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Abstract

Limit Theorems for Internal Aggregation Models

by

Lionel Timothy Levine

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Yuval Peres, Chair

We study the scaling limits of three different aggregation models on Zd: internal DLA, in

which particles perform random walks until reaching an unoccupied site; the rotor-router

model, in which particles perform deterministic analogues of random walks; and the divisible

sandpile, in which each site distributes its excess mass equally among its neighbors. As the

lattice spacing tends to zero, all three models are found to have the same scaling limit,

which we describe as the solution to a certain PDE free boundary problem in Rd. In

particular, internal DLA has a deterministic scaling limit. We find that the scaling limits

are quadrature domains, which have arisen independently in many fields such as potential

theory and fluid dynamics. Our results apply both to the case of multiple point sources and

to the Diaconis-Fulton smash sum of domains.

In the special case when all particles start at a single site, we show that the scaling

limit is a Euclidean ball in Rd and give quantitative bounds on the rate of convergence to a

ball. For the divisible sandpile, the error in the radius is bounded by a constant independent

of the total starting mass. For the rotor-router model in Zd, the inner error grows at most

logarithmically in the radius r, while the outer error is at most order r1−1/d log r. We also

improve on the previously best known bounds of Le Borgne and Rossin in Z2 and Fey and

Redig in higher dimensions for the shape of the classical abelian sandpile model.

Lastly, we study the sandpile group of a regular tree whose leaves are collapsed

to a single sink vertex, and determine the decomposition of the full sandpile group as a

product of cyclic groups. For the regular ternary tree of height n, for example, the sandpile
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group is isomorphic to (Z3)2n−3 ⊕ (Z7)2n−4 ⊕ . . . ⊕ Z2n−1−1 ⊕ Z2n−1. We use this result to

prove that rotor-router aggregation on the regular tree yields a perfect ball.
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Chapter 1

Introduction

1.1 Three Models with the Same Scaling Limit

Given finite sets A,B ⊂ Zd, Diaconis and Fulton [15] defined the smash sum A⊕B
as a certain random set whose cardinality is the sum of the cardinalities of A and B. Write

A ∩B = {x1, . . . , xk}. To construct the smash sum, begin with the union C0 = A ∪B and

for each j = 1, . . . , k let

Cj = Cj−1 ∪ {yj}

where yj is the endpoint of a simple random walk started at xj and stopped on exiting Cj−1.

Then define A ⊕ B = Ck. The key observation of [15] is that the law of A ⊕ B does not

depend on the ordering of the points xj . The sum of two squares in Z2 overlapping in a

smaller square is pictured in Figure 1.1.

In Theorem 1.1.3, below, we prove that as the lattice spacing goes to zero, the

smash sum A⊕B has a deterministic scaling limit in Rd. Before stating our main results,

we describe some related models and describe our technique for identifying their common

scaling limit, which comes from the theory of free boundary problems in PDE.

The Diaconis-Fulton smash sum generalizes the model of internal diffusion-limited

aggregation (“internal DLA”) studied in [29], and in fact was part of the original motivation

for that paper. In classical internal DLA, we start with n particles at the origin o ∈ Zd and

let each perform a simple random walk until it reaches an unoccupied site. The resulting

random set of n occupied sites in Zd can be described as the n-fold smash sum of {o}
with itself. We will use the term internal DLA to refer to particles which perform simple
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Figure 1.1: Smash sum of two squares in Z2 overlapping in a smaller square, for internal
DLA (top left), the rotor-router model (top right), and the divisible sandpile.

random walks in Zd until reaching an unoccupied site, starting from an arbitrary initial

configuration. In this broader sense of the term, both the Diaconis-Fulton sum and the

model studied in [29] are particular cases of internal DLA.

In defining the smash sum A⊕B, various alternatives to random walk are possible.

