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ABSTRACT. The divisible sandpile starts with i.i.d. random variables (“masses” )
at the vertices of an infinite, vertex-transitive graph, and redistributes mass by
a local toppling rule in an attempt to make all masses < 1. The process sta-
bilizes almost surely if m < 1 and it almost surely does not stabilize if m > 1,
where m is the mean mass per vertex. The main result of this paper is that in
the critical case m = 1, if the initial masses have finite variance, then the pro-
cess almost surely does not stabilize. To give quantitative estimates on a finite
graph, we relate the number of topplings to a discrete bi-Laplacian Gaussian
field.

1. INTRODUCTION

This paper is concerned with the dichotomy between stabilizing and exploding
configurations in a model of mass redistribution, the divisible sandpile model. The
main interest in this model is twofold. First, it is a natural starting place for the
analogous and more difficult dichotomy in the abelian sandpile model. Second,
the divisible sandpile itself leads to interesting questions in potential theory. For
example, under what conditions must a random harmonic function be an almost
sure constant? (Lemma 5.4 gives some sufficient conditions.) Both the motivation
for this paper and many of the proof techniques are directly inspired by the work
of Fey, Meester and Redig [F'MR09].

By a graph G = (V,E) we will always mean a connected, locally finite and
undirected graph with vertex set V' and edge set £. We write x ~ y to mean that
(z,y) € E, and deg(z) for the number of y such that x ~ y. A divisible sandpile
configuration on G is a function s : V. — R. We refer to s(z) as an amount of
‘mass’ present at vertex x; a negative value of s(z) can be imagined as a ‘hole’
waiting to be filled by mass. A vertex z € V is called unstable if s(x) > 1. An
unstable vertex x topples by keeping mass 1 for itself and distributing the excess
s(z) —1 equally among its neighbors y ~ . At each discrete time step, all unstable
vertices topple simultaneously. (This parallel toppling assumption is mainly for
simplicity; in Section 2 we will relax it.) The following trivial consequence of
the toppling rule is worth emphasizing: if for a particular vertex x the inequality
s(z) > 1 holds at some time, then it holds at all later times.
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Note that the entire system evolves deterministically once an initial condition
s is fixed. The initial s can be deterministic or random; below we will see one
example of each type. Write u,(x) for the total amount of mass emitted before
time n from x to one of its neighbors. (By the symmetry of the toppling rule, it
does not matter which neighbor.) This quantity increases with n, so u, T u as
n 1 oo for a function u : V' — [0, 00]. We call this function u the odometer of s.
Note that if u(x) = oo for some x, then each neighbor of x receives an infinite
amount of mass from z, so u(y) = oo for all y ~ x. We therefore have the following
dichotomy:

Either wu(z) < oo forallz eV,

or u(x)=o0forall zeV.

In the former case we say that s stabilizes, and in the latter case we say that s
explodes.

The following theme repeats itself at several places: The question of whether
s stabilizes depends not only on s itself but also on the underlying graph. For
instance, fixing a vertex o, we will see that the divisible sandpile

s(x):{l xFo

2 x=o0

stabilizes on G if and only if the simple random walk on G is transient (Lemma 2.9).

Our main result treats the case of initial masses s(x) that are independent
and identically distributed (i.i.d.) random variables with finite variance. Write
Es and Vars for the common mean and variance of the s(z). The mean Es is
sometimes called the density (in the physical sense of the word, mass per unit
volume). Because sites topple when their mass exceeds 1, intuition suggests that
the density should be the main determiner of whether or not s stabilizes: the
higher the density, the harder it is to stabilize. Indeed, we will see that s stabilizes
almost surely if Es < 1 (Lemma 4.2) and explodes almost surely if Es > 1 (Lemma
4.1). Our main result addresses the critical case Es = 1.

Theorem 1.1. Let s be an i.i.d. divisible sandpile on an infinite, vertex-transitive
graph, with Es =1 and 0 < Vars < co. Then s almost surely does not stabilize.

Our theme that ‘stabilizability depends on the underlying graph’ repeats again
in the proof of Theorem 1.1. The proof splits into three cases depending on the
graph. The cases in increasing order of difficulty are

e recurrent (Lemma 4.4). Examples: Z,Z>.
e transient with Y . g(0,z)* = oo (Section 5.1). Examples: Z3, Z*.
e transient with 3, g(0,z)? < oo (Section 5.2). Examples: Z? with d > 5.

Here g denotes Green’s function: g(o,z) is the expected number of visits to = by
a simple random walk started at o. The reason for the order of difficulty is that
‘stabilization is harder in lower dimensions,’ in a sense formalized by Theorem 1.2
below.
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1.1. Potential theory of real-valued functions. The graph Laplacian A acts
on functions v : V — R by

Au(z) =) (uly) — u(x)). (1)

Y~z

Using a ‘least action principle’ (Proposition 2.5), the question of whether a divisible
sandpile stabilizes can be reformulated as a question in potential theory:

Given a function s : V' — R, does there exist a nonnegative function
u:V — R such that s + Au < 1 pointwise?

1.2. Potential theory of integer-valued functions. In the related abelian
sandpile model, configurations are integer-valued functions s : V- — Z. We think
of s(x) as a number of particles present at x. A vertex x € V is unstable if it has
at least deg(x) particles. An unstable site = topples by sending one particle to
each of its deg(x) neighbors. This model also has a dichotomy between stabilizing
(u < 00) and exploding (u = c0), which can be reformulated as follows:

Given a function s : V' — Z, does there exist a nonnegative function
u: V — Z such that s + Au < deg —1 pointwise?

The restriction that u must be integer-valued introduces new difficulties that
are not present in the divisible sandpile model. The first step in the proof of
Theorem 1.1 is to argue that if Es = 1 and s stabilizes, then it necessarily stabi-
lizes to the all 1 configuration. This step fails for the abelian sandpile except in
dimension 1. Indeed, a result analogous to Theorem 1.1 does hold for the abelian
sandpile when the underlying graph is Z [FMR09, Theorem 3.2], but no such result
can hold in higher dimensions: The density Es alone is not enough to determine
whether an abelian sandpile s on Z? stabilizes, if d < Es < 2d — 1 (see [FR05,
Section 5], [FMRO09, Theorem 3.1] and [FLP10, Proposition 1.4]; the essential idea
in these arguments arose first in bootstrap percolation [Ent87, Sch92]).

We would like to highlight an open problem: Given a probability distribution p
on Z (say, supported on {0, 1,2,3,4} with rational probabilities) is it algorithmi-
cally decidable whether the i.i.d. abelian sandpile on Z? with marginal x stabilizes
almost surely?

1.3. Quantitative estimates and bi-Laplacian field. For a finite connected
graph G = (V,E), the divisible sandpile s : V' — R stabilizes if and only if
> zev 8(x) < [V]. Our next result gives the order of the odometer in a critical
case when this sum is exactly |V|. Specifically, to formalize the idea that ‘stabi-
lization is harder in lower dimensions,” we take an identically distributed Gaussian
initial condition on the discrete torus Z¢, conditioned to have total mass n¢. The
expected odometer can be taken as an indication of difficulty to stabilize: How
much mass must each site emit on average? According to equation (2) below, the
expected odometer tends to oo with n in all dimensions (reflecting the failure to
stabilize on the infinite lattice Z¢) but it decreases with dimension.
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Theorem 1.2. Let (0(x))xezge be i.i.d. N(0,1), and consider the divisible sandpile
1
San) = 14000~ 3 oly).
yEeZd

Then sq.4, : 783 — R stabilizes to the all 1 configuration, and there exists a constant
Cq such that the odometer ugq,, satisfies

C; ' ¢a(n) < Eugyp(z) < Cada(n)
for all n > 2, where ¢4 is defined by
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The first step in computing these orders is proving an equality in law between
the odometer uq, and a certain ‘discrete bi-Laplacian Gaussian field’ shifted to
have minimum value 0. This equality in law actually holds for any finite connected
graph, as detailed in the next proposition.

Proposition 1.3. Let G = (V, E) be a finite connected graph. Let (o(x))zcv be
i.i.d. N(0,1), and consider the divisible sandpile

Then s stabilizes to the all 1 configuration, and the distribution of its odometer
u:V —[0,00) is

(w(@))zev £ (n(x) — ming), ey

where the n(x) are jointly Gaussian with mean zero and covariance

Eln(=)n(w)) = 3o dogm) deg Zgzx 9(2,y)

where g is defined by g(x,y) = \Vl > v 9°(x,y) and g*(x,y) is the expected num-
ber of visits to y by the simple random walk started at x before hitting z.

