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Abstract. The divisible sandpile starts with i.i.d. random variables (“masses”)
at the vertices of an infinite, vertex-transitive graph, and redistributes mass by
a local toppling rule in an attempt to make all masses ≤ 1. The process sta-
bilizes almost surely if m < 1 and it almost surely does not stabilize if m > 1,
where m is the mean mass per vertex. The main result of this paper is that in
the critical case m = 1, if the initial masses have finite variance, then the pro-
cess almost surely does not stabilize. To give quantitative estimates on a finite
graph, we relate the number of topplings to a discrete bi-Laplacian Gaussian
field.

1. Introduction

This paper is concerned with the dichotomy between stabilizing and exploding
configurations in a model of mass redistribution, the divisible sandpile model. The
main interest in this model is twofold. First, it is a natural starting place for the
analogous and more difficult dichotomy in the abelian sandpile model. Second,
the divisible sandpile itself leads to interesting questions in potential theory. For
example, under what conditions must a random harmonic function be an almost
sure constant? (Lemma 5.4 gives some sufficient conditions.) Both the motivation
for this paper and many of the proof techniques are directly inspired by the work
of Fey, Meester and Redig [FMR09].

By a graph G = (V,E) we will always mean a connected, locally finite and
undirected graph with vertex set V and edge set E. We write x ∼ y to mean that
(x, y) ∈ E, and deg(x) for the number of y such that x ∼ y. A divisible sandpile
configuration on G is a function s : V → R. We refer to s(x) as an amount of
‘mass’ present at vertex x; a negative value of s(x) can be imagined as a ‘hole’
waiting to be filled by mass. A vertex x ∈ V is called unstable if s(x) > 1. An
unstable vertex x topples by keeping mass 1 for itself and distributing the excess
s(x)−1 equally among its neighbors y ∼ x. At each discrete time step, all unstable
vertices topple simultaneously. (This parallel toppling assumption is mainly for
simplicity; in Section 2 we will relax it.) The following trivial consequence of
the toppling rule is worth emphasizing: if for a particular vertex x the inequality
s(x) ≥ 1 holds at some time, then it holds at all later times.
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Note that the entire system evolves deterministically once an initial condition
s is fixed. The initial s can be deterministic or random; below we will see one
example of each type. Write un(x) for the total amount of mass emitted before
time n from x to one of its neighbors. (By the symmetry of the toppling rule, it
does not matter which neighbor.) This quantity increases with n, so un ↑ u as
n ↑ ∞ for a function u : V → [0,∞]. We call this function u the odometer of s.
Note that if u(x) = ∞ for some x, then each neighbor of x receives an infinite
amount of mass from x, so u(y) =∞ for all y ∼ x. We therefore have the following
dichotomy:

Either u(x) <∞ for all x ∈ V ,

or u(x) =∞ for all x ∈ V .

In the former case we say that s stabilizes, and in the latter case we say that s
explodes.

The following theme repeats itself at several places: The question of whether
s stabilizes depends not only on s itself but also on the underlying graph. For
instance, fixing a vertex o, we will see that the divisible sandpile

s(x) =

{
1 x 6= o

2 x = o

stabilizes onG if and only if the simple random walk onG is transient (Lemma 2.9).
Our main result treats the case of initial masses s(x) that are independent

and identically distributed (i.i.d.) random variables with finite variance. Write
Es and Var s for the common mean and variance of the s(x). The mean Es is
sometimes called the density (in the physical sense of the word, mass per unit
volume). Because sites topple when their mass exceeds 1, intuition suggests that
the density should be the main determiner of whether or not s stabilizes: the
higher the density, the harder it is to stabilize. Indeed, we will see that s stabilizes
almost surely if Es < 1 (Lemma 4.2) and explodes almost surely if Es > 1 (Lemma
4.1). Our main result addresses the critical case Es = 1.

Theorem 1.1. Let s be an i.i.d. divisible sandpile on an infinite, vertex-transitive
graph, with Es = 1 and 0 < Var s <∞. Then s almost surely does not stabilize.

Our theme that ‘stabilizability depends on the underlying graph’ repeats again
in the proof of Theorem 1.1. The proof splits into three cases depending on the
graph. The cases in increasing order of difficulty are

• recurrent (Lemma 4.4). Examples: Z,Z2.
• transient with

∑
x∈V g(o, x)2 =∞ (Section 5.1). Examples: Z3,Z4.

• transient with
∑

x∈V g(o, x)2 <∞ (Section 5.2). Examples: Zd with d ≥ 5.

Here g denotes Green’s function: g(o, x) is the expected number of visits to x by
a simple random walk started at o. The reason for the order of difficulty is that
‘stabilization is harder in lower dimensions,’ in a sense formalized by Theorem 1.2
below.
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1.1. Potential theory of real-valued functions. The graph Laplacian ∆ acts
on functions u : V → R by

∆u(x) =
∑
y∼x

(u(y)− u(x)). (1)

Using a ‘least action principle’ (Proposition 2.5), the question of whether a divisible
sandpile stabilizes can be reformulated as a question in potential theory:

Given a function s : V → R, does there exist a nonnegative function
u : V → R such that s+ ∆u ≤ 1 pointwise?

1.2. Potential theory of integer-valued functions. In the related abelian
sandpile model, configurations are integer-valued functions s : V → Z. We think
of s(x) as a number of particles present at x. A vertex x ∈ V is unstable if it has
at least deg(x) particles. An unstable site x topples by sending one particle to
each of its deg(x) neighbors. This model also has a dichotomy between stabilizing
(u <∞) and exploding (u ≡ ∞), which can be reformulated as follows:

Given a function s : V → Z, does there exist a nonnegative function
u : V → Z such that s+ ∆u ≤ deg−1 pointwise?

The restriction that u must be integer-valued introduces new difficulties that
are not present in the divisible sandpile model. The first step in the proof of
Theorem 1.1 is to argue that if Es = 1 and s stabilizes, then it necessarily stabi-
lizes to the all 1 configuration. This step fails for the abelian sandpile except in
dimension 1. Indeed, a result analogous to Theorem 1.1 does hold for the abelian
sandpile when the underlying graph is Z [FMR09, Theorem 3.2], but no such result
can hold in higher dimensions: The density Es alone is not enough to determine
whether an abelian sandpile s on Zd stabilizes, if d < Es < 2d − 1 (see [FR05,
Section 5], [FMR09, Theorem 3.1] and [FLP10, Proposition 1.4]; the essential idea
in these arguments arose first in bootstrap percolation [Ent87, Sch92]).

We would like to highlight an open problem: Given a probability distribution µ
on Z (say, supported on {0, 1, 2, 3, 4} with rational probabilities) is it algorithmi-
cally decidable whether the i.i.d. abelian sandpile on Z2 with marginal µ stabilizes
almost surely?

1.3. Quantitative estimates and bi-Laplacian field. For a finite connected
graph G = (V,E), the divisible sandpile s : V → R stabilizes if and only if∑

x∈V s(x) ≤ |V |. Our next result gives the order of the odometer in a critical
case when this sum is exactly |V |. Specifically, to formalize the idea that ‘stabi-
lization is harder in lower dimensions,’ we take an identically distributed Gaussian
initial condition on the discrete torus Zdn, conditioned to have total mass nd. The
expected odometer can be taken as an indication of difficulty to stabilize: How
much mass must each site emit on average? According to equation (2) below, the
expected odometer tends to ∞ with n in all dimensions (reflecting the failure to
stabilize on the infinite lattice Zd) but it decreases with dimension.
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Theorem 1.2. Let (σ(x))x∈Zdn be i.i.d. N(0, 1), and consider the divisible sandpile

sd,n(x) = 1 + σ(x)− 1

nd

∑
y∈Zdn

σ(y).

Then sd,n : Zdn → R stabilizes to the all 1 configuration, and there exists a constant
Cd such that the odometer ud,n satisfies

C−1
d φd(n) ≤ Eud,n(x) ≤ Cdφd(n)

for all n ≥ 2, where φd is defined by

φd(n) :=



n3/2, d = 1

n, d = 2

n1/2, d = 3

log n, d = 4

(log n)1/2, d ≥ 5.

(2)

The first step in computing these orders is proving an equality in law between
the odometer ud,n and a certain ‘discrete bi-Laplacian Gaussian field’ shifted to
have minimum value 0. This equality in law actually holds for any finite connected
graph, as detailed in the next proposition.

Proposition 1.3. Let G = (V,E) be a finite connected graph. Let (σ(x))x∈V be
i.i.d. N(0, 1), and consider the divisible sandpile

s(x) = 1 + σ(x)− 1

|V |
∑
y∈V

σ(y).

Then s stabilizes to the all 1 configuration, and the distribution of its odometer
u : V → [0,∞) is

(u(x))x∈V
d
= (η(x)−min η)x∈V

where the η(x) are jointly Gaussian with mean zero and covariance

E[η(x)η(y)] =
1

deg(x) deg(y)

∑
z∈V

g(z, x)g(z, y)

where g is defined by g(x, y) = 1
|V |
∑

z∈V g
z(x, y) and gz(x, y) is the expected num-

ber of visits to y by the simple random walk started at x before hitting z.

Proposition 1.3 suggests the possibility of a central limit theorem for the di-
visible sandpile odometer on Zdn: We believe that if σ is identically distributed
with zero mean and finite variance, then the odometer, after a suitable shift and
rescaling, converges weakly as n→∞ to the bi-Laplacian Gaussian field on Rd.
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1.4. Proof ideas. By conservation of density (Proposition 3.1) the assumption
Es = 1 implies that if s stabilizes then it must stabilize to the all 1 configuration,
so that the odometer u satisfies

∆u = 1− s. (3)

where ∆ is the Laplacian (1). This relation leads to a contradiction in one of three
ways:

• IfG is recurrent (examples: Z,Z2), then 1+βδo does not stabilize (Lemma 2.9).
By resampling the random variable s(o) we derive a contradiction from (3).
• If G is simply transient (examples: Z3,Z4) then we can attempt to solve

(3) for u, writing

u(y) =
∑
x

g(x, y)(s(x)− 1) (4)

where g is Green’s function. The sum on the right side diverges a.s. if taken
over all x ∈ V (since g(·, y) is not square-summable) but we can stabilize
s in nested finite subsets Vn ↑ V instead. The corresponding finite sums,
suitably normalized, tend in distribution to a mean zero Gaussian by the
Lindeberg central limit theorem, contradicting the nonnegativity of u(y).
• If G is doubly transient (example Zd for d ≥ 5) then the right side of (4)

converges a.s.. The difference between the left and right sides is then a
random harmonic function with automorphism-invariant law. The proof
is completed by showing that under mild moment assumptions any such
function is an almost sure constant (Lemma 5.4).