Rotor-router walk is a deterministic analogue of random walk, first studied by Priezzhev et

al. [38] under the name “Eulerian walkers.” At each site in Z2 is a rotor pointing north,

south, east or west. A particle performs a nearest-neighbor walk on the lattice according

to the following rule: during each time step, the rotor at the particle’s current location is
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rotated clockwise by 90 degrees, and the particle takes a step in the direction of the newly

rotated rotor. In higher dimensions, the model can be defined analogously by repeatedly

cycling the rotors through an ordering of the 2d cardinal directions in Zd. The sum of two

squares in Z2 using rotor-router walk is pictured in Figure 1.1; all rotors began pointing

west. The shading in the figure indicates the final rotor directions, with four different shades

corresponding to the four possible directions.

The divisible sandpile model uses continuous amounts of mass in place of discrete

particles. A lattice site is full if it has mass at least 1. Any full site can topple by keeping

mass 1 for itself and distributing the excess mass equally among its neighbors. At each

time step, we choose a full site and topple it. As time goes to infinity, provided each full

site is eventually toppled, the mass approaches a limiting distribution in which each site

has mass ≤ 1. Note that individual topplings do not commute. However, the divisible

sandpile is “abelian” in the sense that any sequence of topplings produces the same limiting

mass distribution; this is proved in Lemma 2.2.1. Figure 1.1 shows the limiting domain of

occupied sites resulting from starting mass 1 on each of two squares in Z2, and mass 2 on

the smaller square where they intersect.

Figure 1.1 raises a few natural questions: as the underlying lattice spacing becomes

finer and finer, will the smash sum A ⊕ B tend to some limiting shape in Rd, and if so,

what is this shape? Will it be the same limiting shape for all three models? To see how we

might identify the limiting shape, consider the divisible sandpile odometer function

u(x) = total mass emitted from x. (1.1)

Since each neighbor y ∼ x emits an equal amount of mass to each of its 2d neighbors, the

total mass received by x from its neighbors is 1
2d

∑
y∼x u(y), hence

∆u(x) = ν(x)− σ(x) (1.2)

where σ(x) and ν(x) are the initial and final amounts of mass at x, respectively. Here ∆ is

the discrete Laplacian in Zd, defined by

∆u(x) =
1
2d

∑
y∼x

u(y)− u(x). (1.3)

Equation (1.2) suggests the following approach to finding the limiting shape. We

first construct a function on Zd whose Laplacian is σ − 1; an example is the function

γ(x) = −|x|2 −
∑
y∈Zd

g1(x, y)σ(y) (1.4)
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where in dimension d ≥ 3 the Green’s function g1(x, y) is the expected number of times

a simple random walk started at x visits y (in dimension d = 2 we use the recurrent

potential kernel in place of the Green’s function). Here |x| denotes the Euclidean norm

(x2
1 + . . .+ x2

d)
1/2. By (1.2), since ν ≤ 1 the sum u+ γ is a superharmonic function on Zd;

that is, ∆(u + γ) ≤ 0. Moreover if f ≥ γ is any superharmonic function lying above γ,

then f − γ − u is superharmonic on the domain D = {x ∈ Zd|ν(x) = 1} of fully occupied

sites, and nonnegative outside D, hence nonnegative everywhere. Thus we have proved the

following lemma.

Lemma 1.1.1. Let σ be a nonnegative function on Zd with finite support. Then the odome-

ter function (1.1) for the divisible sandpile started with mass σ(x) at each site x is given

by

u = s− γ

where γ is given by (1.4), and

s(x) = inf{f(x)|f is superharmonic on Zd and f ≥ γ}

is the least superharmonic majorant of γ.

Lemma 1.1.1 allows us to formulate the problem in a way which translates naturally

to the continuum. Given a function σ on Rd representing the initial mass density, by analogy

with (1.4) we define the obstacle

γ(x) = −|x|2 −
∫

Rd
g(x, y)σ(y)dy

where g(x, y) is the Green’s function on Rd proportional to |x− y|2−d in dimensions d ≥ 3

and to − log |x− y| in dimension two. We then let

s(x) = inf{f(x)|f is continuous, superharmonic and f ≥ γ}.

The odometer function for σ is then given by u = s − γ, and the final domain of occupied

sites is given by

D = {x ∈ Rd|s(x) > γ(x)}. (1.5)

This domain D is called the noncoincidence set for the obstacle problem with obstacle γ;

for an in-depth discussion of the obstacle problem, see [19].
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Figure 1.2: The obstacles γ corresponding to starting mass 1 on each of two overlapping
disks (top) and mass 100 on each of two nonoverlapping disks.

