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1. Preliminaries

In his now classic 1964 paper on kin selection, W. D. Hamilton introduced
a necessary and sufficient condition for the adaptiveness of altruistic behavior
toward kin: namely, that the benefit conferred on the relative should exceed
the cost assumed by at least a factor of the coefficient of relationship (rb >

c). This criterion has since become known simply as “Hamilton’s rule.” In
his derivation of the rule, Hamilton relied on certain assumptions, such as
random mating, which from an intuitive standpoint may appear superfluous.
This paper is concerned with identifying and analyzing conditions under
which Hamilton’s rule requires modification or restatement, with particular
attention to situations not satisfying Hamilton’s original hypotheses. The
rule is found to be particularly sensitive to change in the assumption of
random mating.

Many common objections to Hamilton’s rule have their basis in fallacies or
misunderstandings (Dawkins, 1979). Prior to any discussion of confounding
factors for Hamilton’s rule, then, a certain clarification of terms is in order.
Central to the statement of Hamilton’s rule is the notion of the coefficient of
relatedness r between two individuals. Unfortunately, there is considerable
confusion in the literature as to the exact definition of the coefficient r.
Hamilton (1964) defines r as the proportion of genes identical by descent, that
is, descended from the same copy of the gene in the closest common ancestor.
The rather subtle distinction between genes that are merely identical and
those that are identical by descent is the source of a common fallacy, labeled
“Washburn’s fallacy” by Dawkins (1979). Washburn (1978) argued that since
even unrelated members of a species share the great majority of their genes,
the logical extension of Hamilton’s rule should be near universal altruism.
As Dawkins points out, the error in this reasoning lies in the the fact that in
unrelated individuals, the shared genes are not identical by descent.

To complicate matters further, r is often defined not as the proportion of
genes identical by descent, but as the probability that a gene at a given locus
will be identical by descent. These two definitions are employed more or less
interchangeably by many authors, not least among them Hamilton (1964,
1975) and Dawkins (1979). Admittedly, in the absence of pleiotropy, the two
definitions are equivalent. To use them interchangeably, however, invites a
dangerous confusion between selection at the individual level and selection at
the gene level. The notion of r as a proportion of genes identical by descent
suggests an individual attempting to ensure that the greatest number of his
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genes are replicated, without regard to which genes are replicated and in
what multiplicity. On the other hand, the notion of r as a probability of
finding a gene identical by descent at a given locus suggests a single gene
attempting aid in the creation of replicas of itself.

When the emphasis is placed on the individual, rather than the gene,
Hamilton’s rule is generally stated as follows:

Hamilton’s Rule (first version): If individual A shares a proportion of
r genes identical by descent with individual B, then it is adaptive for A to
perform an action which benefits B by b units of fitness at a cost of c units
to himself if and only if rb > c.

This version of the rule, simple as it may seem, raises troubling philosoph-
ical questions. What, if any, role should by played by the function of genes?
Should genes with more important function be given greater weight in the
proportion? If so, what criteria should be used to determine the importance
of function? Should junk DNA be counted in the proportion, despite its
lack of function? If a gene undergoes a mutation which has no effect on its
function (for example, by changing a nucleotide in such a way that it still
codes for the same amino acid), should it still be considered “identical by
descent?” The fundamental difficulty here is that it is not entirely clear why
the action A is supposed to perform is actually adaptive.

The way around these philosophical pitfalls is to use a gene-based version
of Hamilton’s rule. We define a Hamiltonian gene as a gene that determines
circumstances under which its carrier will act altruistically toward kin, in
terms of the r, b, c, and possibly other parameters. Some simple examples of
Hamiltonian genes are “always be altruistic,” “always be selfish,” “only be
altruistic when rb > c,” “only be altruistic when rb > 2c,” “only be altruistic
toward members of the opposite sex,” etc. Of course, no single gene is solely
responsible for determining behavior toward kin. A more realistic picture is
that all other genes are being held constant, and the Hamiltonian gene influ-
ences some relatively simple behavior. For example, if birds have a tendency
to feed things that squawk in their nest, the Hamiltonian gene might cause
young birds to stay in the nest until after the hatching of the subsequent
brood, with the result that elder brothers would help feed younger brothers
(Dawkins, 1979). Now, fixing a particular locus on the genome and holding
all other genes constant, various Hamiltonian genes will compete for the fixed
locus. Thus we arrive at a gene-based version of Hamilton’s rule:
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Hamilton’s Rule (second version): Under suitable conditions (slow se-
lection, random mating, etc.), selection will favor the rb > c gene over other
Hamiltonian genes.

The r used here is the probabilistic r for the fixed locus under consider-
ation. More precisely, if p is the probability that both Hamiltonian alleles
are shared, and q is the probability that just a single Hamiltonian allele is
shared, then r is defined as p + 1

2
q. The beauty of this second version of the

rule is that it avoids making any claim about what is adaptive for individuals;
instead, it simply makes a prediction about gene frequencies.