1.5. Related work. The divisible sandpile was introduced in [LP09, LP10] to
study the scaling limits of two growth models, rotor aggregation and internal
DLA. The divisible sandpile has also been used as a device for proving an exact
mean value property for discrete harmonic functions [JLS13, Lemma 2.2]. These
works focused on sandpiles with finite total mass on an infinite graph, in which
case exploding is not a possibility. In the present paper we expand the focus to
sandpiles with infinite total mass.

The abelian sandpile has a much longer history: it arose in statistical physics
as a model of ‘self-organized criticality’ (SOC) [BTW87, Dha90]. The dichotomy
between stabilizing and exploding configurations arose in the course of a debate
about whether SOC does or does not involve tuning a parameter to a critical value
[FR05, MQ05]. Without reopening that particular debate, we view the stabiliz-
ing/exploding dichotomy as a topic with its own intrinsic mathematical interest.
An example of its importance can be seen in the partial differential equation for
the scaling limit of the abelian sandpile on Z2, which relies on a classification of
certain ‘quadratic’ sandpiles according to whether they are stabilizing or exploding
[LPS12].

The Gaussian vector η in Proposition 1.3 can be interpreted as a discrete bi-
Laplacian field. In Zd for dimensions d ≥ 5, Sun and Wu construct another discrete
model for the bi-Laplacian field by assigning random signs to each component of
the uniform spanning forest [SW13].
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2. Toppling procedures and stabilization

In this section G = (V,E) is a locally finite, connected, undirected graph.
Denote by X = RV the set of divisible sandpile configurations on G.

Definition 2.1. Let T ⊂ [0,∞) be a well-ordered set of toppling times such that
0 ∈ T and T is a closed subset of [0,∞). A toppling procedure is a function

T × V → [0,∞)

(t, x) 7→ ut(x)

satisfying for all x ∈ V
(1) u0(x) = 0.
(2) ut1(x) ≤ ut2(x) for all t1 ≤ t2.
(3) If tn ↑ t, then utn(x) ↑ ut(x).

In the more general toppling procedures considered by Fey, Meester and Redig
[FMR09], the assumption that T is well-ordered becomes a “no infinite backward
chain” condition, but we will not need that level of generality. See Examples 1-3
below for the three specific toppling procedures we will use.

The interpretation of a toppling procedure is that starting from an initial con-
figuration s ∈ X , the total mass emitted by a site x ∈ V to each of its neighbors
during the time interval [0, t] is ut(x), so that the resulting configuration at time
t is

st = s+ ∆ut

where ∆ is the graph Laplacian (1).
For a ∈ R write a+ = max(a, 0). For t ∈ T write t− := sup{r ∈ T : r < t}.

Note that t− ∈ T since T is closed.

Definition 2.2. A toppling proceedure u is called legal for initial configuration s
if

ut(x)− ut−(x) ≤ (st−(x)− 1)+

deg(x)

for all x ∈ V and all t ∈ T \ {0}.

Thus, in a legal toppling procedure, a site with mass ≤ 1 cannot emit any mass,
while a site with mass > 1 must keep at least mass 1 for itself.

Definition 2.3. A toppling procedure u is called finite if for all x ∈ V we have

u∞(x) := lim
t→supT

ut(x) <∞

and infinite otherwise. The limit exists in [0,∞] since ut(x) is nondecreasing in t.

Note that if u is a finite toppling procedure, then the limit

s∞ := lim
t→supT

st = s+ lim
t→supT

∆ut

exists and equals s+ ∆u∞.
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Definition 2.4. Let s ∈ X . A toppling procedure u is called stabilizing for s if u
is finite and s∞ ≤ 1 pointwise. We say that s stabilizes if there exists a stabilizing
toppling procedure for s.

Throughout this paper, all inequalities between functions hold pointwise, and
we will usually omit the word “pointwise.”

A basic question arises: For which s ∈ X does there exist a stabilizing top-
pling procedure? For instance, one might expect (correctly) that there is no such
procedure for s ≡ 2. We can rephrase this question in terms of the set of functions

Fs := {f : V → R | f ≥ 0 and s+ ∆f ≤ 1}.
If u is a stabilizing toppling procedure for s, then u∞ ∈ Fs. Conversely, any f ∈ Fs
arises from a stabilizing toppling procedure for s simply by setting T = {0, 1} and
u1 = f . Therefore s stabilizes if and only if Fs is nonempty.

Proposition 2.5. (Least action principle and abelian property) Let s ∈ X , and
let ` be a legal toppling procedure for s.

(i) For all f ∈ Fs,
`∞ ≤ f.

(ii) If u is any stabilizing toppling procedure for s, then

`∞ ≤ u∞.
(iii) If u is any legal stabilizing toppling procedure for s, then for all x ∈ V ,

u∞(x) = inf{f(x) | f ∈ Fs} (5)

In particular, u∞ and the final configuration

s∞ = s+ ∆u∞

do not depend on the choice of legal stabilizing toppling procedure u.

Proof. (i) For y ∈ V let τy = inf{t ∈ T : `t(y) > f(y)}, and suppose for a
contradiction that τy < ∞ for some y ∈ V . Since T is well-ordered, the infimum
is attained. Moreover, τ−y := sup{t ∈ T : t < τy} < τy by assumption (3) of
Definition 2.1.

Let τ = infy∈V τy. Since T is well-ordered, τ = τy for some y ∈ V . Now at time
τ−, since u is legal for s,

sτ−(y) ≥ 1 + deg(y) (`τ (y)− `τ−(y)) > 1 + deg(y)w(y)

where w = f − `τ− . On the other hand,

sτ−(y) = (s+ ∆`τ−)(y)

= (s+ ∆f)(y)−∆w(y)

≤ 1 + deg(y)w(y)−
∑
x∼y

w(x).

It follows that
∑

x∼y w(x) < 0. But for all x ∈ V we have τ− < τ ≤ τx, so

w(x) ≥ 0, which yields the required contradiction.
Part (ii) follows from (i), using f = u∞.
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Part (iii) also follows from (i): the function u∞ simultaneously attains the
infimum for all x ∈ V . �

Whenever we need to fix a particular toppling procedure, we will choose one of
the following three.

Example 1. (Toppling in parallel) Let T = N. At each time t ∈ N, all unstable
sites of st−1 topple all of their excess mass simultaneously: For all x ∈ V ,

ut(x)− ut−1(x) =
(st−1(x)− 1)+

deg(x)
.

This u is a legal toppling procedure. Two further observations about u will be
useful in the proof of Lemma 2.7 below. First, if s stabilizes, then u is finite by
Proposition 2.5(ii). Second, whenever u is finite, u is stabilizing for s: indeed, if
u∞(x) = 1

deg(x)

∑
t∈N(st(x) − 1)+ < ∞, we have (st(x) − 1)+ → 0 as t → ∞ and

hence s∞(x) ≤ 1.

Example 2. (Toppling in nested volumes) Let V1 ⊂ V2 ⊂ . . . be finite sets with⋃
n≥1 Vn = V . Between times n − 1 and n we topple in parallel to stabilize all

sites in Vn: Formally, we take T to be the set of all rationals of the form n− 1
k for

positive integers n and k. For n ≥ 1 and k ≥ 1 we set

un− 1
k
(x)− un− 1

k−1
(x) =

(sn− 1
k−1

(x)− 1)+ · 1x∈Vn
deg(x)

and

un(x) = lim
k→∞

un− 1
k
(x).

Example 3. (Toppling in two stages) In this procedure we are given a decomposi-
tion of the initial configuration into two pieces

s = s1 + s2

where s1 stabilizes and s2 ≥ 0. In the first stage we ignore the extra mass s2 and
stabilize the s1 piece by toppling in parallel at times 1− 1

k for positive integers k,
obtaining

s1 = s+ ∆u1
∞ = s1

∞ + s2.

The condition that s1 stabilizes ensures u1
∞ <∞, and the condition s2 ≥ 0 ensures

that all topplings that are legal for s1 are also legal for s. Now we topple s1
∞ + s2

in parallel at times 2− 1
k for positive integers k.

Now we come to a central definition of this paper. Let s ∈ X .

Definition 2.6. The odometer of s is the function u∞ : V → [0,∞] of (5). If s
stabilizes, then its stabilization is the configuration

s∞ = s+ ∆u∞.
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If s stabilizes, then its odometer u∞(x) is the total amount of mass sent from x
to one of its neighbors, in any legal stabilizing toppling procedure for s. If s does
not stabilize, then u∞ ≡ ∞: The odometer is defined as a pointwise infimum, with
the usual convention that the infimum of the empty set is ∞. Next we observe
that the odometer can also be expressed as a pointwise supremum.

Lemma 2.7. Let u∞ be the odometer of s ∈ X . Then for all x ∈ V ,

u∞(x) = sup{`∞(x) | ` is a legal toppling procedure for s}. (6)

Proof. Denote the right side of (6) by L(x). By Proposition 2.5(i), L ≤ u∞. To
prove the reverse inequality we will use a particular legal `, the parallel toppling
procedure of Example 1. There are two cases: First, if this ` is finite, then ` is
stabilizing as well as legal, so L ≥ `∞ = u∞ by Proposition 2.5(iii).

Second, if ` is not finite, then `∞(o) =∞ for some o ∈ V . Then for any neighbor
x ∼ o, we have

`t+1(x) ≥ `t(o) + s(x)− 1

and the right side tends to ∞ with t, so `∞(x) = ∞. Since the graph G is
connected it follows that `∞ ≡ ∞. In this case, both L and u∞ are identically
∞. �

We pause to record several equivalent conditions for s stabilizing.

Corollary 2.8. Let s ∈ X have odometer u∞. The following are equivalent.

