when moving
to the left and right from x (see Figure 6). To simplify notation, we set a_; =0 and b_; = co.
Now I, —&:(I)y=min{l;: xAy<z<xVy}, soonNy

M-1
I'=&x(I) = Z i(l(ai—lrai] + l[bi:bi—l)) + MY (ay by )
i=0
It follows that &, (I") vanishes at the a;’s and b;’s, and differs from I" by a constant on
(ap-1, by—1) and each interval of the form (a;_1, a;] or [b;, bi_1),0< i< M—1. J; is the i
such interval (from left to right) where & (I') is not constant. This shows the first part of
the assertion.

The preceding argument also implies that .# (& (")) € £ (I'). In addition, &(I') = 0 on
lap-1, bp-1] and Iy € (ap—1, bp-1), SO Iy is not a hill interval of &, (I'). Finally, the def-
inition of the a and b terms ensures that if J € .#(I') \ {I,}, then either J < (a;_1, a;] or
J < [b;,bi_1) forsome 0 < i< M—1. Since &,(I') is a vertical translate of I" on these inter-
vals, J must be a hill interval of &, (I"). This shows .# (&,(I")) = £ ().
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Lastly, taking x = m in the first part gives .#(&(I')) = £ (') \ {I,}, and the second part of
the second assertion follows from the first since each application of & removes a single
hill interval and the height of a Motzkin path is at least one while hill intervals remain. [J

Proposition A.3. For any interval | <R*, f € Co(I), x,y € I, if f is constant on the interval
(x,yl<1, thengx(f) = gy(f)

Proof. Casing out according to whether t < x, x < £ <y, or t > y shows that

i, SO = i, T ) =
Proposition A.4. For any Motzkin path T and any x € N contained in a hill interval of T,
Exo A () = A o0&y (). In particular, & o A(I) = A o E().

Proof. Let m = m(T') and m* = m(/°(I')). Note that m < m* and that /(') is constant on
[m,m=]. Thus by Proposition A.3 with I = R*, it suffices to prove the first part. To this end,
we first note that for any k € N,
min [, - . min A1), = 1{ke I,}.
A

knx<y<kvx x<y<kvx

Indeed, #(I') =TI'—1 on I, so the left-hand side is 1 for all k € I,,. Now fix k ¢ I, and let
X« be the location of the leftmost minimum of I over the interval [k A x, kv x]. Then x, is
an integer which is not contained in any hill interval of I, so A (I')x, = I'y,. Moreover, x.
minimizes 7 (I') on [k A x, k v x] since the only integer points with #(I'), <T', are those
contained in a hill interval of I', in which case I'y, = T'y, + 1. This shows that the left-hand
side is O for k ¢ I, as desired.

In conjunction with Proposition A.2, we have

Ex(A M) = HAD)— min A(I),
knxsy<kvx
= D) - i I,+1{kel
Dk k/\xISnJ}gkvx Y the L

{gx(r)k -1 ke SIS _ e o).

ExM i otherwise
O

Now we prove Lemma 2.2.

Proof of Lemma 2.2. LetI be a Motzkin path and write A ; for the length of the j th column
of A(T') foreach 1 < j < p(I'). We show
Aj= max&’/ (D).

by induction on max I'. If the maximum is zero, then the assertion is trivial, so we may
assume that it holds for all Motzkin paths with maximum less than M € N. Now fix a path
I' with maxI' = M. The inductive hypothesis implies that the assertion holds for A#(I')
since it has maximum M — 1 = 0. Moreover, A(/(I')) is obtained by deleting the first row
of A(I'). Thus by Proposition A.4, we have

Aj—1=max&/ (A1)
= max#(&771(I)
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_ Jj-1
=max&’ (I)-1,

where the final equality used the second part of Proposition A.2 to ensure max&/~1(I') > 1
foranyl=<j<p@). (]

A.3. Regularity of the column length functionals. In this subsection we prove Lemma
2.3, establishing Lipschitz continuity of the ‘column length functionals’ max&/~!(-). The
general strategy is to show that the column length functionals satisfy a Lipschitz condi-
tion on Motzkin paths and then extend the result to arbitrary functions in Cyp(R*) by an
approximation argument. We begin by establishing some preparatory results.