Though it vacillates between the two versions of the rule in its more qual-
itative sections, Hamilton’s original (1964) treatment of kin selection is in
fact concerned primarily with the second, gene-based version of the rule, as
indicated in the paragraph beginning “Consider a single autosomal locus...”
(p. 3). In particular, the mathematical treatment in Hamilton’s original pa-
per — still the most precise theoretical basis for the theory of kin selection
— is derived entirely from considerations at a single locus, and thus applies
exclusively to the gene-based version. Because the individual-based version
of Hamilton’s rule lacks a solid philosophical foundation, it is the gene-based
version that lends itself best to rigorous analysis, and the present paper will
concerned exclusively with the gene-based version.

2. Computation of r

Once the coefficient of relatedness r has been properly defined, the next
logical question is one of computation. Using knowledge of the ancestry of
two individuals A and B, how can their coefficient r(A, B) be determined?
Given the amount of attention that has been devoted to this question (Li
& Sacks 1954; Kempthorne 1957; Haldane & Jayakar 1962), and the diffi-
culty of adapting certain methods of computation to relationships involving
inbreeding (Li & Sacks 1954), the following simple proposition should be of
some interest. To compute coefficients of relationship, we employ an induc-
tive algorithm. When a new individual, A3, is born the offspring of A1 and
A2, we compute his coefficients with all individuals currently living. Suppose
B is one such individual. Because A1, A2 and B were all born before A3,
the coefficients r(A1, B) and r(A2, B) were computed previously, and we may
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freely use these coefficients in the computation of the newborn’s coefficient
r(A3, B). As the following result shows, the newborn’s coefficient is simply
the average of the parents’ coefficients.

Proposition 1. r(A3, B) = r(A1,B)+r(A2,B)
2

.

Proof. Let pi (i = 1, 2, 3) be the probability that individual Ai has both
Hamiltonian alleles in common with B, and let qi be the probability that Ai

has only a single Hamiltonian allele in common with B. Of the nine possible
scenarios obtained by allowing each parent to have either both alleles, one
allele or no alleles in common with B, four can result in A3 having both
alleles in common:

p3 = p1p2 +
1

2
p1q2 +

1

2
q1p2 +

1

4
q1q2.

Similarly, seven of the nine possibilities can result in A3 having just one allele
in common with B:

q3 = p1(1 − p2 − q2) +
1

2
q1(1 − p2 − q2) + (1 − p1 − q1)p2

+
1

2
(1 − p1 − q1)q2 +

1

2
p1q2 +

1

2
q1p2 +

1

2
q1q2

= p1 +
1

2
q1 + p2 +

1

2
q2 − p1p2 − p1q2 −

1

2
p1q2 +

1

2
q1p2 − p1p2 − q1p2

−
1

2
q1p2 −

1

2
q1q2 +

1

2
p1q2

= r(A1, B) + r(A2, B) − 2p1p2 − p1q2 − q1p2 −
1

2
q1q2

= r(A1, B) + r(A2, B) − 2p3.

Hence,

r(A3, B) = p3 +
1

2
q3 =

r(A1, B) + r(A2, B)

2
.

The standard values of r for brothers, nephews, cousins, etc. are easily
derived from this proposition. First, assuming the parents A1 and A2 are
unrelated, setting B = A1 gives

r(A3, A1) =
r(A1, A1) + r(A2, A1)

2
=

1

2
,
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so parent and child are related by 1
2
, as expected. Similarly, setting B = A2

shows that r(A3, A2) = 1
2
. Next, if A3 has a brother, A4, then setting B = A4

gives

r(A3, A4) =
r(A1, A4) + r(A2, A4)

2
=

1
2

+ 1
2

2
=

1

2
.

If A3 has an uncle U , say the brother of A1, then setting B = U we obtain

r(A3, U) =
r(A1, U) + r(A2, U)

2
=

1

4
.

If A3 has a cousin C , the offspring of U , then A1 is the uncle of C , so
r(A1, C) = 1

4
, giving

r(A3, C) =
1
4

+ r(A2, C)

2
=

1

8
.

Inbred relationships are easily computed as well. Suppose, for example,
that the parents A1 and A2 are brother and sister. Then

r(A3, A1) =
r(A1, A1) + r(A2, A1)

2
=

3

4

and

r(A3, A4) =
r(A1, A4) + r(A2, A4)

2
=

3
4

+ 3
4

2
=

3

4
,

showing that the inbred paternal and fraternal relationships have coefficient
3
4
.