(1) There exists a legal stabilizing toppling procedure for s.
(2) There exists a stabilizing toppling procedure for s.
(3) Fs 6= ∅.
(4) u∞(x) <∞ for all x ∈ V .
(5) Every legal toppling procedure for s is finite.
(6) The parallel toppling procedure for s is finite.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) and (5)⇒ (6) are immediate from
the definitions. The implication (4) ⇒ (5) follows from Lemma 2.7. Finally, let
u be the parallel toppling procedure for s. If u is finite, then u is both legal and
stabilizing for s, which shows the remaining implication (6)⇒ (1). �

Denote by Po the law of the discrete time simple random walk (Xj)j∈N on
G started at X0 = o. Writing pj(x) = Po(Xj = x)/deg(x), observe that the
Laplacian (1) of pj satisfies

∆pj(x) =
∑
y∼x

(
Po(Xj = y)

deg(y)
− Po(Xj = x)

deg(x)

)
=
∑
y∼x

Po(Xj = y,Xj+1 = x)− Po(Xj = x)

= deg(x)(pj+1(x)− pj(x)). (7)

The next lemma will play an important role in the proof of the recurrent case of
Theorem 1.1. It relates the stabilizability of a particular configuration s to the
transience of the simple random walk.
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Lemma 2.9. Fix o ∈ V and β > 0. The divisible sandpile

s(x) =

{
1, x 6= o

1 + β, x = o

stabilizes on G if and only if the simple random walk on G is transient.

Proof. We compute the parallel toppling procedure ut and the configuration st at
time t of Example 1. Setting pt(x) = Po(Xt = x)/ deg(x), let us show by induction
on t that

ut(x) = β
t−1∑
j=0

pj(x) (8)

and

st(x) = 1 + β deg(x)pt(x) (9)

for all x ∈ V and all t ∈ N. Indeed, if (8) holds at time t, then summing (7) we
obtain

st = s+ ∆ut = s+ β deg(x)(pt − p0) = 1 + β deg(x)pt

so (9) holds at time t, whence

ut+1(x)− ut(x) =
(st(x)− 1)+

deg(x)
= βpt(x)

so (8) holds at time t+ 1, completing the inductive step.
Taking t ↑ ∞ in (8) yields u∞(x) = βg(o, x)/deg(x) where

g(o, x) =
∞∑
j=0

Po(Xj = x) (10)

is the Green function of G, which is finite if and only if G is transient.
IfG is transient, then the parallel toppling procedure u is finite and s+∆u∞ ≡ 1,

so s stabilizes. If G is recurrent, then the parallel toppling procedure is infinite,
so s does not stabilize by Corollary 2.8. �

3. Conservation of density

In this section we assume that G = (V,E) is vertex-transitive, and we fix
a subgroup Γ of Aut(G) that acts transitively: for any x, y ∈ V there is an
automorphism α ∈ Γ such that αx = y. For the rest of the paper, we assume
o ∈ V be an arbitrary fixed vertex. Write X = RV (viewed as a measurable space
with the Borel σ-field) and Tα : X → X for the shift (Tαf)(x) = f(α−1x). Let
P be a probability measure on X satisfying E|s(o)| < ∞. We assume that P is
Γ-invariant; that is, if s has distribution P then Tαs has distribution P for all
α ∈ Γ.

Proposition 3.1. (Conservation of Density) If P is Γ-invariant and P{s stabilizes} =
1, then the stabilization s∞ satisfies

Es∞(o) = Es(o).
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Fey, Meester and Redig [FMR09] used an ergodic theory argument to prove the
conservation of density for the abelian sandpile on Zd when Γ is the group of trans-
lations. They considered only nonnegative initial conditions: s ≥ 0. We will give
an elementary proof which starts in the same way, by choosing an automorphism-
invariant toppling procedure (toppling in parallel) and uses the following observa-
tion about averages of uniformly integrable random variables.

Lemma 3.2. If X is a random variable with E|X| < ∞, and X1, X2, . . . is any

sequence of random variables such that Xi
d
= X for all i, then the family

S = {a1X1 + . . .+ akXk | k ≥ 1, ai ≥ 0,
∑

ai = 1}

is uniformly integrable.

Proof. We may assume X ≥ 0. Given ε > 0, we must show that there is a δ > 0
so that for any set A with P(A) < δ we have E(Y 1A) < ε for all Y ∈ S.

Since EX <∞, there is such δ for X itself: choose M so that E(X1{X>M}) < ε
and then set δ = P(X > M). Now for any set A with P(A) < δ and any Y =∑
aiXi ∈ S

E[Y 1A] =

k∑
i=1

aiE[Xi1A] < ε

so the same δ works for all Y ∈ S. �

Proof of Proposition 3.1. We topple in parallel: at each time step t = 0, 1, . . .,
each site x ∈ V distributes all of its excess mass σt(x) = (st(x) − 1)+ equally
among its r neighbors where r is the common degree of all vertices in G. The
resulting configuration after t time steps is

st = s0 + ∆ut.

where ut = r−1(σ0 + . . . + σt−1). Since P{s stabilizes} = 1 we have st(o) →
s∞(o), a.s.. We will show that the random variables σt(o) for t ∈ N are uniformly
integrable. To finish the proof from there, note that the law of ut is Γ-invariant,
so Eut(x) = Eut(y) for all x, y ∈ V . In particular, E∆ut(o) = 0 and hence
Est(o) = Es0(o) for all t < ∞. Since st ≥ min(s0, 1) the uniform integrability of
σt(o) implies that of st(o), so we conclude Es∞(o) = Es0(o).

At time step t the origin retains mass ≤ 1 and receives mass σt−1(y)/r from
each neighbor y, so

st(o) ≤ 1 +
∑
x∼o

σt−1(x)

r

hence

σt(o) ≤
1

r

∑
x∼o

σt−1(x).

Inducting on t we find that

σt(o) ≤ Yt :=
∑
x∈V

at(x)σ0(x)
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where at(x) is the probability that a t-step simple random walk started at o ∈ V
ends at x. By Lemma 3.2 the random variables Yt are uniformly integrable, which
completes the proof. �

We remark that the above proof also applies to the abelian sandpile to show
[FMR09, Lemma 2.10], by taking σt(x) = bst(x)+/rc, the number of times x
topples at time t.

4. Behavior at critical density

In this section G = (V,E) is an infinite vertex-transitive graph, o ∈ V is a fixed
vertex, Γ ⊂ Aut(G) is a group of automorphisms that acts transitively V , and P is
a Γ-invariant and ergodic probability measure on X = RV with E|s(o)| <∞. The
event that s stabilizes is Γ-invariant, so it has probability 0 or 1 by ergodicity.

Lemma 4.1. If Es(o) > 1, then P{s stabilizes} = 0.

Proof. If s stabilizes, then by conservation of density (Proposition 3.1), we have
Es∞(o) = Es(o). Since the final configuration s∞ is stable we have s∞(o) ≤ 1, so
Es(o) ≤ 1. �

Lemma 4.2. If Es(o) < 1 then P{s stabilizes} = 1.

Proof. We will show the contrapositive. We will use the observation made in the
introduction that if st(o) ≥ 1 for some time t then sT (o) ≥ 1 for all T ≥ t.

Consider first the case that s is bounded below: P(s(o) ≥ M) = 1 for some
M ∈ (−∞, 0]. Define ut and st by toppling in parallel as in §3. Supposing that
P{s stabilizes} = 0, we have ut(o) > 0 for some sufficiently large t, a.s.; this fact is
contained in the proof of Lemma 2.7. Since ut(o) > 0 implies st(o) ≥ 1 and hence
sT (o) ≥ 1 for all T ≥ t, we have

P
{

lim inf
t→∞

st(o) ≥ 1
}

= 1.

Since st ≥ min(s, 1) ≥ M , by Fatou’s lemma E
(

lim inf
t→∞

st(o)
)
≤ Es(o), which

shows Es(o) ≥ 1 as desired.
Now we use a truncation argument to reduce the general case to case where s is

bounded below. Choose sufficiently small M ∈ (−∞, 0] such that Es(o)1s(o)≥M <
1. By the previous case the configuration s1s≥M stabilizes almost surely. Since
s ≤ s1s≥M , we have that s stabilizes almost surely. �

If s stabilizes then the odometer of s is the function u∞ : V → [0,∞), where
u is any legal stabilizing toppling procedure for s.

Lemma 4.3. If s has Γ-invariant law P and P{s stabilizes} = 1, then the odometer
u∞ has Γ-invariant law. Moreover, if Es(o) = 1 then s∞ ≡ 1 and ∆u∞ = 1− s.
Proof. We use (5) along with the fact that ∆ commutes with Tα: if s + ∆f ≤ 1
then Tαs+ ∆(Tαf) = Tα(s+ ∆f) ≤ 1, so if u∞ is the odometer for s then Tαu∞
is the odometer for Tαs.

By conservation of density (Proposition 3.1), Es∞(o) = 1. Since s∞ ≤ 1 it
follows that s∞ ≡ 1, and hence ∆u∞ = 1− s. �
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In the case that G is recurrent we can prove our main theorem with no moment
assumption, using an “extra head” construction.

Lemma 4.4. Suppose that G is an infinite, recurrent, vertex-transitive graph and
{s(x)}x∈V are i.i.d. with Es(x) = 1 and P{s(x) = 1} 6= 1. Then

P{s stabilizes} = 0.

Proof. Let S ⊂ X denote the set of configurations that stabilize. By ergodicity,
P(S) ∈ {0, 1}. We will show that if P(S) = 1, then the graph G must be transient.
Let s : V → R denote an i.i.d. configuration with the given distribution such that
Es = 1, and fix a vertex o ∈ V . We create a new i.i.d. configuration s′ with the
same law as s, by independently resampling s(o) from the same distribution. Then
s′ = s+βδo, where δo(x) = 1{x = o} and β is a mean zero random variable. Since
Var s > 0, we have that P(β > 0) > 0. Using P(S) = 1 along with Lemma 4.3,
there exist s : V → R and β > 0 such that s and s+ βδo both stabilize to the all
1 configuration. By toppling s + βδo in two stages (Example 3), it follows that
1 + βδo stabilizes to 1, so G is transient by Lemma 2.9. �

In the preceding lemma the hypothesis that s is i.i.d. can be substantially weak-
ened: The proof uses only the fact that with positive probability, the conditional
distribution of s(o) given {s(x)}x 6=o is not a single atom.