Proposition 1.3 suggests the possibility of a central limit theorem for the di-
visible sandpile odometer on Z%: We believe that if o is identically distributed
with zero mean and finite variance, then the odometer, after a suitable shift and
rescaling, converges weakly as n — oo to the bi-Laplacian Gaussian field on R,
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1.4. Proof ideas. By conservation of density (Proposition 3.1) the assumption
Es = 1 implies that if s stabilizes then it must stabilize to the all 1 configuration,
so that the odometer u satisfies

Au=1-s. (3)

where A is the Laplacian (1). This relation leads to a contradiction in one of three
ways:
e If G is recurrent (examples: Z,Z?), then 1433, does not stabilize (Lemma 2.9).
By resampling the random variable s(o) we derive a contradiction from (3).
e If G is simply transient (examples: Z3,Z*) then we can attempt to solve
(3) for u, writing

u(y) =Y g(w,y)(s(z) - 1) (4)

where g is Green’s function. The sum on the right side diverges a.s. if taken
over all x € V (since ¢(-,y) is not square-summable) but we can stabilize
s in nested finite subsets V,, T V instead. The corresponding finite sums,
suitably normalized, tend in distribution to a mean zero Gaussian by the
Lindeberg central limit theorem, contradicting the nonnegativity of u(y).

e If G is doubly transient (example Z? for d > 5) then the right side of (4)
converges a.s.. The difference between the left and right sides is then a
random harmonic function with automorphism-invariant law. The proof
is completed by showing that under mild moment assumptions any such
function is an almost sure constant (Lemma 5.4).

1.5. Related work. The divisible sandpile was introduced in [LP09, LP10] to
study the scaling limits of two growth models, rotor aggregation and internal
DLA. The divisible sandpile has also been used as a device for proving an exact
mean value property for discrete harmonic functions [JL.S13, Lemma 2.2]. These
works focused on sandpiles with finite total mass on an infinite graph, in which
case exploding is not a possibility. In the present paper we expand the focus to
sandpiles with infinite total mass.

The abelian sandpile has a much longer history: it arose in statistical physics
as a model of ‘self-organized criticality’ (SOC) [BTW&7, Dha90]. The dichotomy
between stabilizing and exploding configurations arose in the course of a debate
about whether SOC does or does not involve tuning a parameter to a critical value
[FRO5, MQO5]. Without reopening that particular debate, we view the stabiliz-
ing/exploding dichotomy as a topic with its own intrinsic mathematical interest.
An example of its importance can be seen in the partial differential equation for
the scaling limit of the abelian sandpile on Z?, which relies on a classification of
certain ‘quadratic’ sandpiles according to whether they are stabilizing or exploding
[LPS12].

The Gaussian vector n in Proposition 1.3 can be interpreted as a discrete bi-
Laplacian field. In Z? for dimensions d > 5, Sun and Wu construct another discrete
model for the bi-Laplacian field by assigning random signs to each component of
the uniform spanning forest [SW13].
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2. TOPPLING PROCEDURES AND STABILIZATION

In this section G = (V,E) is a locally finite, connected, undirected graph.
Denote by X =R the set of divisible sandpile configurations on G.

Definition 2.1. Let T C [0, 00) be a well-ordered set of toppling times such that
0 € T and T is a closed subset of [0,00). A toppling procedure is a function
T xV —[0,00)
(t,z) — u(x)
satisfying for all x € V
(1) up(x) =0.
(2) ug, () < ug,(x) for all t; < to.
(3) If t,, T t, then uy, (x) T wi(x).

In the more general toppling procedures considered by Fey, Meester and Redig
[FMR09], the assumption that T is well-ordered becomes a “no infinite backward
chain” condition, but we will not need that level of generality. See Examples 1-3
below for the three specific toppling procedures we will use.

The interpretation of a toppling procedure is that starting from an initial con-
figuration s € X, the total mass emitted by a site x € V' to each of its neighbors
during the time interval [0,¢] is us(x), so that the resulting configuration at time
tis

st = s+ Auy
where A is the graph Laplacian (1).

For a € R write a™ = max(a,0). For t € T write t~ :=sup{r € T : r < t}.

Note that ¢t~ € T since T is closed.

Definition 2.2. A toppling proceedure u is called legal for initial configuration s

if
(si=(x) =17

wla) - () < g

forallz € V and all t € T'\ {0}.

Thus, in a legal toppling procedure, a site with mass < 1 cannot emit any mass,
while a site with mass > 1 must keep at least mass 1 for itself.

Definition 2.3. A toppling procedure u is called finite if for all x € V we have

Uoo(Z) = lim  u(x) < 00
t—sup T’

and infinite otherwise. The limit exists in [0, 00| since u;(z) is nondecreasing in ¢.
Note that if u is a finite toppling procedure, then the limit

Soo = lim s;=s+ lim Auwy
t—sup T’ t—sup T

exists and equals s + Auxo.
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Definition 2.4. Let s € X. A toppling procedure w is called stabilizing for s if u
is finite and sy, < 1 pointwise. We say that s stabilizes if there exists a stabilizing
toppling procedure for s.

Throughout this paper, all inequalities between functions hold pointwise, and
we will usually omit the word “pointwise.”

A basic question arises: For which s € X does there exist a stabilizing top-
pling procedure? For instance, one might expect (correctly) that there is no such
procedure for s = 2. We can rephrase this question in terms of the set of functions

Fs={f:V-o>R|f>0and s+Af <1}.

If w is a stabilizing toppling procedure for s, then uo, € Fs. Conversely, any f € F;
arises from a stabilizing toppling procedure for s simply by setting 7" = {0, 1} and
uy = f. Therefore s stabilizes if and only if Fy is nonempty.

Proposition 2.5. (Least action principle and abelian property) Let s € X, and
let £ be a legal toppling procedure for s.

(i) For all f € Fy,
loo < f.
(ii) If u is any stabilizing toppling procedure for s, then
loo < Uso-
(iii) If u is any legal stabilizing toppling procedure for s, then for all x € V,
Uso(x) = Inf{f(z) | f € Fi} (5)
In particular, us and the final configuration
Soo = 8§+ Al
do not depend on the choice of legal stabilizing toppling procedure u.
Proof. (i) For y € V let 7, = inf{t € T : l(y) > f(y)}, and suppose for a
contradiction that 7, < oo for some y € V. Since T' is well-ordered, the infimum
Ee%‘i;cilir;idé'lMoreover, 7, ‘=sup{t € T : t < 7y} < 7, by assumption (3) of

Let 7 = infyey 7. Since T'is well-ordered, 7 = 7, for some y € V. Now at time
77, since u is legal for s,

$r—(y) =2 1+ deg(y) ((-(y) — £--(y)) > 1+ deg(y)w(y)
where w = f — £,.—. On the other hand,
sr—(y) = (s + Al-)(y)
= (s +Af)(y) — Aw(y)
< 1+ deg(y)w(y) — > w(x).

It follows that >  _ w(z) < 0. But for all z € V' we have 77 < 7 < 73, so
w(z) > 0, which yields the required contradiction.
Part (ii) follows from (i), using f = two.
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Part (iii) also follows from (i): the function wus, simultaneously attains the
infimum for all z € V. O

Whenever we need to fix a particular toppling procedure, we will choose one of
the following three.

Ezample 1. (Toppling in parallel) Let 7' = N. At each time ¢ € N, all unstable
sites of s;_1 topple all of their excess mass simultaneously: For all z € V,

(st-1(@) ~ )*

ug(x) —up—1(x) = deg(z)

This u is a legal toppling procedure. Two further observations about u will be

useful in the proof of Lemma 2.7 below. First, if s stabilizes, then w is finite by

Proposition 2.5(ii). Second, whenever u is finite, u is stabilizing for s: indeed, if
— 1 + +

Uso(x) = ) Y sen(st(z) = 1)T < oo, we have (s¢(z) —1)" — 0 as t — oo and

hence sqo(x) < 1.

Ezample 2. (Toppling in nested volumes) Let V; C Vo C ... be finite sets with
Un21 V., = V. Between times n — 1 and n we topple in parallel to stabilize all

sites in V,,: Formally, we take T' to be the set of all rationals of the form n — % for
positive integers n and k. For n > 1 and k£ > 1 we set

(502 () = )" Luc
%(CU)—U kil('x) = - deg(w)

and

Ezample 3. (Toppling in two stages) In this procedure we are given a decomposi-
tion of the initial configuration into two pieces

up(x) = kl;nolo Uy 1

s:sl+s2

where s! stabilizes and s2 > 0. In the first stage we ignore the extra mass s% and
stabilize the s piece by toppling in parallel at times 1 — % for positive integers k,
obtaining

s1 :s—i—Aucl,O:séo—i—SQ.
The condition that s' stabilizes ensures ul, < 0o, and the condition s? > 0 ensures
that all topplings that are legal for s! are also legal for s. Now we topple sl + s2
in parallel at times 2 — % for positive integers k.

Now we come to a central definition of this paper. Let s € X.

Definition 2.6. The odometer of s is the function us : V' — [0,00] of (5). If s
stabilizes, then its stabilization is the configuration

Soo = 8+ Algo.
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If s stabilizes, then its odometer uso () is the total amount of mass sent from z
to one of its neighbors, in any legal stabilizing toppling procedure for s. If s does
not stabilize, then uy, = co: The odometer is defined as a pointwise infimum, with
the usual convention that the infimum of the empty set is co. Next we observe
that the odometer can also be expressed as a pointwise supremum.