3. Evolutionary Stability of Kin Altruism

Dawkins (1979) attempts to dispell, among other misunderstandings, the
fallacy that “kin selection only works for rare genes.” As Dawkins presents it,
the fallacious argument runs as follows. If a gene encoding for kin selection
is adaptive, it will spread to fixation; once this happens, the gene derives
the same benefit from altruism toward unrelated individuals as it does from
altruism toward kin; therefore, the natural consequence of a gene for kin
selection spreading to fixation is universal altruism. Dawkins summarily dis-
poses of this argument by showing that kin altruism is stable under invasion
by universal altruism. There is, however, a more subtle line of reasoning
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leading to the conclusion that “kin selection only works for rare genes,” one
which Dawkins fails to address. This second argument relies on an impor-
tant feature of Hamilton’s mathematical model: the treatment of fitness as a
“conserved quantity.” The resources comprising fitness are presumed to exist
in fixed quantities, so that the population remains constant from generation
to generation. One’s gain in fitness, then, is another’s loss. If a gene for
kin altruism is common, then a gain in fitness for one carrier of the gene is
likely to result in a loss for a different carrier, for a result of no net gain. It
would seem, then, that the adaptiveness of a kin altruism gene decreases as
the frequency of the gene increases.

If a gene for kin altruism spreads to fixation, then the conservation of
fitness ensures that the altruistic behavior resulting from the gene can no
longer confer on it any net benefit. If there is no longer any purpose to al-
truistic behavior in such a situation, perhaps selfish individuals could invade.
The question, then, is not, as Dawkins asked, whether kin altruism can be
invaded by universal altruism, but whether it can be invaded by selfishness.
Intuitive considerations suggest that perhaps it cannot. Let G be a gene
coding for kin altruism. Suppose that G has spread to fixation and consider
the effect of the appearance of a selfish mutant H. The altruistic effects
of G work only slightly to its benefit, since it comprises nearly the entire
population. The mutant H, on the other hand, is a rare gene, hence ideally
suited to the strategy of kin altruism; unfortunately, it is selfish, and fails to
take advantage of this fact. In sum, neither G nor H employs an effective
strategy. The slight benefits conferred to G by its kin altruism will in time
permit it to repel the invading H, however.

If kin altruism cannot be invaded by selfishness, is there another strategy
— perhaps some form of modified kin altruism, requiring, for example, that
rb > 2c — which can successfully invade? It is difficult to say. An argument
that kin altruism is in fact evolutionarily stable might proceed as follows.
If G, the gene fore kin altruism, has spread to fixation, then although kin
altruism confers little benefit on the G itself, is the ideal strategy for mu-
tants, who have rare genes. By definition, mutants must deviate from the kin
altruists in some way, and therefore they are unable to employ what would
be their ideal strategy. It is clear, then, that mutants are certainly at some
disadvantage against G. It is not clear whether there exist mutants that are
good enough to invade despite this disadvantage. If in fact kin altruism is
an evolutionarily stable strategy, however, it appears to derive its stability
not from any special benefit conferred on itself, but rather from depriving
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mutants of their best strategy.

4. Gene Frequencies and Outbreeding

To make the above qualitative discussion somewhat more precise, let us
find the ideal strategy for a Hamiltonian gene as a function not just of r, b and
c, but also of its prevalence within the population. Denote this prevalence
by λ. To be precise, if the Hamiltonian gene in consideration consists of
two alleles, G1 and G2, we define λ to be the proportion of individuals in the
population carrying both G1 and G2 plus one half the proportion carrying just
one of the two alleles. If A is an individual carrying both alleles, then as we
are considering just this particular locus, λ may be regarded as the ambient
level of relatedness between A and the population at large. If λ is significantly
greater than zero, this implies a high degree of ambient relatedness in the
population, and random marriages (as Hamilton assumes in his model) will
result in inbreeding, and hence in coefficients of relationship that are higher
than expected. This possibility will be discussed in the following section;
the present section will be concerned with outbreeding despite the nontrivial
ambient relatedness λ.

It is often the case that strict outbreeding practices can be maintained
only in relatively large populations with relatively low levels of ambient re-
latedness. This need not always be the case, however, as is demonstrated by
the following example. Consider a hierarchy of three societies, A, B and C ,
constrained by the following marriage custom: Men in society A may marry
women from any society, but men in societies B and C must marry women
from C . Naturally, society A is polygynous, while B and C are monogamous.
Descent is strictly patrilineal, so that children belong to the society to which
their father belongs.