5. Proof of Theorem 1.1

5.1. Singly transient case. Recall Green’s function (10). In this section we
assume that g(o, y) <∞ for all y ∈ V but∑

y∈V
g(o, y)2 =∞. (11)

Define Vn = {x ∈ V : d(x, o) ≤ n} where d is the graph distance. Then V1 ⊂
V2 ⊂ . . . are finite sets with

⋃
n≥1 Vn = V . Let gn(x, y) be the expected number

of visits to y by simple random walk started at x and killed on exiting Vn. By the
monotone convergence theorem, for fixed x, y ∈ V we have

gn(x, y) ↑ g(x, y)

as n→∞. In particular, setting

νn :=

∑
y∈Vn

gn(o, x)2

1/2

we have νn ↑ ∞ as n→∞ by (11).
The proof of the following lemma is inspired by [FR05, Theorem 3.1] and

[FMR09, Theorem 3.5].

Lemma 5.1. Let G = (V,E) be singly transient (11), vertex transitive graph. Let
{s(x)}x∈V be i.i.d. with Es = 1 and Var s <∞. If

1

νn

∑
x∈Vn

gn(o, x)(s(x)− 1)
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converges in distribution as n→∞ to a nondegenerate normal random variable Z,
then P{s stabilizes} = 0.

Proof. Assume to the contrary that s stabilizes a.s.. Let u be the nested volume
toppling procedure (Example 2). Then for each n ∈ N,

s+ ∆un = ξn on Vn (12)

with ξn ≤ 1 on Vn. Equation (12) can be rewritten as

un(y) = r−1
∑
x∈Vn

gn(x, y)(s(x)− 1) + r−1
∑
x∈Vn

gn(x, y)(1− ξn(x))

where r is the common degree (both sides have Laplacian ξn−s in Vn and vanish on
V c
n ). Observe that the second term is a nonnegative random variable. Therefore,

for any ε > 0

P{un(o) > ενn} ≥ P

{
1

νn

∑
x∈Vn

gn(o, x)(s(x)− 1) > rε

}
. (13)

Since u is a legal toppling procedure and we have assumed that s stabilizes a.s.,
we have u∞(o) < ∞, a.s.. Now since un(o) ↑ u∞(o) and νn ↑ ∞, the left side of
(13) tends to zero as n → ∞. However, the right side tends to a positive limit
P (Z > rε) > 0, which gives the desired contradiction. �

To complete the proof of Theorem 1.1 in the singly transient case, it remains
to show that 1

νn

∑
x∈Vn gn(o, x)(s(x)− 1) converges in distribution to a nondegen-

erate normal random variable. We show this using Lindeberg-Feller central limit
theorem as follows.

Lemma 5.2. Let {Xn1 : n ≥ 1; i = 1, . . . , kn} be a triangular array of identically
distributed random variables such that for each n ∈ N, {Xni : i = 1, . . . , kn} is
independent. Assume that E[X11] = 0 and E[X2

11] = 1. Let ank > 0 be such that∑kn
k=1 a

2
nk = 1 and limn→∞ bn = 0 where bn = max1≤k≤kn ank. Then the sequence

Yn =
∑kn

k=1 ankXnk converges in distribution to standard normal random variable
as n→∞.

Proof. By Lindeberg-Feller central limit theorem [Bil95, Theorem 27.2] it suffices
to check the Lindeberg condition:

lim
n→∞

kn∑
k=1

E[a2
nkX

2
nk1|ankXnk|>ε] = 0

for all ε > 0. Since E[X2
nk1|ankXnk|>ε] ≤ E[X2

111|X11|>ε/bn ] and
∑

k a
2
nk = 1, we have

lim
n→∞

kn∑
k=1

E[a2
nkX

2
nk1|ankXnk|>ε] ≤ lim

n→∞
E[X2

111|X11|>ε/bn ] = 0

because limn→∞ bn = 0 and E[X2
11] = 1. �
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Lemma 5.3. Let G = (V,E) be a singly transient (11), vertex transitive graph.
Suppose {s(x)}x∈V are i.i.d. random variables with Es = 1 and 0 < Var s < ∞.
Then P{s stabilizes} = 0.

Proof. Since g(o, o) <∞ and νn ↑ ∞, we have

lim
n→∞

max
x∈Vn

gn(o, x)

νn
= lim

n→∞

gn(o, o)

νn
≤ lim

n→∞

g(o, o)

νn
= 0.

For n ∈ N and x ∈ Vn, define Xnx = (s(x) − 1)/
√

Var s and anx = gn(o,x)
νn

and
bn = maxx∈Vn anx. By Lemma 5.2, we have that

1

νn

∑
x∈Vn

gn(o, x)(s(x)− 1)

converges in distribution to a normal random variable with mean 0 and variance
Var(s). Lemma 5.1 implies the desired conclusion. �

5.2. Doubly transient case. We start by outlining our proof strategy. Recall
from Lemma 4.3 that if s stabilizes with Es(o) = 1 then it must stabilize to the
constant configuration s∞ ≡ 1. In particular, the odometer u∞ satisfies ∆u∞ =
1 − s. In Lemma 5.5 below, by convolving s − 1 with Green’s function we can
build an explicit function v with Laplacian 1−s; the convolution is defined almost
surely provided that ∑

y∈V
g(o, y)2 <∞. (14)

(This condition says that the expected number of collisions of two independent
random walks started at o is finite. The essential feature of Green’s function here
is of course that

∆g(·, y) = −rδy (15)

where r is the common degree of all vertices of G, and δy(x) = 1{x = y}.)
Having built the function v, the difference v − u∞ is then a random harmonic

function with Γ-invariant law, which must be an almost sure constant by the
following lemma.

Lemma 5.4. (Harmonic Functions With Invariant Law) Let Γ be a group of
automorphisms of G that acts transitively on the vertex set V . Suppose that h :
V → R has Γ-invariant law and ∆h ≡ 0. If h can be expressed as a difference of
two functions h = v − u where u ≥ 0 and supx∈V Ev(x)+ < ∞, then h is almost
surely constant.

Proof. Let (Xn)n≥0 be simple random walk on G started at X0 = o. Although h is
harmonic, h(Xn) need not be a martingale since it need not have finite expectation.
But for any a ∈ R, since h = v − u and u ≥ 0, the truncation

Mn := a+ (h(Xn)− a)+

: ≤ a+ (v(Xn)− a)+
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has finite expectation. Since the function t 7→ (t− a)+ is convex, x 7→ (h(x)− a)+

is subharmonic, so Mn is a submartingale:

E[Mn+1|h,X0, . . . , Xn] =
1

r

∑
w∼Xn

(a+ (h(w)− a)+) ≥Mn.

A submartingale bounded in L1 converges almost surely [Wil91, 11.5]. Since this
holds for any a ∈ R it follows that h(Xn) converges almost surely. But since h has
Γ-invariant law, h(Xn) is a stationary sequence, so the only way it can converge
a.s. is if h(Xn) = h(X0) for all n. Since G is connected, for any vertex x ∈ V there
exists n with P(Xn = x) > 0, so h(x) = h(o). �

Lemma 5.5. Let Γ be a countable subgroup of Aut(G) which acts transitively on
the vertices of V . Suppose {σ(x)}x∈V are i.i.d. random variables with Eσ(x) = 0
and 0 < Varσ(0) < ∞ Let y1, y2, . . . be an enumeration of the vertex set of G.
For α ∈ Γ, let

vα(x) :=
1

r

∞∑
i=1

g(x, αyi)σ(αyi). (16)

If G is doubly transient (14), then the following hold almost surely.

(a) The series defining vα(x) converges for all x ∈ V, α ∈ Γ.
(b) vα = vβ for all α, β ∈ Γ.
(c) ∆ve = −σ where e denotes the identity automorphism.

(d) ve has Γ-invariant law, that is Tαve
d
= ve for all α ∈ Γ.

(e) ve is unbounded above and below.

Proof. (a) Each term in the series (16) is independent, and the i-th term has
variance g(x, αyi)

2U where U = r−2Eσ(0)2. By (14) the sum of these variances is
finite, which implies that the series converges a.s..

(b) Note that there is something to check here because the series defining
vα is only conditionally convergent. Fix x ∈ V and denote the partial sum
r−1

∑n
i=1 g(x, αyi)σ(αyi) by vα,n. We compare vα,n and ve,n where e is the identity

element of Γ. Given ε > 0, choose n1 such that

U

∞∑
i=n1

g(x, yi)
2 < ε3.

There exists N1 depending on n1 and α such that

{yi : i = 1, 2, . . . , n1} ⊂ {αyi : i = 1, 2, . . . , N1}.
This implies that for any N ≥ N1 we have Var (vα,N − ve,N ) < 2ε3. By Cheby-
shev’s inequality,

P (|vα,N − ve,N | > ε) ≤ ε−2 Var (vα,N − ve,N ) < 2ε

for all N ≥ N1. By part (a) there a.s. exists N2 ≥ N1 such that max(|vα,n −
vα(x)|, |ve,n − ve(x)|) < ε/3 for all n ≥ N2. By the triangle inequality it follows
that

P
(
|vα(x)− ve(x)| > ε

3

)
< 2ε.
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Since ε was arbitrary we obtain vα(x) = ve(x), a.s.. By taking countable intersec-
tions we have that vα = ve, a.s..

(c) Using (15), we compute

∆ve(x) =
1

r

∑
w∼x

(ve(w)− ve(x))

=
1

r

∑
w∼x

( ∞∑
i=1

g(w, yi)σ(yi)−
∞∑
i=1

g(x, yi)σ(yi)

)

=

∞∑
i=1

σ(yi)
1

r

∑
w∼x

(g(w, yi)− g(x, yi))

= −
∞∑
i=1

σ(yi)1{yi = x}

= −σ(x).

(d) To show that ve has Γ-invariant law, write ve = vσe to make the dependence
on the initial configuration σ explicit. We have for all α ∈ Γ

Tαv
σ
e (x) =

∞∑
i=1

g(α−1x, yi)σ(yi)

=

∞∑
i=1

g(x, αyi)σ(yi)

=

∞∑
i=1

g(x, αyi)(Tασ)(αyi)

= vTασα (x)

= vTασe (x)

where in the last equality we have used part (b). Hence Tαv
σ
e = vTασe

d
= vσe since

σ has Γ-invariant law.
(e) To show that ve is almost surely unbounded below, we use the assumption

that σ(o) has zero mean and positive variance, which implies that

P(σ(o) < −δ) > p

for some p, δ > 0. Since
∑

y∈V g(o, y) =∞ and
∑

y∈V g(o, y)2 <∞, we can choose
N large enough so that

δr−1
N∑
i=1

g(o, yi) > 2M, U

∞∑
i=N+1

g(o, yi)
2 < 1.