Lemma 2.7. Let uy, be the odometer of s € X. Then for allx € V,
Uoo () = sup{loo () | £ is a legal toppling procedure for s}. (6)

Proof. Denote the right side of (6) by L(z). By Proposition 2.5(i), L < u. To
prove the reverse inequality we will use a particular legal ¢, the parallel toppling
procedure of Example 1. There are two cases: First, if this ¢ is finite, then ¢ is
stabilizing as well as legal, so L > f+, = us by Proposition 2.5(iii).

Second, if £ is not finite, then ¢, (0) = oo for some o € V. Then for any neighbor
x ~ o, we have

liv1(z) > li(0) + s(x) — 1

and the right side tends to oo with ¢, so ¢ (z) = oo. Since the graph G is
connected it follows that o, = oco. In this case, both L and u., are identically
0. ]

We pause to record several equivalent conditions for s stabilizing.

Corollary 2.8. Let s € X have odometer us,. The following are equivalent.

(1) There ezists a legal stabilizing toppling procedure for s.
(2) There ezists a stabilizing toppling procedure for s.

(8) Fs # 0.

(4) uso(z) < 00 forallxz € V.

(5) Every legal toppling procedure for s is finite.

(6) The parallel toppling procedure for s is finite.

Proof. The implications (1) = (2) = (3) = (4) and (5) = (6) are immediate from
the definitions. The implication (4) = (5) follows from Lemma 2.7. Finally, let

u be the parallel toppling procedure for s. If u is finite, then w is both legal and
stabilizing for s, which shows the remaining implication (6) = (1). O

Denote by P, the law of the discrete time simple random walk (X;);en on
G started at Xo = o. Writing p;(z) = Po(X; = x)/deg(x), observe that the
Laplacian (1) of p; satisfies

Apya) = 3 (PO(XJ‘ =y) Po(X; = -’L‘))

o\ deg(y) deg()
=D Po(X; =y, Xji1 = @) = Po(X; = x)
= deg(z)(pj+1(z) — p;(x)). (7)

The next lemma will play an important role in the proof of the recurrent case of
Theorem 1.1. It relates the stabilizability of a particular configuration s to the
transience of the simple random walk.
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Lemma 2.9. Fizo €V and B > 0. The divisible sandpile

s(x)—{l’ T F#o0

1+58, z=o0
stabilizes on G if and only if the simple random walk on G is transient.

Proof. We compute the parallel toppling procedure u; and the configuration s; at
time ¢ of Example 1. Setting p;(x) = Po(X; = x)/ deg(x), let us show by induction
on t that

t—1
u(x) = B pj() (8)
=0

and

se(z) = 14 Bdeg(z)pe(z) 9)
for all x € V and all ¢t € N. Indeed, if (8) holds at time ¢, then summing (7) we
obtain

st = s+ Auy = s+ Bdeg(x)(pr — po) = 1 + B deg(z)pe
so (9) holds at time ¢, whence
(se(z) = 1)*
deg(x)
so (8) holds at time ¢ 4 1, completing the inductive step.
Taking ¢ 1 oo in (8) yields us(x) = Bg(0, x)/ deg(z) where

= Bpi(x)

upy1(z) — wg(w) =

glo,2) =Y Po(X; = z) (10)
j=0

is the Green function of G, which is finite if and only if G is transient.

If G is transient, then the parallel toppling procedure w is finite and s+Auy, = 1,
so s stabilizes. If GG is recurrent, then the parallel toppling procedure is infinite,
so s does not stabilize by Corollary 2.8. ([

3. CONSERVATION OF DENSITY

In this section we assume that G = (V,E) is vertex-transitive, and we fix
a subgroup I' of Aut(G) that acts transitively: for any x,y € V there is an
automorphism a € I'" such that ax = y. For the rest of the paper, we assume
0 € V be an arbitrary fixed vertex. Write X = RV (viewed as a measurable space
with the Borel o-field) and T, : X — X for the shift (T, f)(z) = f(a~'z). Let
P be a probability measure on X satisfying E|s(0)] < oo. We assume that P is
I'-invariant; that is, if s has distribution P then T,s has distribution P for all
aecl.

Proposition 3.1. (Conservation of Density) IfIP is I'-invariant and P{s stabilizes} =
1, then the stabilization s satisfies

Ess(0) = Es(o).



THE DIVISIBLE SANDPILE AT CRITICAL DENSITY 11

Fey, Meester and Redig [FMR09] used an ergodic theory argument to prove the
conservation of density for the abelian sandpile on Z¢ when I' is the group of trans-
lations. They considered only nonnegative initial conditions: s > 0. We will give
an elementary proof which starts in the same way, by choosing an automorphism-
invariant toppling procedure (toppling in parallel) and uses the following observa-
tion about averages of uniformly integrable random variables.

Lemma 3.2. If X is a random variable with E|X| < oo, and X1, Xo,... is any

sequence of random variables such that X; 4x for all i, then the family
S={a X1+ ...+ ap Xk >1,a ZO,Zai =1}
is uniformly integrable.

Proof. We may assume X > 0. Given € > 0, we must show that there is a é > 0
so that for any set A with P(A) < § we have E(Y1,4) <eforallY € S.

Since EX < oo, there is such § for X itself: choose M so that E(X1ix-yn) <€
and then set 6 = P(X > M). Now for any set A with P(A) < ¢ and any Y =
Z a; X; €8

k
E[Y1a] =) aE[X;14] <€
=1

so the same § works for all Y € S. O

Proof of Proposition 3.1. We topple in parallel: at each time step t = 0,1,...,
each site x € V distributes all of its excess mass oy(z) = (s¢(z) — 1)t equally
among its r neighbors where r is the common degree of all vertices in G. The
resulting configuration after ¢ time steps is

¢ = sg + Auy.

where u; = 7~ Y(og + ... + 04_1). Since P{s stabilizes} = 1 we have s;(0) —
S00(0), a.s.. We will show that the random variables o¢(0) for t € N are uniformly
integrable. To finish the proof from there, note that the law of u; is I-invariant,
so Eui(z) = Eu(y) for all z,y € V. In particular, EAus(0) = 0 and hence
Esi(0) = Esp(o) for all ¢ < co. Since s; > min(sg, 1) the uniform integrability of
o¢(0) implies that of s;(0), so we conclude Esq,(0) = Esg(0).

At time step t the origin retains mass < 1 and receives mass oy_1(y)/r from
each neighbor y, so

slo) <14y 71

Tr~o

hence 1
o1(0) < = > ora(@).

Inducting on ¢ we find that
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where a;(z) is the probability that a t-step simple random walk started at o € V
ends at z. By Lemma 3.2 the random variables Y; are uniformly integrable, which
completes the proof. O

We remark that the above proof also applies to the abelian sandpile to show
[FMR09, Lemma 2.10], by taking o(z) = [si(z)*/r], the number of times z
topples at time t.

4. BEHAVIOR AT CRITICAL DENSITY

In this section G = (V, E) is an infinite vertex-transitive graph, o € V' is a fixed
vertex, I' C Aut(G) is a group of automorphisms that acts transitively V', and P is
a [-invariant and ergodic probability measure on X = RY with E|s(0)| < co. The
event that s stabilizes is I'-invariant, so it has probability 0 or 1 by ergodicity.

Lemma 4.1. If Es(o) > 1, then P{s stabilizes} = 0.

Proof. 1If s stabilizes, then by conservation of density (Proposition 3.1), we have
Ess(0) = Es(o). Since the final configuration s is stable we have so(0) < 1, so
Es(o) < 1. O

Lemma 4.2. If Es(o) < 1 then P{s stabilizes} = 1.

Proof. We will show the contrapositive. We will use the observation made in the
introduction that if s¢(0) > 1 for some time ¢ then srp(o) > 1 for all T > ¢.

Consider first the case that s is bounded below: P(s(o) > M) = 1 for some
M € (—0,0]. Define u; and s; by toppling in parallel as in §3. Supposing that
P{s stabilizes} = 0, we have u;(0) > 0 for some sufficiently large ¢, a.s.; this fact is
contained in the proof of Lemma 2.7. Since us(0) > 0 implies s;(0) > 1 and hence
st(o) > 1 for all T' > t, we have

P {litrg(i)gf s¢(0) > 1} ~ 1.

Since s; > min(s,1) > M, by Fatou’s lemma E (litminf st(o)> < Es(o), which
—00

shows Es(0) > 1 as desired.

Now we use a truncation argument to reduce the general case to case where s is
bounded below. Choose sufficiently small M € (—oc,0] such that Es(0)1,)>n <
1. By the previous case the configuration slg>ys stabilizes almost surely. Since
s < s1g>)7, we have that s stabilizes almost surely. O

If s stabilizes then the odometer of s is the function us : V' — [0, 00), where
u is any legal stabilizing toppling procedure for s.

Lemma 4.3. If s has I'-invariant law P and P{s stabilizes} = 1, then the odometer
Uoo has T-invariant law. Moreover, if Es(0) = 1 then soo =1 and Aus =1 —s.