Proposition A.5.
(i) Fixaninterval I <R, a point b € I, and functions f, g € Co(I). Then

1EL(f) = Ep(Z) oo = 211 f — §lloo-
(ii) Forany f, g€ Co(R*) whose graphs are Motzkin paths,
17(f) = # (@ lloo = I f — &lloo-

Proof. For (i), the triangle inequality gives

1EL(f) = Ep(@lloo < I f —8llow+| min f— min g|52||f—g||oo
[tAD,tvb] [tADb,tv D]

since the minima of two functions over a given interval can differ by no more than their
maximum difference over the interval.

For (ii), observe that the maximum distance between Motzkin paths is necessarily Ny-
valued and the claim is clearly true if f = g, so we may assume that H.if( f—-A(g) || w2l
Let

x* =max{xeN: |A#(f)x— (x| = 17(f) = (&)l oo}
and assume without loss of generality that #(f) y» > #(g)x+. If x* is not in a hill interval
of g, then g(x*) = #(g)x+ < #(f)x < f(x¥), s0
|7(f) - 2|, = |#(Px — (&)«
If x* is in a hill interval of both f and g, then

|#(f) = (@) | o = |7 (Par = 2@ x| = |(f(x) =1) = (g™ = 1)| < | f — &]| -

Finally, suppose that x* is in a hill interval [a, b] of g but is not in any hill interval of f.
Then g is constant on [a, b], so our choice of x* implies that f(x*) = f(y) for all y € [a, b].
By considering whether or not x* < b, we see that we must have f(x*+1) = f(x*)—-1. A
similar consideration of whether f(x*) = f(y) for all a < y < x* leads to the contradiction
that x* is in a hill interval of f. This proves the assertion. ]

=|f&H -6 =|f -8l

To state our next result, we say that a function ¢ : R — R is an affine scaling if ¢(x) =
ax+bforsome a >0, b € R. The set of all affine scalings forms a group under composition.
Given f € Cy(R) and an affine scaling ¢, we write ¢* (f) for the function f o ¢. A function
I': Z — Ny is an extended Motzkin pathif I'(n) = 0 for all n < 0 and I'ly, is a Motzkin path.
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Proposition A.6. For any fi, f> € Co(R) which are not identically zero and any € > 0, there
exist affine scalings ¢,y and extended Motzkin pathsI'y,T, such that ¢ (0) = 0 and fori =
1,2, the function f; = wo¢*([';) € Co(R) satisfies

Ifi— filoo<e and m(f;)=m(f).

Proof. By hypothesis, m(f1),m(f2) € (0,00). Also, the f;’s are uniformly continuous, so there
is some 6 > 0 such that |x — y| < 6 implies |fi(x) — i, 1 f2(x) — fo())| < €/4. Set s =
m(f1) —m(f2)| + H{m(f1) =m(f>)} and choose N large enough that A := s/2N < 8. Define the
lattice

L£={m(f1) + kA}kez-

Note that m(f1),m(f2) € £. Set a = 2A/e, £ = £n[0,00), and let ¢y denote the smallest
element of £7. Observe that 0 < ¢y < A by construction.
For i = 1,2, define the function y; : £ — £* by

() = o ife<¢
Y= Al(af;(£))IA1+ ¢y otherwise.

Note that a f; changes by no more than A/2 when the argument changes by no more than
A. In conjunction with the fact that f; = 0 on (-o00,0], f; = 0, and ¢, € [0,A), this implies
that y; is an extended Motzkin path on £. That s, y;(¢) = ¢ for all £ € £n (—o0, ¢y] and for
each ¢,¢' € £with |¢ —¢'| = A, we have y;(£) = ¢g and |y;(£) —y;(£')| € {0,A}.

Let ¢(x) = A-x+¢p. Then ¢ is an affine scaling which maps Z bijectively to £. Also
define the affine scaling o (x) = (x—¢¢)/a. By a slight abuse of notation, we will henceforth
let y; denote its extension to R by linear interpolation. Let I'; € Cy(R) be the extended
Motzkin path defined by I'; = ¢! 0y; 0 ¢. Now define

fi=i—to)la=oogoTiop™ =yoqp* Iy

where ¢ = g o@. Then Y (0) = o(fy) = 0 and m(fi) =mn(y;) = n(f;). For x € £, a direct
computation gives | f; (x) — fi(x)| < €/2. For x ¢ £, writing ¢, for the nearest lattice point to
X gives

- - - - A
(0 = i < 1 fi00 = il + 1 fi(lx) = i@l +1fi(€x) - Fo0)l < Z*?z ¢,

hence || f; — filloo < € as desired. O
We are now ready to prove Lemma 2.3.