By Chebyshev’s inequality

P(r−1
∞∑

i=N+1

g(x, yi)σ(yi) ≥M) ≤ 1

M2
.
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On the event that σ(yi) < −δ for all 1 ≤ i ≤ N and r−1
∑∞

i=N+1 g(x, yi)σ(yi) ≥M
we have ve(o) < −2M +M . Since the random variables σ(yi) are i.i.d., we obtain

P(ve(o) < −M) ≥ pN (1− 1

M2
) > 0.

Since ve is stationary, we have P(inf ve < −M) ∈ {0, 1} by ergodicity. Since this
probability is > 0, it must be 1. Since M was arbitrary, ve is a.s. unbounded
below.

A similar argument shows that ve is also a.s. unbounded above. �

Lemma 5.6. Let G = (V,E) be a doubly transient (14), vertex transitive graph
and let {s(x)}x∈V be i.i.d. random variables with Es = 1 and 0 < Var s < ∞.
Then P{s stabilizes} = 0.

Proof. Assume to the contrary that s stabilizes a.s. with odometer u∞. Let Γ be
a countable subgroup of Aut(G) that acts transitively on the vertices of G. Let
v : V → R be given by equation (16) with α = e and σ = s− 1. By Lemma 5.5, v
has Γ-invariant law and ∆v = 1− s. Therefore

h := v − u∞
has Γ-invariant law and h is harmonic: ∆h ≡ 0 on V . Further, by Fatou’s lemma,
Ev(x)2 ≤ deg(x)−2 Var(s)

∑∞
i=1 g(x, yi)

2 < ∞. Lemma 5.4 now implies that h is
almost surely constant. This contradicts Lemma 5.5 because u∞ ≥ 0 and v is
almost surely unbounded below. �

6. Stabilizability of Cones

Until now we have mainly been concerned with the stabilizability of random
initial configurations. In this section we examine stabilizability of a few determin-
istic configurations on the square grid Z2. We present two examples, one of which
stabilizes.

Lemma 6.1. Define C1 = {(x, y) ∈ Z2 : x ≥ 0, |y| ≤ x}. Then the configuration
s0 = (1 + α)1C1 does not stabilize for α > 0.

Proof. By least action principle (Proposition 2.5), it suffices to show the existence
of an infinite legal toppling procedure.

Let uk denote the parallel toppling procedure of Example 1 where k ∈ N. Let
C = {(x, y) ∈ Z2 : x > 0, |y| < x}. Let (Xn, Yn) denote the simple random walk
on Z2 and let N denote the stopping time N = min{n ≥ 0 : Xn = |Yn|}. As in the
proof of Lemma 2.9, we keep track of the mass from each (x, y) ∈ C to obtain

uk(1, 0) ≥ α

4

∑
(x,y)∈C

k∑
l=0

P(x,y)((XN , YN ) = (0, 0), N = l).

for all k ∈ N. To see this note that N is the exit time of the set C and the only
way to exit C at (0, 0) is from (1, 0). As a result, we have

u∞(1, 0) ≥ α

4

∑
(x,y)∈C

p(x, y)
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where p(x, y) = P(x,y) ((XN , YN ) = (0, 0)). Consider the function q : Z2 → [0, 1]
given by

q(x, y) =


p(|x|, y) if |y| < |x|,
−p(|y|, x) if |x| < |y|,
0 otherwise.

Note that ∆q = δ(0,1) + δ(0,−1) − δ(1,0) − δ(−1,0). Let g(x, y) denote the potential

kernel in Z2 defined by

g(x, y) =

∞∑
n=0

[P(0,0)(Xn = (x, y))− P(0,0)(Xn = (0, 0))]

where (Xn)n∈N denotes the simple random walk on Z2. Although the simple
random walk on Z2 is transient, it turns out that the sum defining g is absolutely
convergent. By standard estimates on g (See [Law96, Chapter 1]), we know that
g has sub-linear (logarithmic) growth. This combined with [HS93, Theorem 6.1]
implies that

q(x, y)− 1

4
(g(x+ 1, y) + g(x− 1, y)− g(x, y − 1)− g(x, y + 1))

is identically zero because it is harmonic with sub-linear growth and attains the
value 0 at (0, 0). Therefore there exists c1 > 0 such that for all (x, y) ∈ C, we have

q(x, y) =
1

4
(g(x+ 1, y) + g(x− 1, y)− g(x, y − 1)− g(x, y + 1)) +

1

4
∆g(x, y)

=
1

2
(g(x+ 1, y) + g(x− 1, y)− 2g(x, y))

> c1
x2 − y2

(x2 + y2)2

The first line above follows from the fact that ∆g = 0 for all points except (0, 0).
The last line above follows from [Law96, Theorem 1.6.5 (b)]. Therefore u∞(1, 0) ≥
α
4

∑
(x,y)∈C q(x, y) > αc1

4

∑
(x,y)∈B

x2−y2
(x2+y2)2

=∞. Hence s0 does not stabilize. �

We need the following technical lemma for the next example:

Lemma 6.2. Let σ : V → R be a configuration in G = (V,E). Assume that
H := {x : σ(x) > 1} satisfies |H| <∞ and∑

x∈H
(σ(x)− 1)+ <∞.

Let F ⊂ V be such that |F| <∞ and∑
x∈V

(σ(x)− 1)+ ≤
∑
x∈F

(1− σ(x))+.

Then σ stabilizes.
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Proof. Let a : H×F → [0,∞) be a non-negative function such that
∑

y∈F a(x, y) =

σ(x)− 1 for all x ∈ H and
∑

x∈H a(x, y) ≤ 1− σ(y) for all y ∈ F . The function a
encodes how to redistribute the excess mass from H to F .

Let

fx,z(y) =
gz(x, y)

deg(y)
=

Ex(number of vists to y before being killed at z)

deg(y)

denote the Green’s function normalized with degree. Observe that ∆fx,z = δz−δx.
Therefore the function u :=

∑
x∈H,y∈F a(x, y)fx,y satisfies σ + ∆u ≤ 1 and u ≥ 0.

This in turn implies that σ stabilizes. �

Remark. The condition that |H|, |F| < ∞ in the above lemma is necessary. The
following example illustrates this: Consider a probability measure µ on N∗ =
{1, 2, 3, . . .} and consider the function σµ = 1 + δ0 − µ(x) where µ(x) = µ({x}).
Then it can be shown that σµ stabilizes if and only if

∑
x∈N∗ xµ(x) <∞.

Lemma 6.3. Define Ca = {(x, y) ∈ Z2 : x ≥ 0, |y| ≤ ax}. Then the configuration
sa = m1Ca stabilizes if 2ma

1+a2
≤ 1 and a ∈ (0, 1]. Moreover s0(x, y) = x1{x>0, y=0}

stabilizes.

Proof. The case a = 1 is trivial. Define for a ∈ (0, 1]

ua(x, y) =
(ax− |y|)2

2(1 + a2)
1Ca .

To see that s0 stabilizes, we check that s0 + ∆u1 ≤ 1. This follows immediately
from the computation of ∆u1 as

∆u1(x, y) =



1− x if x > 0, y = 0

1 if |y| < x, x > 0
1
2 if |y| = x, x > 0
1
4 if x = y = 0

0 otherwise.

A direct computation yields ∆ua in different regions: ∆ua(0, 0) = a2

2(1+a2)
≤ 1

4 .

If y = 0, x > 0 and all neighbors of (x, 0) are in Ca (i.e. x ≥ d1/ae), then

∆ua(x, 0) = 1− 2a

1 + a2
x.

If y = 0, x > 0 and (x,±1) /∈ Ca, then

∆ua(x, 0) =
a2(1− x2)

1 + a2
.

If all neighbors of (x, y) are in Ca with y 6= 0, then

∆ua(x, y) = 1.

If (x, y) ∈ Ca with y 6= 0 and one of the neighbors is not in Ca, then

0 <
a2

1 + a2
≤ ∆ua(x, y) ≤ 1.
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If (x, y) /∈ Ca and if all neighbors of (x, y) are not in Ca, then

∆ua(x, y) = 0.

If (x, y) /∈ Ca and one of the neighbors in Ca, then at-least 2 of the neighbors are
not in Ca and

0 ≤ ∆ua(x, y) < 1.

Consider va(x, y) = u1(x+ d1/ae, y)−mua(x+ d1/ae, y). It is easy to check that
va ≥ 0 if 2ma

1+a2
≤ 1.

If x > 0 we have

sa(x, 0) + ∆va(x, 0) = m+ (1− d1/ae − x)−m (1− a (x+ d1/ae))

≤ 1 +

(
2am

1 + a2
− 1

)
(x+ d1/ae)

≤ 1.

If x > 0, y 6= 0, (x, y) ∈ Ca, then

sa(x, y) + ∆va(x, y) = m+ 1−m = 1.

If y 6= 0, (x, y) /∈ Ca, then

sa(x, y) + ∆va(x, y) ≤ ∆u1 ≤ 1.

If x < −d1/ae − 1, then

sa(x, y) + ∆va(x, y) = 0.

Therefore sa+∆va ≤ 1 for all points except on the finite set {(x, 0) : −d1/ae−1 ≤
x ≤ 0} and sa+ ∆va = 0 for all x < −1−d1/ae. Lemma 6.2 implies that sa+ ∆va
stabilizes, and therefore sa stabilizes. �

We conjecture that the bound in Lemma 6.3 is sharp.

Conjecture 6.4. Define for a ∈ (0, 1], Ca = {(x, y) ∈ Z2 : x ≥ 0, |y| ≤ ax}. Then
the divisible sandpile sa = m1Ca stabilizes if and only if 2ma

1+a2
≤ 1. Furthermore,

the divisible sandpile s0 = kx1{x>0, y=0} stabilizes if and only if k ≤ 1.

More generally, we have the following problem.