Proof. We use (5) along with the fact that A commutes with Ty,: if s + Af <1
then Tos + A(Tof) = To(s + Af) < 1, so0 if uy is the odometer for s then Tpueo
is the odometer for T s.

By conservation of density (Proposition 3.1), Eso(0) = 1. Since soq < 1 it
follows that s, = 1, and hence Aus = 1 — s. O
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In the case that G is recurrent we can prove our main theorem with no moment
assumption, using an “extra head” construction.

Lemma 4.4. Suppose that G is an infinite, recurrent, vertex-transitive graph and
{s(x)}rev are i.i.d. with Es(x) =1 and P{s(x) =1} # 1. Then
P{s stabilizes} = 0.

Proof. Let S C X denote the set of configurations that stabilize. By ergodicity,
P(S) € {0,1}. We will show that if P(S) = 1, then the graph G must be transient.
Let s : V — R denote an i.i.d. configuration with the given distribution such that
Es = 1, and fix a vertex o € V. We create a new i.i.d. configuration s’ with the
same law as s, by independently resampling s(o0) from the same distribution. Then
s’ = s+ [0,, where §,(x) = 1{z = o} and [ is a mean zero random variable. Since
Vars > 0, we have that P(8 > 0) > 0. Using P(S) = 1 along with Lemma 4.3,
there exist s : V' — R and S > 0 such that s and s + 36, both stabilize to the all
1 configuration. By toppling s + J, in two stages (Example 3), it follows that
1+ 80, stabilizes to 1, so GG is transient by Lemma 2.9. O

In the preceding lemma the hypothesis that s is i.i.d. can be substantially weak-
ened: The proof uses only the fact that with positive probability, the conditional
distribution of s(0) given {s(z)},, is not a single atom.

5. PROOF OoF THEOREM 1.1

5.1. Singly transient case. Recall Green’s function (10). In this section we
assume that g(o,y) < oo for all y € V but

" glo.)* = . (11)
yev

Define V;, = {z € V : d(x,0) < n} where d is the graph distance. Then V; C
Vo C ... are finite sets with (J,,~,; V,, = V. Let g,(z,y) be the expected number
of visits to y by simple random walk started at  and killed on exiting V,,. By the
monotone convergence theorem, for fixed z,y € V we have

gn(z,y) T 9(7,y)

as n — oo. In particular, setting
1/2
Up 1= Z gn (0, x)?
yeVn

we have v, T 0o as n — oo by (11).
The proof of the following lemma is inspired by [FR05, Theorem 3.1] and
[FMRO09, Theorem 3.5].

Lemma 5.1. Let G = (V, E) be singly transient (11), vertex transitive graph. Let
{s(x)}zev be i.i.d. with Es =1 and Vars < co. If

S galoa)(sta) 1)

n IEVn
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converges in distribution asn — oo to a nondegenerate normal random variable Z,
then P{s stabilizes} = 0.

Proof. Assume to the contrary that s stabilizes a.s.. Let u be the nested volume
toppling procedure (Example 2). Then for each n € N,

s+ Au, =&, on V, (12)

with &, <1 on V,,. Equation (12) can be rewritten as

un(y) =" Y gala,y)(s(@) = 1) + 771 D galz,y)(1 = €ul2))

z€Vy, eV,

where r is the common degree (both sides have Laplacian &, —s in V,, and vanish on
V¢). Observe that the second term is a nonnegative random variable. Therefore,
for any € > 0

P{uy(0) > evy,} > P {Vl Z gn(0,x)(s(x) — 1) > 7”6} : (13)

n eV,

Since u is a legal toppling procedure and we have assumed that s stabilizes a.s.,
we have us(0) < 00, a.s.. Now since uy,(0) T ux(0) and v, T 0o, the left side of
(13) tends to zero as n — oo. However, the right side tends to a positive limit
P(Z > re) > 0, which gives the desired contradiction. O

To complete the proof of Theorem 1.1 in the singly transient case, it remains
to show that i > v, 9n(0,7)(s(x) — 1) converges in distribution to a nondegen-
erate normal random variable. We show this using Lindeberg-Feller central limit
theorem as follows.

Lemma 5.2. Let {X,1:n > 1;i=1,...,k,} be a triangular array of identically
distributed random variables such that for each n € N, {Xp; i = 1,...,k,} is

independent. Assume that E[X11] = 0 and E[X?] = 1. Let ay;, > 0 be such that

Z’;l aik =1 and lim,,_ by, = 0 where b, = maxi<y<k, ank.- Then the sequence

Y, =" ankXnk converges in distribution to standard normal random variable
as n — 00.

Proof. By Lindeberg-Feller central limit theorem [Bil95, Theorem 27.2] it suffices
to check the Lindeberg condition:

En
. 2 2 =
Jim > Blan XL x> = 0
k=1

for all € > 0. Since E[X2, 1, . x, j>e] < E[Xlzllp(ube/bn] and Y, a2, = 1, we have

kn
: 2 2 : 2
i ; Elan Xk L Xonl>el < 10 ELXT D psepn,] = 0

because lim,, o0 by, = 0 and E[XZ] = 1. O
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Lemma 5.3. Let G = (V, E) be a singly transient (11), vertex transitive graph.
Suppose {s(x)}rey are i.i.d. random variables with Es = 1 and 0 < Vars < oo.
Then P{s stabilizes} = 0.

Proof. Since g(0,0) < oo and v, T 0o, we have

: gnlo,x)
lim max ——~= = lim <
n—o0 xeVy, Unp n—00 Unp n—oo  Vp
For n € N and z € V,,, define X, = (s(z) — 1)/v/Vars and a,, = %‘;’x) and
b, = maxgev, ang- By Lemma 5.2, we have that

converges in distribution to a normal random variable with mean 0 and variance
Var(s). Lemma 5.1 implies the desired conclusion. O

5.2. Doubly transient case. We start by outlining our proof strategy. Recall
from Lemma 4.3 that if s stabilizes with Es(o) = 1 then it must stabilize to the
constant configuration s, = 1. In particular, the odometer us, satisfies Auy, =
1 —s. In Lemma 5.5 below, by convolving s — 1 with Green’s function we can
build an explicit function v with Laplacian 1 — s; the convolution is defined almost
surely provided that

> glo,y)® < oo. (14)
yeVv
(This condition says that the expected number of collisions of two independent

random walks started at o is finite. The essential feature of Green’s function here
is of course that

Ag(,y) = —rdy (15)
where 7 is the common degree of all vertices of G, and §,(z) = 1{z = y}.)
Having built the function v, the difference v — u, is then a random harmonic
function with I'-invariant law, which must be an almost sure constant by the
following lemma.

Lemma 5.4. (Harmonic Functions With Invariant Law) Let T' be a group of
automorphisms of G that acts transitively on the vertex set V. Suppose that h :
V — R has I'-invariant law and Ah = 0. If h can be expressed as a difference of
two functions h = v —u where uw > 0 and sup,cy Ev(z)* < oo, then h is almost
surely constant.

Proof. Let (X,,)n>0 be simple random walk on G started at X = o. Although h is
harmonic, h(X,,) need not be a martingale since it need not have finite expectation.
But for any a € R, since h = v — » and u > 0, the truncation

M, =a+ (M(X,) —a)"
<a+ (v(X,)—a)t
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has finite expectation. Since the function ¢ — (t —a)™ is convex, z — (h(x) —a)™*
is subharmonic, so M, is a submartingale:

E[M,1h, Xo, ..., Xo] = % S (a+ (h(w) —a)*) > M,.

w~Xp,

A submartingale bounded in L! converges almost surely [Wil91, 11.5]. Since this
holds for any a € R it follows that h(X,,) converges almost surely. But since h has
[-invariant law, h(X,,) is a stationary sequence, so the only way it can converge
a.s. is if h(X,,) = h(Xy) for all n. Since G is connected, for any vertex z € V there
exists n with P(X,, = z) > 0, so h(x) = h(o). O

Lemma 5.5. Let I' be a countable subgroup of Aut(G) which acts transitively on
the vertices of V.. Suppose {o(z)}zev are i.i.d. random variables with Eo(z) = 0
and 0 < Varo(0) < oo Let y1,y2,... be an enumeration of the vertex set of G.
ForaeT, let

Vo () = % Zg(x, ay;)o(ay;). (16)
i=1

If G is doubly transient (14), then the following hold almost surely.
(a) The series defining vy () converges for all z € V,a € T
(b) va =vg foralla,B eT.

(¢) Ave = —o where e denotes the identity automorphism.

(d) ve has T-invariant law, that is Tyve 4 Ve for all a € T.

(€) ve is unbounded above and below.

Proof. (a) Each term in the series (16) is independent, and the i-th term has
variance g(x, ay;)?U where U = r~2Ec(0)2. By (14) the sum of these variances is
finite, which implies that the series converges a.s..