Suppose now that a Hamiltonian gene G not present in society C has
frequency λ in society B. Notice that this gene may find its way into society
A, but it can never be introduced into society C , since the men of C cannot
marry women from A or B. Now, the marriage constraints are not sufficient
to prevent inbreeding entirely, but they do prevent inbreeding on the part of
male carriers of G in society B, since these men must marry women from C ,
who cannot carry G. It follows that the coefficient of relationship between
two men in society B is exactly as given in Proposition 1. In particular,
whereas inbred coefficients would vary with λ, the coefficients between men
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Figure 1: Effective r for brothers as a function of λ. When λ = 0, they are
related by 0.5 as usual. At λ = 0.5, the brothers are effectively unrelated.

of society B are independent of λ. Consider now the effects of an action
performed by a man M at a cost of c units to himself, and benefiting a
second man N , related to M by the coefficient r, by b units. Since fitness
is conserved, the net gain of b − c units must be counterbalanced by a loss
of b − c units elsewhere; suppose for the time being that this loss is evenly
distributed among the people of society B. Since these people are related to
M on average by the coefficient λ, the corresponding loss in inclusive fitness
to M is (b − c)λ. Thus M ’s net gain in inclusive fitness is

∆f = rb − c − (b − c)λ.

Therefore, M benefits from the action if and only if

rb > c + (b− c)λ

⇔
r − λ

1 − λ
b > c. (1)

The quantity r−λ
1−λ

can be understood as the effective coefficient of relat-
edness between M and N , given the ambient relatedness λ. Figure 1 shows
the effective relatedness of brothers as a function of λ, as λ varies from 0 to
1
2
.

The marriage customs of the three societies in this example violate Hamil-
ton’s assumption of random mating, and this example shows that Hamilton’s
rule can be quite sensitive to factors such as mating correlations. Even if we
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allow random mating within the constraints of the marriage customs, the
very fact that marriages between certain societies are prohibited is enough
to drastically alter Hamilton’s rule.

Admittedly, the assumption that the loss of fitness b − c is distributed
equally among the population is likely not always accurate. In many cases,
especially if the population is large, the loss is probably distributed among a
small number of neighbors of M , or at any rate, people who interact closely
with M . In either case, given that most individuals live near and work with
many of their kin, those who assume the loss b− c are more likely to be close
kin to M than someone in the population at large. Thus the estimate that
the loss is distributed evenly throughout the population is a conservative one.
In most real-world examples, the loss is probably concentrated more heavily
on close kin, further reducing the benefit of the action in terms of inclusive
fitness.

Before Hamilton’s pioneering paper, Haldane had made similar observa-
tions concerning forms of kin selection other than parental care; but Haldane
did not pursue his ideas because he assumed individuals would have no means
of recognizing kin. Hamilton questioned this assumption, believing that fac-
tors such as proximity during youth could serve as rough unconscious esti-
mators of r. If Hamilton’s rule is to be modified to accommodate the gene
frequency λ, however, Haldane’s objection surely holds in full force. Gene
frequencies are always in flux, and it is difficult to conceive of any means
by which individuals could estimate λ. It follows that, for societies in which
random mating does not hold perfectly (i.e., most real world societies), there
may be no evolutionarily stable form of kin selection. If a given Hamiltonian
gene is successful, its frequency in the population will increase until it no
longer gives a good approximation to equation (1), at which point it will be
superseded by another Hamiltonian gene. The dynamics of such fluctuations
in gene frequencies may become quite complex.

5. Gene Frequencies and Inbreeding

If the previous section showed the fragility of Hamilton’s rule, this section
will demonstrate one of its resounding successes. Indeed, the following dra-
matic confirmation of Hamilton’s rule came about despite the author’s best
intentions to find an exception to the rule. If, following Hamilton, we as-
sume random mating, then in the context of a nontrivial ambient relatedness
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λ, it follows that most matings will be inbred. Inbreeding results in coeffi-
cients of relationship that are higher than normal, and it happens that these
higher coefficients serve to compensate precisely for the dampening effects
prescribed by equation (1). To see this, we need the following result.

Proposition 2. Suppose A and B are two individuals who, through kinship

ties alone, would have coefficient of relatedness r in a society in which λ = 0.
Then in a society in which λ > 0, they have coefficient R = r + (1 − r)λ.

Proof. We use an induction and Proposition 1. If A has parents A1 and A2

and the result is true for the parents, then

R =
R(A1, B) + R(A2, B)

2

=
r1 + (1 − r1)λ + r2 + (1 − r2)λ

2

=
r1 + r2

2
+

(

2 − r1 − r2

2

)

λ

= r +

(

1 −
r1 + r2

2

)

λ

= r + (1 − r)λ.

Intuitively speaking, the first term, r, represents that portion of relat-
edness due to kinship ties, while the second term, (1 − r)λ, represents that
portion resulting from the ambient relatedness.

Now, setting r = R in equation (1), we find that the effective coefficient
of relatedness is exactly r:

R − λ

1 − λ
=

r + (1 − r)λ − λ

1 − λ
=

r − rλ

1 − λ
= r.

In other words, now that we have restored Hamilton’s initial assumption of
random mating, the effects of inbreeding precisely counteract those of ambi-
ent relatedness so that Hamilton’s rule is again satisfied.
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