Open problem 6.5 (Tests for stabilizability). Given s : Zd → R, find series tests
or other criteria that can distinguish between stabilizing and exploding s.

7. Finite graphs

Let G = (V,E) be a finite connected graph with |V | = n. For a finite con-
nected graph, all harmonic functions are constant: the kernel of ∆ is 1-dimensional
spanned by the constant function 1.

Lemma 7.1. Let s : V → R be a divisible sandpile with
∑

x∈V s(x) = n. Then s
stabilizes to the all 1 configuration, and the odometer of s is the unique function
u satisfying s+ ∆u = 1 and minu = 0.
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Proof. Since ∆ has rank n− 1 and
∑

x∈V (s(x)− 1) = 0, we have s− 1 = ∆v for
some v. Letting w = v −min v, we have w ≥ 0 and s+ ∆w = 1, so s stabilizes.

Now if u is any function satisfying s+ ∆u ≤ 1, then∑
x∈V

(s+ ∆u)(x) = n

so in fact s + ∆u = 1. This shows that s stabilizes to the all 1 configuration,
and moreover any two functions u satisfying s + ∆u ≤ 1 differ by an additive
constant. By the least action principle (Proposition 2.5), among these functions
the odometer is the smallest nonnegative one, so its minimum is 0. �

Fix x, z ∈ V and let f(y) = gz(x,y)
deg(y) be the function satisfying f(z) = 0 and

∆f = δz − δx. (Here gz(x, y) is the expected number of visits to y by a random
walk started at x before hitting z). With a slight abuse of notation, we define
g(x, y) :=

∑
z∈V

1
ng

z(x, y).

Proof of Proposition 1.3. Observe that
∑

x∈V s(x) = n. Therefore s stabilizes to
the all 1 configuration by Lemma 7.1, and the odometer u satisfies

s+ ∆u = 1

and minu = 0.
Since ∆gz(x,·)

deg(·) = δz − δx, the function

vz(y) :=
1

deg(y)

∑
x∈V

gz(x, y)(s(x)− 1)

has ∆vz(y) = 1− s(y) for y 6= z and

∆vz(z) =
∑
x 6=z

(s(x)− 1) = 1− s(z).

Thus u− vz is harmonic on V and hence is a (random) constant.
Let v = 1

n

∑
z∈V v

z. Since u−vz is constant for all z, the difference u−v is also

constant. Recalling that g = 1
n

∑
z∈V g

z, we have v(y) = 1
deg(y)

∑
x∈V g(x, y)(s(x)−

1). To compute the covariance of the Gaussian vector v, note that

E[(s(z)− 1)(s(w)− 1)] = 1{z=w} −
1

n
hence

E[v(x)v(y)]

=
1

deg(x) deg(y)

∑
z,w∈V

g(z, x)g(w, y)E[(s(z)− 1)(s(w)− 1)]

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)− 1

n

(∑
z∈V

g(z, x)

)(∑
w∈V

g(w, y)

))
.

The function K(y) := 1
deg(y)

∑
w∈V g(w, y) has ∆K =

∑
z,w∈V

1
n (δz − δw) =

0, so K is a constant. The second term on the right is just K2

n . Letting C
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d = 1 d = 2 d = 3 d = 4 d ≥ 5

E(η0 − ηx)2 . ψd(n, r) := nr2 r2 log
(
n
r

)
r log(1 + r) 1

Emax{ηx : x ∈ Zdn} � n3/2 n n1/2 log n (log n)1/2

Table 1. Statistics of the bi-Laplacian Gaussian field η on the
discrete torus Zdn. In the first line, r = ‖x‖2 and the symbol .
means there is a dimension-dependent constant Cd such that E(η0−
ηx)2 ≤ Cdψd(n, r) for all x ∈ Zdn. The second line gives the order of
the expected value of the maximum of the field up to a dimension-
dependent constant factor.

be a N(0, K
2

n ) random variable independent of v, the Gaussian vectors η and
(v(x) + C)x∈V have the same covariance matrix, so

η
d
= v + C.

Since u− v is constant and minu = 0 we conclude that

u = v −min v
d
= η −min η. �

8. Green function and bi-Laplacian field on Zdn
The rest of the paper is devoted to the proof of Theorem 1.2. Taking Proposi-

tion 1.3 as a starting point, the expected odometer equals the expected maximum
of the bi-Laplacian Gaussian field η, since

Eu(x) = E(ηx −min η) = −Emin η = Emax η

where we have used that Eηx = 0. From the covariance matrix for η we see that

E(ηx − ηy)2 =
∑
z∈V

(
g(z, x)

deg(x)
− g(z, y)

deg(y)

)2

.

We will use asymptotics for the Green function g of the discrete torus Zdn to
estimate the right side. This will enable us to use Talagrand’s majorizing mea-
sure theorem to determine the order of Emax{ηx : x ∈ Zdn} up to a dimension-
dependent constant factor. These calculations are carried out below and sum-
marized in Table 1. The table entries give bounds up to a constant factor de-
pending only on the dimension d. For example, the d = 3 column means that
there is a positive constant C such that E(η0 − ηx)2 ≤ C ‖x‖2 for all x ∈ Z3

n and

C−1n1/2 ≤ Emax η ≤ Cn1/2.

Remark 1. For the rest of our work, we identify the discrete torus Zdn with

(Z ∩ (−n/2, n/2])d which in turn is viewed as a subset of Rd. For x ∈ Zdn and
1 ≤ p ≤ ∞, we denote by ‖x‖p the p-norm under the above identification. Note

that for standard graph distance dG on Zdn, we have dG(0,x) = ‖x‖1.
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8.1. Fourier analysis on the discrete torus. In this section, we derive a for-
mula for E(η0−ηx)2. We begin by recalling some basic facts about Fourier analysis
on the discrete torus and the spectral theory of the Laplacian. We equip the torus
Zdn with normalized Haar measure µ (in other words the uniform probability mea-
sure). Consider the Hilbert space H = L2(Zdn, µ) of complex valued functions on
torus with inner product

〈f, g〉 =

∫
Zdn
fḡ dµ =

1

nd

∑
x∈Zdn

f(x)g(x).

We identify the Pontryagin dual group Ẑdn with Zdn as follows. For any a ∈ Zdn,

the map x 7→ exp (i2πx · a/n) gives the corresponding element in Ẑdn (The dot
product is the usual Euclidean dot product in Rn). We denote this character by
χa. Recall that {χa : a ∈ Zdn} forms an orthonormal basis for H. Moreover each
χa is an eigenfunction for the Laplacian ∆ with eigenvalue

λa = −4
d∑
i=1

sin2
(πai
n

)
.

Thus the Laplacian ∆ : H → H is a non-positive, bounded operator. Moreover
λa = 0 if and only if a = 0. Laplacian ∆ is a self-adjoint operator, that is

〈f1,∆f2〉 = 〈∆f1, f2〉 (17)

for all f1, f2 ∈ H (See Remark 2). We denote by gx(y) = g(y,x). Recall that

∆gx = 2d

(
1

nd
χ0 − δx

)
. (18)

Denote by ĝx(a), the Fourier coefficient 〈gx, χa〉. Since the function x 7→
∑

y gx(y)
is harmonic, it is constant. This implies that there exists L ≥ 0 such that

ĝx(0) = n−d
∑
y∈Zdn

gx(y) = L (19)

for all x ∈ Zdn . For a 6= 0, we have

λaĝx(a) = λa〈gx, χa〉 = 〈gx,∆χa〉 = 〈∆gx, χa〉 = −2d〈δx, χa〉 = −2dn−dχ−a(x).
(20)

For the above equation, we used ∆χa = λaχa, equations (17), (18) and 〈χ0, χa〉 =
0. By Parseval’s theorem and equations (19), (20),

E(η0 − ηx)2 = (2d)−2
∑
z∈Zdn

(g(z,0)− g(z,x))2

= (2d)−2nd〈g0 − gx, g0 − gx〉
= (2d)−2nd

∑
z∈Zdn

|ĝ0(z)− ĝx(z)|2

=
1

4
Fn,d(x) (21)
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where

Fn,d(x) := n−d
∑

z∈Zdn\{0}

sin2
(
πx.z
n

)(∑d
i=1 sin2

(
πzi
n

))2 (22)

Remark 2. In Rd, we have the Green’s second identity∫
f1∆f2 dx = −

∫
∇f1.∇f2 dx =

∫
f1∆f2 dx

for all f1, f2 ∈ C∞c (Rd). Similarly, in our discrete setting we have

〈f1,∆f2〉 = − 1

2nd

∑
x,y∈Zdn

(f1(x)− f2(y))(f2(x)− f2(y))k(x,y) = 〈∆f1, f2〉

where k(x,y) = 1x∼y and x ∼ y if x and y are neighbors in Zdn. See for instance,
[Sal96, Lemma 2.1.2] or [LPW09, Lemma 13.11] for a proof.

Our task now is to estimate the expression Fn,d(x). Henceforth we assume
that x 6= 0. To study the quantity maxx,y∈Zdn(ηx − ηy) as n goes to ∞, we want

to estimate E(η0 − ηx)2 with d fixed and n large for different values of x. We
approximate Fn,d(x) by an integral of a function over Rd. For w ∈ Rd and r > 0,
we denote by B∞(w, r) the open ball with center w and radius r under supremum
norm, that is

B∞(w, r) = {y ∈ Rd : ‖y −w‖∞ < r}.

We denote the indicator function of the ball B∞(z/n, 1/(2n)) by Iz,n : Rd → {0, 1},
that is Iz,n = 1B∞(z/n,1/(2n)). Define the function Gn,d,x : Rd → R

Gn,d,x =
∑

z∈Zdn\{0}

sin2
(
πx·z
n

)(∑d
i=1 sin2

(
πzi
n

))2 Iz,n.

Since the cubes B∞(z/n, 1/(2n)) are disjoint with volume n−d , we have

Fn,d(x) =

∫
Rd
Gn,d,x(y) dy. (23)

By triangle inequality, we have

(1 +
√
d)−1 ‖z/n‖2 ≤ ‖y‖2 ≤ (1 +

√
d) ‖z/n‖2 (24)

for all z ∈ Zdn \ {0} and for all y ∈ B∞(z/n, 1/(2n)) under the usual identification
from Remark 1. We will estimate the function Gn,d,x using the function Hn,d,x :

Rd → R defined by

Hn,d,x(y) =
∑

z∈Zdn\{0}

sin2
(
πx·z
n

)
‖y‖42

Iz,n(y).