(b) Note that there is something to check here because the series defining
vq is only conditionally convergent. Fix x € V and denote the partial sum
r1 Yo 9z, ayi)o(ay;) by va,n. We compare vg,, and v, where e is the identity
element of I'. Given € > 0, choose n; such that

o
U gla,y)? < e
=ni
There exists N7 depending on n; and « such that
{yi:i=1,2,....m} C{ay;:i=1,2,...,Ni}.
This implies that for any N > N; we have Var (vo,ny — Ve n) < 2¢3. By Cheby-
shev’s inequality,
P (|va.n — ven| > €) < € 2 Var (van — Ve y) < 2€
for all N > N;. By part (a) there a.s. exists Ny > Nj such that max(|va,, —
U ()], |ven — ve(z)]) < €/3 for all n > Nj. By the triangle inequality it follows
that
€

p(\va(x) —ve(@)] >

)<2e.
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Since € was arbitrary we obtain v, (z) = ve(z), a.s.. By taking countable intersec-
tions we have that v, = v, a.s..
(c) Using (15), we compute

Avele) = 3 (welw) — wele)

= % Z (Z g(w,yi)o(yi) — Zg(m,yi)a(yi)>
w~r \1=1 =1
= Za(yi)% Z (9(w,yi) — g(z,y:))
i=1 wew
= = oyt {y =)
=1
= —o(x).

(d) To show that ve has I'-invariant law, write v, = vZ to make the dependence
on the initial configuration o explicit. We have for all « € T’

To?(2) = Y gla™ 2, y)o(w)

= Zg(fc, oyi)o(yi)

where in the last equality we have used part (b). Hence T,v? = vla®

o has I'-invariant law.
(e) To show that v, is almost surely unbounded below, we use the assumption
that o(0) has zero mean and positive variance, which implies that

P(o(o) < =6) > p

for some p,d > 0. Since ZyEV g(0,y) = 0o and Zye\/ g(0,)? < 00, we can choose
N large enough so that

d .
= vJ since

N 00
or Y gloyi) >2M, U Y glo,y)? < L.
i=1 1=N+1

By Chebyshev’s inequality
oo
P(r" > gl@y)oly) = M)
i=N+1

1
S
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On the event that o(y;) < —é forall 1 <i < Nand 73> v g(@,y:)o(y:) > M
we have ve(0) < —2M + M. Since the random variables o(y;) are i.i.d., we obtain
1
P(ve(0) < —M) > p™N (1 — W) > 0.

Since v, is stationary, we have P(infv, < —M) € {0,1} by ergodicity. Since this
probability is > 0, it must be 1. Since M was arbitrary, v, is a.s. unbounded
below.

A similar argument shows that v, is also a.s. unbounded above. O

Lemma 5.6. Let G = (V, E) be a doubly transient (14), vertex transitive graph
and let {s(z)}zev be i.i.d. random variables with Es = 1 and 0 < Vars < oo.
Then P{s stabilizes} = 0.

Proof. Assume to the contrary that s stabilizes a.s. with odometer us,. Let ' be
a countable subgroup of Aut(G) that acts transitively on the vertices of G. Let
v:V — R be given by equation (16) with « = e and 0 = s — 1. By Lemma 5.5, v
has I'-invariant law and Av =1 — s. Therefore

h:i=0— Us
has I'-invariant law and A is harmonic: Ah = 0 on V. Further, by Fatou’s lemma,
Ev(z)? < deg(z)™2 Var(s) Y52, g(z,4;)? < co. Lemma 5.4 now implies that h is
almost surely constant. This contradicts Lemma 5.5 because us > 0 and v is
almost surely unbounded below. O

6. STABILIZABILITY OF CONES

Until now we have mainly been concerned with the stabilizability of random
initial configurations. In this section we examine stabilizability of a few determin-
istic configurations on the square grid Z2. We present two examples, one of which
stabilizes.

Lemma 6.1. Define Cy = {(z,y) € Z> : > 0,|y| < x}. Then the configuration
so = (1 + a)l¢, does not stabilize for o > 0.

Proof. By least action principle (Proposition 2.5), it suffices to show the existence
of an infinite legal toppling procedure.

Let uj denote the parallel toppling procedure of Example 1 where £ € N. Let
C ={(z,y) €Z?: 2 >0,y <z}. Let (X,,Y,) denote the simple random walk
on Z? and let N denote the stopping time N = min{n > 0: X,, = [Y,,|}. As in the
proof of Lemma 2.9, we keep track of the mass from each (x,y) € C to obtain

k
(6%
u(1,0) > > D Pl (X, Yn) = (0,0), N =1).
(z,y)eC 1=0

for all £ € N. To see this note that N is the exit time of the set C' and the only
way to exit C' at (0,0) is from (1,0). As a result, we have

ue(1,0) 2 5 Y ple,y)

(z,y)eC
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where p(z,y) = P@Y (X, Yn) = (0,0)). Consider the function ¢ : Z> — [0, 1]
given by
p(l,y)  if y <ad,
q(z,y) =  —p(l, z) if 2 <y,
0 otherwise.
Note that Aq = 6(0,1) + (0,—1) — (1,00 — I(~1,0)- Let g(w,y) denote the potential
kernel in Z? defined by

o0

g(w,y) = Z[P(O,O) (X = (2,y)) — IP)(0,0) (Xn = (0, 0))]

n=0

where (X, )nen denotes the simple random walk on Z2. Although the simple
random walk on Z? is transient, it turns out that the sum defining g is absolutely
convergent. By standard estimates on g (See [Law96, Chapter 1]), we know that
¢ has sub-linear (logarithmic) growth. This combined with [FHS93, Theorem 6.1]
implies that

q(z,y) — % (9(z+1y) +g9(z - 1Ly) —g(z,y — 1) —g(z,y + 1))

is identically zero because it is harmonic with sub-linear growth and attains the
value 0 at (0,0). Therefore there exists ¢; > 0 such that for all (x,y) € C, we have

q(z,y) = i (9(z+Ly) +g(@—1y) —g(z,y—1) —g(z,y + 1)) + iAg(ﬂ:?y)
= % (9(z +Ly) +g(x—1,y) — 29(z,y))
22 — o2

The first line above follows from the fact that Ag = 0 for all points except (0, 0).
The last line above follows from [Law96, Theorem 1.6.5 (b)]. Therefore ux(1,0)

>
T2 wyec 4@ y) > 2 pen (5224—;;2)2 = 0o. Hence sy does not stabilize. O

We need the following technical lemma for the next example:

Lemma 6.2. Let 0 : V. — R be a configuration in G = (V,E). Assume that
H :={z:0(z) > 1} satisfies [H| < oo and

> (o) -1t < oo
xeH
Let F C V be such that |F| < co and
Yo@ -1t <> (1-a@)
zeV el

Then o stabilizes.
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Proof. Let a : HxF — [0, 00) be a non-negative function such that > . a(z,y) =
o(z)—1forallz € H and ) ya(z,y) <1—o(y) for all y € F. The function a
encodes how to redistribute the excess mass from H to F.

Let

fax(v) = deg(y) deg(y)

denote the Green’s function normalized with degree. Observe that Af, ., =6, —d,.
Therefore the function w:= 3y cpa(@,y)fzy satisfies 0 + Au <1 and u > 0.
This in turn implies that o stabilizes. ([

_ g-(z,y)  E"(number of vists to y before being killed at z)

Remark. The condition that |H|,|F] < oo in the above lemma is necessary. The
following example illustrates this: Consider a probability measure p on N* =
{1,2,3,...} and consider the function o, = 1 + dg — p(z) where p(x) = p({z}).
Then it can be shown that o, stabilizes if and only if ). zp(x) < oo.

Lemma 6.3. Define C, = {(x,y) € Z* : x > 0,y < ax}. Then the configuration
sq = mle, stabilizes if 1212“2 <1 and a € (0,1]. Moreover so(v,y) = 1150, y—0}
stabilizes.

Proof. The case a = 1 is trivial. Define for a € (0, 1]
2
(az — ) o
2(1+a?) 7
To see that sg stabilizes, we check that sg + Au; < 1. This follows immediately
from the computation of Auy as

Ug(z,y) =

(1—2 ifx>0,y=0

1 if y <z, x>0
Auy(z,y) = (3 if y| =z,2>0
% ife=y=0
0 otherwise.
A direct computation yields Au, in different regions: Augy(0,0) = 2(1‘fa2) < i.
If y =0,z > 0 and all neighbors of (z,0) are in C, (i.e. x > [1/a]), then
2a
Aua(x,()) = 1- mﬂ?
If y=0,2 >0 and (z,£1) ¢ Cy, then
a?(1 — z?)
Aug(z,0) = i
If all neighbors of (z,y) are in C, with y # 0, then
Aug(z,y) = 1.

If (z,y) € C, with y # 0 and one of the neighbors is not in Cy, then
2

0< < Aug(z,y) < 1.

14a2 —
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If (z,y) ¢ C, and if all neighbors of (x,y) are not in Cy, then
Aug(xz,y) = 0.

If (x,y) ¢ C, and one of the neighbors in C,, then at-least 2 of the neighbors are
not in C, and

0 < Aug(x,y) < 1.
Consider vg(z,y) = ui(z + [1/al,y) — muq(x + [1/a],y). It is easy to check that
Ve > 0 if 2% < 1.