Proofof Lemma 2.3. Fix j = 1. To begin, we observe that it is enough to show the as-
sertion for I = R. Indeed, for any I € R and any h € Cy(I), we can define a function
he Co(R) which equals & on I and drops linearly to zero on [b, b+ 1] where b is the right-
most boundary point of I. This construction ensures that max&’/~1(h) = max&/~1(h) and
11 = h2lloo = 171 — h2llco-

Next we show that the result holds if the graphs of f and g are (extended) Motzkin
paths by induction on m = max&/~!(f) + max&/~!(g). The assertion is trivial when j = 1
or m = 0. If max&’/71(f) = 1 and max&/~1(g) = 0, write m; := m(&/~1(f)). Let J = [a,b]
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be the excursion interval of &/~ (I') which contains m;. By Proposition A.2, T - &/~1(I') is
constant on J;. Hence we get

max&/ () =& (Hmp) - &)@ = f@m)) - f(a).
This yields
max&’ " (f) = fm) - f(@) < f(m)) - f(@) +|gm;)) - g(a)|
<|fm)-gmj)|+|f(@)-g@|=2lf-glo

By symmetry, the result also holds when m =1 and max&/~1(f) = 0, so we may assume
that max&/~1(f),max&/~1(g) = 1. As the maxima are necessarily attained on hill inter-
vals, Proposition A.4, the inductive hypothesis, and part (ii) of Proposition A.5 imply

max&/71(f) —mang‘l(g)| = |max]€oé?j_l(f) —maxifoé’j‘l(g)|
= |mang—1 o #(f) — max&’ ! oJf(g)‘

<22 - # @)oo =2/~ &l

This completes the proof for Motzkin paths.

Now we show the assertion for f,g € Cy(R) by induction on j = 1. The base case is
tautological. For the inductive step, choose v, ¢,I'1,T5, f, & as in Proposition A.6 with
fi = f, > = g. Then by the choice of f, Proposition A.4, the induction hypothesis, and
Proposition A.5 (i), we have

max&X(f) —maxéi’k(f)| = |max<§k_1 0 Eu(p)(f) —max&* 1o ) ()
< 16uip) () = En(p (Plloo
<2|If = flloo < 2¢,
and similarly for g. Also, since ¥(0) = 0, the triangle inequality gives
YT —T2lleo) =9l T1 = ¢ T2llo0)
=lyo@ Ti-yop T2leo
=1f - glloo<de+1f - gloo.
Lastly, observe that the functional max&* satisfies
max&¥(f;) =y omax&X(T)).
Thus in conjunction with the assertion for the Motzkin paths, we obtain
max&*(f) - maxgk(g)) <4e+ |max£k(f) - maxéok(g)|
<de +w(( max&¥ () —maxgk(rz)D
sd4e+y (1T —T2lloc) <8+ f — glloo-

Letting € \, 0 completes the inductive step and the proof. ([
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A.4. Statistics of 312-avoiding permutations. In this subsection, we provide proofs of
Propositions 7.2 and 7.3.

Denote by G231 the set of all 231-avoiding permutations of length n. Recall that a per-
mutation o is 312-avoiding iff its inverse 0! is 231-avoiding. In the proof of Proposition
7.2, we will make use of a bijection between Dyck paths of length 2n and 231-avoiding
permutations of length n, which was used by Hoffman, Rizzolo, and Silvken in their re-
cent work [9] studying random 231-avoiding permutations in terms of random walks and
Brownian excursions.

For a given h-restricted Motzkin path I', we define a permutation o (I') as follows: Let
vk be the location of the k™" upstroke of I'. (Thus if I' = I'(Xp), then vy is the location of the
k™ ball in Xo). Then we define a 231-avoiding permutation o (I') by

1
U(F)(k)=k+§sup{r20:1"vk+rzl“yk}+1—l“,,k. (A.1D)

When restricted to Dyck paths, this map I' — o (I') is shown to be a bijection between
Dyck,,, and G231 in [9].