More precisely, we have the following lemma.
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Lemma 8.1. Fix d ∈ N∗. There exist positive reals c1, C1 such that

c1Hn,d,x(y) ≤ Gn,d,x(y) ≤ C1Hn,d,x(y) (25)

for all n ∈ N∗, for all x ∈ Zdn \ {0} and for all y ∈ Rd.

Remark 3. We will use Ci for large constants and ci for small constants. Here and
in what follows, all constants are allowed to depend on d but not on x ∈ Zdn \ {0}
or n.

Proof. The idea is to use the estimate

2

π
|t| ≤ |sin t| ≤ |t|

for all t ∈ [−π/2, π/2]. Thus there exists a constant C2 > 0 such that

C−1
2 ‖z/n‖

4
2 ≤

(
d∑
i=1

sin2
(πzi
n

))2

≤ C2 ‖z/n‖42 (26)

for all z ∈ Zdn and for all n ∈ N∗. By (24), we have

(1 +
√
d)−4 Iz,n(y)

‖z/n‖42
≤ Iz,n(y)

‖y‖42
≤ (1 +

√
d)4 Iz,n(y)

‖z/n‖42
(27)

for all z ∈ Zdn \ {0}, for all y ∈ Rd and for all n ∈ N∗. Combining equations (26)
and (27) gives (25). �

By (21), (23) along with integration of (25) over the variable y, there exists
c1, C1 > 0 such that

c1d
2

∫
Rd
Hn,d,x(y) dy ≤ E(η0 − ηx)2 ≤ C1d

2

∫
Rd
Hn,d,x(y) dy (28)

for all n ∈ N∗ and for all x ∈ Zdn \ {0}.
By (28), it suffices to estimate

∫
Rd Hn,d,x(y) dy. Observe that the support of

Hn,d,x satisfies

Support(Hn,d,x) ⊆ B2(0,
√
d) \B2(0, 1/(2n))

for all d, n ∈ N∗ and for all x ∈ Zdn, where B2 denotes open ball with respect to
Euclidean norm in Rd.

8.2. Upper bounds. Define ψd by

ψd(n, r) :=



nr2 if d = 1

r2 log
(
n
r

)
if d = 2

r if d = 3

log(1 + r) if d = 4

1 if d ≥ 5.

(29)

for all n ∈ N∗ and all r > 0 along with ψd(n, 0) := 0 for all d, n ∈ N∗. The upper
bounds for E(η0 − ηx)2 is summarized in the following Proposition.
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Proposition 8.2. For each d ∈ N∗, there exists Cd > 0 such that

E(η0 − ηx)2 ≤ Cdψd(n, ‖x‖2) (30)

for all n ∈ N∗ and for all x ∈ Zdn , where ψd is defined by (29).

Proof. By (28) it suffices to find upper bounds for
∫
Rd Hn,d,x(y) dy. The strategy

to establish upper bounds for
∫
Rd Hn,d,x(y) dy is to split it into two integrals

as
∫
Rd =

∫
1/(2n)≤‖y‖2≤

√
d/‖x‖2

+
∫
√
d/‖x‖2<‖y‖2≤

√
d. Note that both the integrals

are over non-empty annuli since 1/(2n) ≤
√
d/(4 ‖x‖2) ≤

√
d/ ‖x‖2 ≤

√
d for

all x ∈ Zdn \ {0} with the identification from Remark 1. Using Cauchy-Schwarz
inequality and the bound |sin t| ≤ t, we have |sin(πx.z/n)| ≤ π ‖x‖2 ‖z/n‖2. This
bound competes with the trivial bound |sin(πx.z/n)| ≤ 1. It will become clear
that up to constants, the first bound is better for the first term and the trivial
bound |sin(πx.z/n)| ≤ 1 is better for the second term.

For the first integral we use the bound |sin t| ≤ |t| and Cauchy-Schwarz inequality
to obtain

Hn,d,x(y) ≤
∑

z∈Zdn\{0}

π2 ‖x‖22 ‖z/n‖
2
2

‖y‖42
Iz,n(y).

By (24), we have ‖z/n‖22 Iz,n(y) ≤ (1 +
√
d)2 ‖y‖22 Iz,n(y). Therefore, we obtain

Hn,d,x(y) ≤
∑

z∈Zdn\{0}

(1 +
√
d)2π2 ‖x‖22
‖y‖22

Iz,n(y). (31)

for all n, d ∈ N∗, for all y ∈ Rd and for all x ∈ Zdn \ {0}. Hence, we have

I1 :=

∫
1/(2n)≤‖y‖2≤

√
d/‖x‖2

Hn,d,x(y) dy ≤ (1 +
√
d)2π2 ‖x‖22 ωd−1

∫ √d/‖x‖2
1/(2n)

rd−1

r2
dr

(32)

where ωd−1 = 2πd/2

Γ(d/2) is the (d−1)-dimensional surface measure of unit sphere Sd−1

in Rd.
For the second integral we use the bound |sin t| ≤ 1, to obtain

I2 :=

∫
√
d/‖x‖2<‖y‖2≤

√
d
Hn,d,x(y) dy ≤ ωd−1

∫ √d
√
d/‖x‖2

rd−1

r4
dr. (33)

Combining equations (32) and (33), we obtain∫
Rd
Hn,d,x(y) dy ≤ (1+

√
d)2π2 ‖x‖22 ωd−1

∫ √d/‖x‖2
1/(2n)

rd−3 dr+ωd−1

∫ √d
√
d/‖x‖2

rd−5 dr.

(34)
The desired upper bounds on E(η0−ηx)2 for all dimensions follow from (34) along
with (28). �

Remark 4. The terms I1 and I2 correspond to the energy (square of 2-norm)
of the low and high frequency oscillations of the function g0 − gx respectively.
For d = 1, 2, the term I1 dominates I2. For d = 3, both I1 and I2 are of the
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same order. For d ≥ 4, the term I2 dominates I1. Hence our approach to obtain
matching lower bounds in the next subsection is as follows: For d = 1, 2, we obtain
lower bounds on lower frequency terms and for d ≥ 3 we obtain lower bounds on
higher frequency terms.

It is well know that the Gaussian field η induces a Hilbert space on Zdn given
by the distance metric

dη(x,y) :=
(
E(ηx − ηy)2

)1/2
.

The upper bounds on dη provided by Proposition 8.2 transfers to upper bounds
on E supx∈Zdn ηx. The main tool to transfer bounds is Dudley’s bound [Tal05,

Proposition 1.2.1] described below. There exists L > 0 such that

E sup
x∈Zdn

≤ L
∞∑
k=0

2k/2ek (35)

where ek = inf supt∈Zdn dη(t, Tk) and the infimum is taken over all subsets Tk ⊆ Zdn
with |Tk| ≤ 22k .

Proposition 8.3. For each d ∈ N∗, there exists Cd > 0 such that

E sup
x∈Zdn

ηx ≤ Cdφd(n) (36)

for all n ∈ N∗, where φd is defined by (2).

Proof. Let dG denote the standard graph distance on the torus Zdn. By choosing
a submesh of appropriate cardinality the following statement is clear: For any
d ∈ N∗, there exist Cd,1 > 0 such that for any n ≥ 2 and for any 2 ≤ m < nd,

there exists a set Sm ⊂ Zdn with |Sm| = m such that

sup
t∈Zdn

dG(t, Sm) = sup
t∈Zdn

inf
s∈Sm

dG(t, s) ≤ Cd,1
n

m1/d
. (37)

For each d ∈ N∗ by Dudley’s bound (35), (37) and Proposition 8.2, there exists
Cd,2, Cd,3 > 0

E max
x∈Zdn

ηx ≤ Cd,2
blog logndc∑

k=0

2k/2
[
ψd

(
n,

Cd,1n

2(2k/d)

)]1/2

≤ Cd,3φd(n) (38)

The second inequality above follows from a straightforward case by case calcula-
tion. �

8.3. Lower bounds. Next, we prove matching lower bounds on E(η0− ηx)2. For
dimensions d = 1, 2, we estimate Fn,d directly.
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d = 1: We use the bound |t| ≥ |sin t| ≥ 2
π |t| for all |t| ≤ π/2 to obtain

Fn,1(x) ≥ n−1 sin2 πx
n

sin4 π
n

≥ 4π−4n ‖x‖22

for all n ∈ N∗ and for all x ∈ Zn \ {0}. Hence there exists c1 > 0 such that

E(η0 − ηx)2 ≥ c1n ‖x‖22 (39)

for all n ∈ N∗ and for all x ∈ Zn \ {0}.

d = 2: Let Sk ⊂ Z2 denote the sphere with center 0 and radius k in the supremum
norm, that is Sk = {y ∈ Z2 : ‖y‖∞ = k}. For x ∈ R2, we define Hx = {y ∈ Z2 :

|x · y| ≥ ‖x‖2 ‖y‖2 /
√

2}. It is easy to check that |Sk| = 4k and |Sk ∩Hx| ≥ 2k for

all k ∈ N∗ and for all x ∈ R2. Let α ∈ (1,
√

2). If ‖z‖2 ≤
n

α‖x‖2
by Cauchy-Schwarz

inequality we have |x · z/n| ≤ α−1. We need the inequality π|t| ≥ |sinπt| ≥ β|t| for
all |t| ≤ α−1 where β = α sin(πα−1). Putting together the above pieces, we obtain

Fn,2(x) ≥

⌊
n

α‖x‖2

⌋
∧bn/4c∑

k=1

∑
z∈Sk

β2π−4 ‖z‖−4
2 |x · z|

2

≥ β2

2π4
‖x‖22

⌊
n

α‖x‖2

⌋
∧bn/4c∑

k=1

∑
z∈Sk∩Hx

‖z‖−2
2

≥ β2

4π4
‖x‖22

⌊
n

α‖x‖2

⌋
∧bn/4c∑

k=1

∑
z∈Sk∩Hx

k−2

≥ β2

2π4
‖x‖22

⌊
n

α‖x‖2

⌋
∧bn/4c∑

k=1

k−1

≥ β2

2π4
‖x‖22 log

((⌊
n

α ‖x‖2

⌋
∧ bn/4c

)
+ 1

)
≥ β2

2π4
‖x‖22 log

(
n

α ‖x‖2
∧ n

4

)
.