14+a
If x > 0 we have

Sa(2,0) + Avg(x,0)

m+(1—[1/a] —2)—m(1 —a(x+[1/a]))
1+ <2‘””—1> (z + [1/a])

IN

1+ a2
< 1.

If x>0,y +#0,(z,y) € Cy, then
Sa(x,y) + Avg(z,y) = m+1—m=1.
If y #0,(x,y) ¢ Cq, then
Sa(x,y) + Avg(z,y) < Aug < 1.
If x < —[1/a] — 1, then
Sa(z,y) + Avg(z,y) = 0.

Therefore s, + Av, < 1 for all points except on the finite set {(x,0) : —[1/a]—1 <
x <0} and s, +Av, =0 for all z < —1—[1/a]. Lemma 6.2 implies that s, + Av,
stabilizes, and therefore s, stabilizes. O

We conjecture that the bound in Lemma 6.3 is sharp.

Conjecture 6.4. Define for a € (0,1], Cy = {(x,y) € Z% : 2 > 0,y| < ax}. Then

the divisible sandpile s, = mlc, stabilizes if and only if 12_’&“2 < 1. Furthermore,

the divisible sandpile so = kxl{,~0 y—0y stabilizes if and only if k < 1.

More generally, we have the following problem.

Open problem 6.5 (Tests for stabilizability). Given s : Z¢ — R, find series tests
or other criteria that can distinguish between stabilizing and exploding s.

7. FINITE GRAPHS

Let G = (V, E) be a finite connected graph with |V| = n. For a finite con-
nected graph, all harmonic functions are constant: the kernel of A is 1-dimensional
spanned by the constant function 1.

Lemma 7.1. Let s : V — R be a divisible sandpile with ) .y, s(x) = n. Then s
stabilizes to the all 1 configuration, and the odometer of s is the unique function
u satisfying s + Au =1 and minu = 0.
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Proof. Since A has rank n — 1 and )y (s(z) — 1) = 0, we have s — 1 = Av for
some v. Letting w = v — minw, we have w > 0 and s + Aw = 1, so s stabilizes.
Now if u is any function satisfying s + Au < 1, then

Z(s + Au)(z) =n

eV
so in fact s + Au = 1. This shows that s stabilizes to the all 1 configuration,
and moreover any two functions u satisfying s + Au < 1 differ by an additive
constant. By the least action principle (Proposition 2.5), among these functions
the odometer is the smallest nonnegative one, so its minimum is 0. U

Fix z,2 € V and let f(y) = %ze(;(’;’)) be the function satisfying f(z) = 0 and

Af =6, — ;. (Here g*(z,y) is the expected number of visits to y by a random
walk started at x before hitting z). With a slight abuse of notation, we define

9(z,y) =Y .ey 29 (,y).

Proof of Proposition 1.3. Observe that )y s(z) = n. Therefore s stabilizes to
the all 1 configuration by Lemma 7.1, and the odometer u satisfies

s+Au=1

and min u = 0.
Since A%e(gm(’f)) =9, — 0., the function
1

) = gy 2 6@ () =

has Av*(y) =1 — s(y) for y # z and

Avi(z) =) (s(z) —1) =1—s(2).
T#z
Thus u — v* is harmonic on V and hence is a (random) constant.

Let v = % Y .ey V. Since u—v* is constant for all z, the difference u — v is also

constant. Recalling that g = 23" |, g%, we have v(y) = @ Y ozev 9(w,y)(s(z)—

1). To compute the covariance of the Gaussian vector v, note that

El(s(2) — 1)(s() = )] = Lismuy =

hence
E[v(z)v(y)]
- (1‘3‘0’(55)1(16‘3(9) Z g9(z,z)g(w,y)E[(s(z) — 1)(s(w) — 1)]
z,weV
1 1
=—- (z,2)9(z,y) — — < (Z7$)> ( (w, ))) :
deg(a:) deg(y) (;/g g ) n ;/g l;/g y
The function K(y) := @Zwev g(w,y) has AK = Zz,wev % (6, — 6u) =

0, so K is a constant. The second term on the right is just K?Q Letting C
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d=1|d=2 d=3|d=4 d>5
E(no — nx)? < va(n, )= nr? r?log (%) r log(14+r) |1
Emax{ny : x € Z4} < n3? |n n'/2 | logn (logn)t/?

TABLE 1. Statistics of the bi-Laplacian Gaussian field 1 on the
discrete torus Z%. In the first line, r = ||x||, and the symbol <
means there is a dimension-dependent constant Cy such that E(no—
nx)? < Catbg(n,r) for all x € Z<. The second line gives the order of
the expected value of the maximum of the field up to a dimension-
dependent constant factor.

be a N (0, KTQ) random variable independent of v, the Gaussian vectors n and
(v(z) + C)zey have the same covariance matrix, so

n Lv+C.
Since u — v is constant and minu = 0 we conclude that

. d .
u=9v—minv =7 — minn. U

8. GREEN FUNCTION AND BI-LAPLACIAN FIELD ON ZZ

The rest of the paper is devoted to the proof of Theorem 1.2. Taking Proposi-
tion 1.3 as a starting point, the expected odometer equals the expected maximum
of the bi-Laplacian Gaussian field 7, since

Eu(x) = E(n, — minn) = —Eminn = Emaxn
where we have used that En, = 0. From the covariance matrix for n we see that

B g(z,x)  g(z,y) ’
E(n, — 77y)2 = Z (deg(x) a deg(y)) '

zeV

We will use asymptotics for the Green function g of the discrete torus Z¢ to
estimate the right side. This will enable us to use Talagrand’s majorizing mea-
sure theorem to determine the order of Emax{ny : x € Z%} up to a dimension-
dependent constant factor. These calculations are carried out below and sum-
marized in Table 1. The table entries give bounds up to a constant factor de-
pending only on the dimension d. For example, the d = 3 column means that
there is a positive constant C' such that E(ny — nx)? < C||x]|, for all x € Z3 and
C1nl/2 < Emaxn < Cnl/2.

Remark 1. For the rest of our work, we identify the discrete torus Z¢ with
(Z N (—n/2,n/2])% which in turn is viewed as a subset of R%. For x € Z% and
1 < p < oo, we denote by [x||, the p-norm under the above identification. Note

that for standard graph distance dg on Z%, we have d(0,x) = ||x]|; .
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8.1. Fourier analysis on the discrete torus. In this section, we derive a for-
mula for E(ng —1x)?. We begin by recalling some basic facts about Fourier analysis
on the discrete torus and the spectral theory of the Laplacian. We equip the torus
Zg with normalized Haar measure 1 (in other words the uniform probability mea-
sure). Consider the Hilbert space H = L?*(Z<, i) of complex valued functions on
torus with inner product

()= [ fadu= =5 3 Fa)ala).

1/

We identify the Pontryagin dual group Zgl with Zfl as follows. For any a € Zg,

the map x — exp (i27x - a/n) gives the corresponding element in ZZ (The dot
product is the usual Euclidean dot product in R™). We denote this character by
Xa- Recall that {xa : a € Z%} forms an orthonormal basis for . Moreover each
Xa 18 an eigenfunction for the Laplacian A with eigenvalue

d
Mo = -4 sin? (T,
n
=1

Thus the Laplacian A : H — H is a non-positive, bounded operator. Moreover
Aa = 0 if and only if a = 0. Laplacian A is a self-adjoint operator, that is

(f1, Af2) = (Af1, f2) (17)
for all f1, fo € H (See Remark 2). We denote by gx(y) = g(y,x). Recall that
1
Agw =24 (100~ ). (18)

Denote by gx(a), the Fourier coefficient (gx, xa). Since the function x — > gx(y)
is harmonic, it is constant. This implies that there exists L > 0 such that

70 =1 1Y guly) =L (19)
yeL

for all x € Z¢ . For a # 0, we have

Aagx(8) = Aa(gx; Xa) = (9x: Axa) = (Agx, Xa) = —2d(0x, Xa) = —2dn~x—a(x).
(20
For the above equation, we used Axa = AaXa, equations (17), (18) and (xo, Xa) =
0. By Parseval’s theorem and equations (19), (20),

E(no —nx)®> = (2d)7? Z (9(2,0) — g(z,%))*
z€Z3
= (2d)*n%(go — gx, 9o — gx)
= (2d)*n? 2{: g0 (z) — gx(2)”

z€Z4

= Fua) (21)
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where

d Sln2 (

=)
(22)
sczvo) (D0 sin? (% ))

Fha(x):=n"

Remark 2. In R, we have the Green’s second identity
[fiapis == [VASpde= [ fiap s

for all fi, fo € C°(R?). Similarly, in our discrete setting we have

(FLAR) =5 3 (100~ hE)ER) - HEDEY) = (Afi, f)

X,y€E€ZE

where k(x,y) = 1;~, and x ~ y if x and y are neighbors in ZZ. See for instance,
[Sal96, Lemma 2.1.2] or [LPW09, Lemma 13.11] for a proof.