% |0/1/0/0/0Oj2|1(2|0j2/2/0|0|0]|O

vy v, Uz 1, Vs Vg

FIGURE A.3. Construction of the 231-avoiding permutation o~! = 165243 di-
rectly from the corresponding Motzkin path I'(Xp) and rooted forest §(I'(Xp)).
On the left, the lengths of the red and orange paths correspond to the supremum
and I'y, terms in (A.1) for k = 3. On the right, the subtree rooted at v3 consists of
the four red nodes and the level of v3 is the number of edges in the orange path.
Thus (A.1) and (A.2) each show that 0! (3) = 5.

Remark A.7. For a given rooted forest §, a permutation o (§) can be defined similarly: Let
vt be the k™ non-root node in § according to the depth-first order and define

o (%) (k) := k + #{nodes in the subtree of § rooted at vy} — (level of v in §). (A.2)

This map naturally commutes with the map (A.1). Namely, let I be the h-restricted Motzkin
path which is a contour process of §. Then

o) =0(3).
See Figure A.3 for an illustration.

Proof of Proposition 7.2. We define a map ¢ : Dyck,, — G3'? by the compositions of the
following maps:
I—o@—o@™,
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where the first map is given by (A.1). Then being a composition of two bijections, ¢ is a
bijection from Dyck,,, to &3'2. This shows (i).
To show (ii), fix I € Dyck,,, and let Xy be the box-ball configuration obtained from I' by

Xo()=1TG+1)-T@H)=1)
for all i = 0. It then suffices to show that
o(Xp) =0 (@ L (A.3)

To this end, label the balls 1,..., n from left to right, and recall the push-pop stack con-
struction Xy — 0(Xp) described in Section 7. Fix a label 1 < k < n. We are going to track
the trajectory of ball k during the push-pop stack construction. Using the notation from
equation (A.1), ball k is at site v,. Note thatI';, equals the number of balls in the stack af-
ter the ball k is pushed into the stack. Hence the number of balls which have been popped
out in previous steps equals k —T';,. Next, while the stack sweeps sites to the right of vy,
balls with larger labels will be pushed in and popped out until ball k is finally deposited.
This happens precisely when I' first hits height I';, — 1 after location vy. Accordingly, the
number of balls that are deposited during the period when ball k is in the stack equals the
height of the subexcursion of I started at vy, which equals to half of the duration of this
excursion. Thus

1
# balls popped out before ball k = k-T',, + zsup{r >0:Ty4r =Ty}

Therefore, o (T') (k), which is one more than the above quantity, is the position of k in o (Xp)
as desired. O

Proof of Proposition 7.3. By induction on the length of the permutation, we suppose that
the assertion holds for all 312-avoiding permutation of length less than » for some n = 2,
and fix a 312-avoiding permutation 7 of length n. Using Proposition 7.2, choose a box-ball
configuration Xy and a Dyck path I' such that 7 = 0(Xp) and I" = I'(Xp).

By Greene’s theorem ([8]), we know that the length of the first row of RS(7) equals the
length of a longest increasing subsequence in 7. Since RS(7) = A(I'), we see that the length
of the longest increasing subsequence of T equals the number of peaks in I'.

Let X be the box-ball configuration obtained from X, by deleting all 10 patterns from
Xo, as in the proof of Lemma 2.1, and let I" = I'(X]) and 7' = 0(X{) be the h-restricted
Motzkin path and 312-avoiding permutation constructed from X, (see the commutative
diagram (A.4)). It is easy to see that I’ can be directly obtained from I by first applying the
hill-flattening operator ./ and then contracting new h-strokes which are not at height 0.
On the other hand, observe that 7’ can be obtained from 7 by deleting a longest increasing
subsequence.

T X ——T

L (A.4)

y V

T ~— X —1T'
To see this (we refer the readers to Figure A.3), let L be the number of 10 patterns in
Xo, which is the same as the number of peaks in I'. By the observation at the end of pre-
vious paragraph, we know that L equals the length of a longest increasing subsequence in
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7. When reading X from left to right, the i 10 pattern corresponds to the i deposite
of ball with label 7(i); then the stack-construction ensures that 7(1),7(2),---,7(L) is an in-
creasing sequence. Hence this sequence is a longest increasing subsequence of 7.

To complete the argument, recall that A(I") is obtained from A(I') by deleting the first
row. Since RS(r) = A(T') and RS(z’) = A(I”") by Proposition 7.1, we have that RS(z’) is ob-
tained from RS(7) by deleting its first row. Since 7’ can be obtained from 7 by deleting
a longest increasing subsequence, the inductive hypothesis applied to 7’ completes the
proof. U
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