Since ‖x‖2 ≤ n/
√

2 for all x ∈ Z2
n, we have the desired lower bound by using

α <
√

2. That is, there exists c2 > 0 such that

E(η0 − ηx)2 ≥ c2 ‖x‖22 log

(
n

‖x‖2

)
(40)

for all n ∈ N∗ with n ≥ 4 and for all x ∈ Z2
n \ {0}.
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d ≥ 3: For dimensions d ≥ 3, we will approximate Hn,d,x by its almost everywhere
point-wise limit H∞,d,x defined by

H∞,d,x(y) =
sin2(πx · y)

‖y‖42
1B∞(0,1/2)(y).

for y 6= 0 and 0 otherwise. Therefore we would like to estimate integrals of the
form ∫

r1≤‖y‖2≤r2

sin2(πx · y)

‖y‖42
dy =

∫ r2

r1

rd−5sd(r ‖x‖2) dr (41)

where sd(t) =
∫
Sd−1 sin2(πty1) νd−1(dy) and νd−1 denotes the surface measure in

Sd−1. We will need the following lower bound for sd.

Lemma 8.4. Fix d ∈ N∗ with d ≥ 3. Then for all ε > 0, there exists δ > 0 such
that sd(t) ≥ δ for all t ≥ ε.

Proof. Since sd : R → R is a continuous function with sd(t) > 0 for all t 6= 0, it
suffices to show that lim inf

t→∞
sd(t) > 0. By [BGMN05, Corollary 4] (See Remark

5(b)),

sd(t) = cd

∫ 1

−1
(1− x2)(d−3)/2 sin2(πtw) dw ≥ cd2(3−d)/2

∫ 1/2

−1/2
sin2(πtw) dw

where cd is a constant that depends on d. Since limt→∞
∫ 1/2
−1/2 sin2(πtw) dw = 1/2,

the conclusion follows. �

Remark 5. (a) Recall that we used the point-wise bound |sin t| ≤ 1 to obtain
upper bounds on I2. We want to somehow reverse that inequality to obtain
corresponding lower bounds. Although the reverse inequality |sin t| > δ is
not true for any δ > 0 in a pointwise sense, it is true in an average sense.
That is the content of Lemma 8.4.

(b) [BGMN05, Corollary 4] implies the following striking result in geomet-
ric probability: Let d ≥ 3. For a uniformly distributed random vector
y = (y1, y2, . . . , yd) in the (d − 1)-dimensional unit sphere Sd−1 in Rd,
the projection (y1, y2, . . . , yd−2) is uniformly distributed in the (d − 2)-
dimensional unit ball Bd−2 = B2(0, 1) in Rd−2.

(c) Since limn→∞Hn,d,x = H∞,d,x almost everywhere, one might wonder if
we can prove matching lower bounds for I2 using dominated convergence
theorem. This approach gives a lower bound as n goes to∞ but with both
d and x fixed. However we want lower bounds with fixed d and with both
n and x varying. Hence there is a need to quantify this convergence as
both n and x varies. We fulfill this need in Lemma 8.5.

One can easily check that limn→∞Hn,d,x = H∞,d,x almost everywhere. We need
the following quantitative version of this convergence.
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Lemma 8.5. Fix d ∈ N∗. For any ε > 0, there exists positive reals δ,N such that∣∣∣∣∣Hn,d,x(y)− sin2(πx · y)

‖y‖42

∣∣∣∣∣ ≤ ε

‖y‖42

for all n ≥ N , for all x ∈ Zdn \ {0} with ‖x‖2 < δn and for almost every y ∈
B2(0, 1/4) \B2(0, 1/(8 ‖x‖2)).

Proof. Note that, we have the inclusion

B∞(0, 1/(2n)) ⊂ B2(0, 1/(8 ‖x‖2)) ⊂ B2(0, 1/4)

for all n ≥ 4
√
d and for all x ∈ Zdn \{0} with ‖x‖2 ≤ n/4

√
d. We use ‖x‖2 ≥ 1 and

the comparison of norms ‖w‖2 ≤
√
d ‖w‖∞ to prove the above inclusions. The

function y 7→ sin2(πx · y) has gradient bounded uniformly in 2-norm by π ‖x‖2.
Hence we have ∣∣∣∣∣Hn,d,x(y)− sin2(πx · y)

‖y‖42

∣∣∣∣∣ ≤ π ‖x‖2
√
d

n
‖y‖−4

2

for all n ≥ 4
√
d and for all x ∈ Zdn \ {0} with ‖x‖2 ≤ n/4

√
d and for almost every

y ∈ B2(0, 1/4) \B2(0, 1/(8 ‖x‖2)). The choice δ = min
(

1
4
√
d
, ε
π
√
d

)
and N = 4

√
d

satisfies all the requirements. �

We put together the above pieces to obtain the following lower bound for d ≥ 3.

Lemma 8.6. Fix d ≥ 3. There exists positive reals δ,N, cd such that∫
Rd
Hn,d,x(y) dy ≥ cd

∫ 1/4

1/(8‖x‖2)
rd−5 dr

for all n ≥ N and for all x ∈ Zdn \ {0} with ‖x‖2 < δn.

Proof. By Lemma 8.4, there exists ε1 > 0 such that sd(t) ≥ 2ε1 for all t ≥ 1/8.
By Lemma 8.5, there exists positive reals δ,N such that∣∣∣∣∣Hn,d,x(y)− sin2(πx · y)

‖y‖42

∣∣∣∣∣ ≤ ε1

ωd−1 ‖y‖42

for all n ≥ N , for all x ∈ Zdn \ {0} with ‖x‖2 < δn and for almost every y ∈
B2(0, 1/4) \B2(0, 1/(8 ‖x‖2)).



32 LEVINE, MURUGAN, PERES, UGURCAN

Combining the above observations, we have for all n ≥ N and for all x ∈ Zdn\{0}
with ‖x‖2 < δn∫

Rd
Hn,d,x(y) dy ≥

∫
1/(8‖x)‖2≤‖y‖2≤1/4

Hn,d,x(y) dy

≥
∫

1/(8‖x)‖2≤‖y‖2≤1/4
(H∞,d,x(y)− ε1ω−1

d−1 ‖y‖
−4
2 ) dy

=

∫ 1/4

1/(8‖x‖2)
rd−5(sd(r ‖x‖2)− ε1) dr

≥ ε1

∫ 1/4

1/(8‖x‖2)
rd−5 dr. �

We now establish the following lower bounds corresponding to the upper bounds
in Proposition 8.2.

Proposition 8.7. For each d ∈ N∗, there exists positive reals δd, Nd, cd such that

E(η0 − ηx)2 ≥ cdψd(n, ‖x‖2)

for all n ≥ Nd and for all x ∈ Zdn \ {0} with ‖x‖2 < δdn, where ψd is defined by
(29).

Proof. The cases d = 1, 2 follow from (39) and (40) respectively. The case d ≥ 3
follows from Lemma 8.6 along with (28). �

Remark 6. The condition ‖x‖2 < δdn that appears in the lower bound for the case
d ≥ 3 is somewhat unsatisfactory. We believe that the lower bound is true without
any such an additional condition. However the lower bounds in the present form
are good enough for our main application.

Next, we obtain lower bounds matching the upper bounds in Proposition 8.3.
We start by recalling notation and setup for Talagrand’s majorizing measure
[Tal05, Theorem 2.1.1]. We consider centered multivariate Gaussian random vari-
ables (ηt)t∈T indexed by a set T with cardinality |T|. An admissible sequence {Ak}
is an increasing sequence of partitions of T such that |Ak| ≤ 22k . Here “increasing
sequence” refers to the fact that every set in An+1 is contained in a set in An.
We denote by Ak(t) the unique element of An that contains t ∈ T . Recall that

dη(t1, t2) =
(
E(ηt1 − ηt2)2

)1/2
denotes the Hilbert space metric induced by (ηt)t∈T .

We define the function

γ2(T, dη) = inf sup
t∈T

∞∑
k=0

diamη(An(t))

where diamη denotes the diameter in the dη metric and the infimum is taken over
all admissible sequences. The majorizing measure theorem [Tal05, Theorem 2.1.1]
states that there is some universal constant L for which

1

L
γ2(T, d) ≤ E sup

t∈T
ηt ≤ Lγ2(T, d). (42)
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Proposition 8.8. For each d ∈ N∗, there exists cd > 0 such that

E sup
x∈Zdn

ηx ≥ cdφd(n) (43)

for all n ∈ N∗, where φd is defined by (2).

Proof. The strategy is to use the lower bound for dη given by Proposition 8.7 along

with (42) where T = {x ∈ Zdn : ‖x‖2 < δdn} and E supt∈Zdn ηt ≥ E supt∈T ηt. Note

that it suffices to show (43) for large enough n, i.e. n > Nd for some fixed Nd.
For d = 1, 2, 3, by (42) we have

E sup
t∈Zdn

ηt ≥ L−1 inf sup
t∈T

diamη(A0(t)). (44)

Since |A0| ≤ 2, we have supt∈T diamG(A0(t)) ≥ c0n for some c0 > 0. Therefore by
Proposition 8.7 along with (44) we obtain the desired result.

For d = 4, by (42) we have

E sup
t∈Zdn

ηt ≥ L−1 inf sup
t∈T

2k/2 diamη(Ak(t)). (45)

where k = blog2 log2 |T|c−1. This gives 2k/2 ≥ c0
√

log n for some c0 > 0. Moreover,

k = blog2 log2 |T|c−1 and |Ak| ≤ 22k implies that at least one of the sets Ak(t) has

cardinality greater than or equal to
√
|T|, which in turn implies diamG(Ak(t)) ≥

c1
√
n for some c1 > 0. By Proposition 8.7, we obtain diamG(Ak(t)) ≥ c2

√
log n

for some c2 > 0 and for large enough n. The conclusion for d = 4 then follows
from (45).

The case d ≥ 5 is a direct consequence of Sudakov minoration ([Tal05, Lemma
2.1.2]). �

Proof of Proposition 1.2. The upper and lower bounds follow from Propositions
8.3 and 8.8. �
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