Our task now is to estimate the expression F, 4(x). Henceforth we assume
that x # 0. To study the quantity max, ycza (1x — 7y) as n goes to 0o, we want

to estimate E(ng — 1x)? with d fixed and n large for different values of x. We
approximate I}, 4(x) by an integral of a function over R%. For w € R? and r > 0,
we denote by Boo(w, ) the open ball with center w and radius r under supremum
norm, that is

Boo(w,r) ={y €R?: [ly —w|, <r}.
We denote the indicator function of the ball Boo(z/n,1/(2n)) by I, : R — {0,1},
that is I, , = 1Boo(z/n,1/(2n))~ Define the function G,, 4 x : R? 5 R

7TX~Z)

. 9
G = Z sin ( -
sty (T sin? (%))’

Since the cubes B (z/n,1/(2n)) are disjoint with volume n

x) = [ | Guanly) dy. (23)

Iy

)

—d  we have

By triangle inequality, we have
(L +Vd) " [z/nlly < [lylly < (1+ V) [|2/n], (24)

for all z € Z2 \ {0} and for all y € By (z/n,1/(2n)) under the usual identification
from Remark 1. We will estimate the function G, 4x using the function H,, 4« :
R? — R defined by

TI'X'Z)

sin? ( -

Hya,x (y) = Z

1 Iz,n(Y)'
ZGZ%\{O} HYHQ

More precisely, we have the following lemma.
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Lemma 8.1. Fix d € N*. There exist positive reals c¢1,C1 such that
ClHn,d,X(Y) < Gn,d,x(y) < ClHn,d,x(y) (25)
for all n € N*, for all x € Z2 \ {0} and for all y € R,

Remark 3. We will use C; for large constants and ¢; for small constants. Here and
in what follows, all constants are allowed to depend on d but not on x € Z2 \ {0}
or n.

Proof. The idea is to use the estimate
2 .
21 < bind < f
77

for all t € [—m/2,7/2]. Thus there exists a constant Co > 0 such that

d 2

_ . TZi

cgluz/nués(zsﬁ( )) < Cy |l2/nl} (26)
=1

n

for all z € Z¢ and for all n € N*. By (24), we have

I n Inn Ipn

(14_\/&)74 ) (y) < 2 (Z) < (14_\/&)4 ) (yi (27)
lz/nll; Iyl |1z/73

for all z € Z% \ {0}, for all y € R? and for all n € N*. Combining equations (26)

and (27) gives (25). O

By (21), (23) along with integration of (25) over the variable y, there exists
c1,C1 > 0 such that

crd’ / [ Haax(y)dy < E(no — mx)? < Crd? / Hnax(y)dy (28)
R R

for all n € N* and for all x € Z2 \ {0}.
By (28), it suffices to estimate [, Hyax(y)dy. Observe that the support of
H,, 4 x satisfies

Support(H, 4.x) € B2(0,Vd) \ B2(0,1/(2n))

for all d,n € N* and for all x € Zfl, where Bs denotes open ball with respect to
Euclidean norm in R?.

8.2. Upper bounds. Define ¥4 by

(i ifd=1
r?log (%) ifd=2
Ya(n,r) =< r ifd=3 (29)
log(1+r) ifd=4
1 if d > 5.

\

for all n € N* and all r > 0 along with 14(n,0) := 0 for all d,n € N*. The upper
bounds for E(ng — 1x)? is summarized in the following Proposition.
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Proposition 8.2. For each d € N*, there exists Cy > 0 such that

E(10 — 11x)* < Catba(n, [|x[l,) (30)
for all n € N* and for all x € Z2¢ |, where 14 is defined by (29).

n s

Proof. By (28) it suffices to find upper bounds for [pu Hy ax(y) dy. The strategy
to establish upper bounds for f]Rd H, 4x(y)dy is to split it into two integrals

25 Jou = Jiy@nm<ivl<vans,  Vaj,<iy,<va Note that both the integrals
are over non-empty annuli since 1/(2n) < vd/(4|x|,) < Vd/|x|l, < Vd for
all x € Z4 \ {0} with the identification from Remark 1. Using Cauchy-Schwarz
inequality and the bound [sint| < ¢, we have jsin(rx.z/n)| < 7 (x|, |z/n|,. This
bound competes with the trivial bound jsin(7x.z/n)] < 1. It will become clear
that up to constants, the first bound is better for the first term and the trivial
bound [sin(7x.z/n)| < 1 is better for the second term.

For the first integral we use the bound [sin | < [f| and Cauchy-Schwarz inequality
to obtain

w2 ||x|3 ||z/nl3
Hyax(y) < Y —— 221 0(y).

1
z€Z3\ {0} Hy”2
By (24), we have ||z/n||3 Inn(y) < (1+ Vd)? ||yl3 Ien(y). Therefore, we obtain

(1+ Vd)*n* |1x|3

Hn,d,x(y) < Z P) Iz,n<y)- (31)
zeZd\ {0} HyH2
for all n,d € N*, for all y € R? and for all x € Z¢ \ {0}. Hence, we have
5 5. 12 Va/||x|ly pd—1
= | Hoa(y) dy < (14 Ve [xfas [ o dr
1/@n)<lyll,<Vd/ |l 1/(2n) "
(32)

where wg_1 = lgerd//;) is the (d — 1)-dimensional surface measure of unit sphere S¢~*

in R?,
For the second integral we use the bound [sint| < 1, to obtain

Vd pd—1

Hyax(y)dy <wi / dr. (33)

IQ :—/ 1
Va/ |l <llyll,<vd Vi/|xll, T

Combining equations (32) and (33), we obtain

5 9 1o Vaflxly va. o
Jo a1ty < QAP s [ e [
Rd

1/(2n) v/ x|,
(34)
The desired upper bounds on E(ng —nx)? for all dimensions follow from (34) along
with (28). O

Remark 4. The terms I and I3 correspond to the energy (square of 2-norm)
of the low and high frequency oscillations of the function gg — gx respectively.
For d = 1,2, the term I; dominates Is. For d = 3, both I; and I, are of the
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same order. For d > 4, the term I5 dominates I;. Hence our approach to obtain
matching lower bounds in the next subsection is as follows: For d = 1,2, we obtain
lower bounds on lower frequency terms and for d > 3 we obtain lower bounds on
higher frequency terms.

It is well know that the Gaussian field 1 induces a Hilbert space on Z¢ given
by the distance metric

dy(x,y) = (Bl —ny)?) ">

The upper bounds on d,, provided by Proposition 8.2 transfers to upper bounds
on Esupyeza 7x. The main tool to transfer bounds is Dudley’s bound [Tal05,
Proposition 1.2.1] described below. There exists L > 0 such that

o0
Esup < LY 202, (35)
XGZ% k=0

where ej, = inf supgcza d;(t, k) and the infimum is taken over all subsets T), C zd
with [T] < 22"

Proposition 8.3. For each d € N*, there exists Cq > 0 such that

E sup nx < Cada(n) (36)
x€Z4

for all n € N*, where ¢q4 is defined by (2).

Proof. Let dg denote the standard graph distance on the torus Z¢. By choosing
a submesh of appropriate cardinality the following statement is clear: For any
d € N*, there exist Cy1 > 0 such that for any n > 2 and for any 2 < m < nd,
there exists a set Sy, C Z4 with |S,,| = m such that

n

da(t, S) = inf de(t,s) < Cyp—r . 37
tseuz% a(t, Sm) thUZI;I Jnf c(t,s) < Car 7 (37)

For each d € N* by Dudley’s bound (35), (37) and Proposition 8.2, there exists
Ca2,Cq3 >0

[loglog n¢ | Cyin 1/2
E)r(réz% Nz < Ca2 Z ok/2 [1,/}61 (n, 2(2';/d)>] < Cy3pa(n) (38)
n k=0

The second inequality above follows from a straightforward case by case calcula-
tion. ([l

8.3. Lower bounds. Next, we prove matching lower bounds on E(ng — 7x)?. For
dimensions d = 1,2, we estimate F;, 4 directly.



THE DIVISIBLE SANDPILE AT CRITICAL DENSITY 29
d = 1: We use the bound [f| > in#| > 2 for all [t < /2 to obtain

2 X
Sl
Fn,l(x>zn*1 ” > 47 ||x|l5

for all n € N* and for all x € Z,, \ {0}. Hence there exists ¢; > 0 such that

E(10 — nx)? = ern |x]I3 (39)
for all n € N* and for all x € Z,, \ {0}.

d = 2: Let S, C Z? denote the sphere with center 0 and radius & in the supremum
norm, that is Sy = {y € Z? : ||yl = k}. For z € R?, we define Hy = {y € Z* :
b -yl > [1x]|y [y lly /v/2}. Tt is easy to check that |Si| = 4k and |Sy N Hy > 2k for
all k € N* and for all x € R2. Let a € (1,v/2). If ||z, < #XHQ by Cauchy-Schwarz
inequality we have [x -z/n| < a~!. We need the inequality [t > [sin7t| > St for
all [ff < a~! where 8 = asin(ra™!). Putting together the above pieces, we obtain

| 51 | AL/l
Fra(x) = Z > Bt |zl k2
zE€S,
9 BN
> 2 Il Ej >zl
zC€SENHx
2 {auxuﬁ’\m/“
> Il 23 > K
ZGSkﬂHx
9 {auxuzJ /4] 1
> 277T4||XH2 kzﬂ k™

/32 2 n

> g ntfton (| i | 2 ) +1)
B2 2 n n

> ol [[x]|3 log (04”XH2 A 4> -

Since ||x|l, < n/v/2 for all x € Z2, we have the desired lower bound by using
a < /2. That is, there exists ¢ > 0 such that

n
mm—mﬁzmm@%(mw) (40)
2

for all n € N* with n > 4 and for all x € Z2 \ {0}.
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d > 3: For dimensions d > 3, we will approximate H,, 4 x by its almost everywhere
point-wise limit H, 4« defined by

sin?(7x - y)

Hooax(y) = R 15..(0,1/2)(¥)-
2
for y # 0 and 0 otherwise. Therefore we would like to estimate integrals of the
form
a2 T2
sin®(7x - _
/ (Lly)dy—/ rd ‘r’sd(erHz)dr (41)
n<lylo<re 1yl r

where s4(t) = fsdfl sin?(mty1) vg—1(dy) and v4_; denotes the surface measure in
S%1. We will need the following lower bound for s,.

Lemma 8.4. Fix d € N* with d > 3. Then for all € > 0, there exists § > 0 such
that sq(t) > 0 for allt > e.

Proof. Since sg : R — R is a continuous function with s4(t) > 0 for all ¢ # 0, it
suffices to show that ligfn inf s4(t) > 0. By [BGMNO5, Corollary 4] (See Remark
— 00

5(b)),

1 1/2
sq(t) = cd/ (1 — 22)@=3/2gin? (rtw) dw > cd2(3d)/2/ sin?(rtw) dw
-1 ~1/2

where ¢, is a constant that depends on d. Since lim;_, fi{% sin?(rtw) dw = 1/2,
the conclusion follows. g

Remark 5. (a) Recall that we used the point-wise bound [sin#| < 1 to obtain
upper bounds on I>. We want to somehow reverse that inequality to obtain
corresponding lower bounds. Although the reverse inequality [sint| > § is
not true for any § > 0 in a pointwise sense, it is true in an average sense.
That is the content of Lemma 8.4.

(b) [BGMNO5, Corollary 4] implies the following striking result in geomet-
ric probability: Let d > 3. For a uniformly distributed random vector
y = (y1,%2,...,9q) in the (d — 1)-dimensional unit sphere S%~! in R,
the projection (y1,%2,...,Yq—2) is uniformly distributed in the (d — 2)-
dimensional unit ball BY=2 = B(0, 1) in R?~2,

(c) Since limy, o0 Hy 4x = Hyqx almost everywhere, one might wonder if
we can prove matching lower bounds for I using dominated convergence
theorem. This approach gives a lower bound as n goes to co but with both
d and x fixed. However we want lower bounds with fixed d and with both
n and x varying. Hence there is a need to quantify this convergence as
both n and x varies. We fulfill this need in Lemma 8.5.

One can easily check that lim,, o Hy, gx = Hoo qx almost everywhere. We need
the following quantitative version of this convergence.
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Lemma 8.5. Fix d € N*. For any e > 0, there exists positive reals 6, N such that

sin?(7x - y) €

1 = 1
1yl 1yl

Hn,d,x (Y)

for alln > N, for all x € Z2 \ {0} with ||x||, < én and for almost every y €
B(0,1/4) \ B2(0,1/(8|x[5))-

Proof. Note that, we have the inclusion
Buo(0,1/(2n)) € B(0,1/(8 [xIl,)) C Ba(0,1/4)

for all n > 4+/d and for all x € Z2\ {0} with ||x||, < n/4v/d. We use ||x||, > 1 and
the comparison of norms ||w|, < v/d|w]||, to prove the above inclusions. The
function y ~ sin?(7x - y) has gradient bounded uniformly in 2-norm by 7 ||x||,.
Hence we have

sin?(7x - y)

-
< 7|x|, —
s Illz == 11yl

Hn,d,x (y) -

for all n > 4v/d and for all x € Z% \ {0} with ||x||, < n/4+/d and for almost every
y € B(0,1/4) \ B2(0,1/(8]x||5)). The choice 6 = min (4\%, ﬁ/&) and N = 4v/d
satisfies all the requirements.

We put together the above pieces to obtain the following lower bound for d > 3.

Lemma 8.6. Fix d > 3. There exists positive reals §, N, cq such that

1/4
/ H, ax(y)dy > cd/ r&=5 dr
R4 1/8lIxll5)

for alln > N and for all x € Z2 \ {0} with ||x||, < én.

Proof. By Lemma 8.4, there exists €; > 0 such that s4(t) > 2¢; for all t > 1/8.
By Lemma 8.5, there exists positive reals 4, N such that

sin?(7x - y)

4
1yl

€1

— 4
wi—1 [yl

Hn,d,x (Y) -

for all n > N, for all x € Z¢ \ {0} with |x|, < dn and for almost every y €
B5(0,1/4) \ B2(0,1/(8 [[x[15))-
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Combining the above observations, we have for all n > N and for all x € Z4\ {0}
with ||x|, < on

[ thaxwray = | Hix(¥) dy
R /@)l <llyll,<1/4
>/ (Hocoax(y) — exc Iyl ") dy
1/@x) [ <llyll,<1/4
1/4
= [ st ) — e
1/(8[1xl2)
1/4
> @ / r=dr. O
1/(8xll2)

We now establish the following lower bounds corresponding to the upper bounds
in Proposition 8.2.

Proposition 8.7. For each d € N*, there exists positive reals d4, Ny, cq such that

E(n0 — nx)? > cata(n, [[xl,)

for all n > Ny and for all x € Z2 \ {0} with ||x||y < San, where 4 is defined by
(29).

Proof. The cases d = 1,2 follow from (39) and (40) respectively. The case d > 3
follows from Lemma 8.6 along with (28). O

Remark 6. The condition ||x||, < dqn that appears in the lower bound for the case
d > 3 is somewhat unsatisfactory. We believe that the lower bound is true without
any such an additional condition. However the lower bounds in the present form
are good enough for our main application.

Next, we obtain lower bounds matching the upper bounds in Proposition 8.3.
We start by recalling notation and setup for Talagrand’s majorizing measure
[Tal05, Theorem 2.1.1]. We consider centered multivariate Gaussian random vari-
ables (1;)ier indexed by a set T with cardinality [T]. An admissible sequence { Ay}
is an increasing sequence of partitions of T such that | Ay| < 922" Here “increasing
sequence” refers to the fact that every set in 4,11 is contained in a set in A,.
We denote by Ag(t) the unique element of A,, that contains ¢ € T. Recall that

dy(t1,t2) = (E(th - 77,52)2)1/2 denotes the Hilbert space metric induced by () ¢er-
We define the function

v2(T, d,)) = inf sup Z diam,, (An(t))
teT =5

where diam,, denotes the diameter in the d;, metric and the infimum is taken over
all admissible sequences. The majorizing measure theorem [Tal05, Theorem 2.1.1]
states that there is some universal constant L for which

1
—72(T,d) < Esupn; < Lya(T. d). (42)
L teT
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Proposition 8.8. For each d € N*, there exists cq > 0 such that

E sup 7% > caga(n) (43)
x€Z4

for all n € N*, where ¢q is defined by (2).

Proof. The strategy is to use the lower bound for d,, given by Proposition 8.7 along

with (42) where T = {x € Z& : ||x||, < 4n} and E sup;eza ne > Esupgeq e Note

that it suffices to show (43) for large enough n, i.e. n > Ny for some fixed Ny.
For d = 1,2,3, by (42) we have

E sup ; > L™ inf sup diam, (Ag(t)). (44)
tezd teT
Since |Ag| < 2, we have sup;cp diamg(Ag(t)) > con for some cg > 0. Therefore by

Proposition 8.7 along with (44) we obtain the desired result.
For d = 4, by (42) we have

E sup n; > L~ inf sup 2¥/2 diam,, (Ag(2)). (45)
tczd teT

where k = |log logs [T]|—1. This gives 2¥/2 > ¢y+/log n for some ¢ > 0. Moreover,
k = [log, logy [T]] — 1 and Ay < 22 implies that at least one of the sets A (t) has
cardinality greater than or equal to /[T, which in turn implies diamg (A (t)) >
c1y/n for some ¢; > 0. By Proposition 8.7, we obtain diamg(Ag(t)) > c2v/logn
for some ¢ > 0 and for large enough n. The conclusion for d = 4 then follows
from (45).

The case d > 5 is a direct consequence of Sudakov minoration ([Tal05, Lemma
2.1.2)). O

Proof of Proposition 1.2. The upper and lower bounds follow from Propositions
8.3 and 8.8. O
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