If A,B are bounded open sets in Rd, we define the smash sum of A and B as

A⊕B = A ∪B ∪D (1.6)

where D is given by (1.5) with σ = 1A + 1B. In the two-dimensional setting, an alternative

definition of the smash sum in terms of quadrature identities is mentioned in [23].

In this thesis we prove, among other things, that if any of our three aggregation

models is run on finer and finer lattices with initial mass densities converging in an appro-

priate sense to σ, the resulting domains of occupied sites will converge in an appropriate

sense to the domain D given by (1.5). We will always work in dimension d ≥ 2; for a

discussion of the rotor-router model in one dimension, see [32].

Let us define the appropriate notion of convergence of domains, which amounts

essentially to convergence in the Hausdorff metric. Fix a sequence δn ↓ 0 representing the
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lattice spacing. Given domains An ⊂ δnZd and D ⊂ Rd, write An → D if for any ε > 0

Dε ∩ δnZd ⊂ An ⊂ Dε (1.7)

for all sufficiently large n. Here

Dε = {x ∈ D |B(x, ε) ⊂ D} (1.8)

and

Dε = {x ∈ Rd |B(x, ε) ∩D 6= ∅}

are the inner and outer ε-neighborhoods ofD. For x ∈ δnZd we write x� =
[
x+ δn

2 , x−
δn
2

]d
.

For t ∈ R write bte for the closest integer to t.

Throughout this thesis, to avoid trivialities we work in dimension d ≥ 2. Our first

main result is the following.

Theorem 1.1.2. Let Ω ⊂ Rd be a bounded open set, and let σ : Rd → Z≥0 be a bounded

function which is continuous almost everywhere, satisfying {σ ≥ 1} = Ω̄. Let Dn, Rn, In

be the domains of occupied sites formed from the divisible sandpile, rotor-router model, and

internal DLA, respectively, in the lattice δnZd started from source density

σn(x) =
⌊
δ−dn

∫
x�
σ(y)dy

⌉
.

Then as n→∞
Dn, Rn → D ∪ Ω;

and if δn ≤ 1/ log n, then with probability one

In → D ∪ Ω

where D is given by (1.5), and the convergence is in the sense of (1.7).

Remark. When forming the rotor-router domains Rn, the initial rotors in each lattice δnZd

may be chosen arbitrarily.

We prove a somewhat more general form of Theorem 1.1.2 which allows for some

flexibility in how the discrete density σn is constructed from σ. In particular, taking σ =

1Ā + 1B̄ we obtain the following theorem, which explains the similarity of the three smash

sums pictured in Figure 1.1.
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Theorem 1.1.3. Let A,B ⊂ Rd be bounded open sets whose boundaries have measure zero.

Let Dn, Rn, In be the smash sum of A∩ δnZd and B ∩ δnZd, formed using divisible sandpile,

rotor-router and internal DLA dynamics, respectively. Then as n→∞

Dn, Rn → A⊕B;

and if δn ≤ 1/ log n, then with probability one

In → A⊕B

where A⊕B is given by (1.6), and the convergence is in the sense of (1.7).

For the divisible sandpile, Theorem 1.1.2 can be generalized by dropping the re-

quirement that σ be integer valued; see Theorem 3.2.7 for the precise statement. Taking

σ real-valued is more problematic in the case of the rotor-router model and internal DLA,

since these models work with discrete particles. Still, one might wonder if, for example,

given a domain A ⊂ Rd, starting each even site in A∩ δnZd with one particle and each odd

site with two particles, the resulting domains Rn, In would converge to the noncoincidence

set D for density σ = 3
21A. This is in fact the case: if σn is a density on δnZd, as long

as a certain “smoothing” of σn converges to σ, the rotor-router and internal DLA domains

started from source density σn will converge to D. See Theorems 3.3.7 and 3.4.1 for the

precise statements.

1.2 Single Point Sources

One interesting case not covered by Theorems 1.1.2 and 1.1.3 is the case of point

sources. Lawler, Bramson and Griffeath [29] showed that the scaling limit of internal DLA in

Zd with a single point source of particles is a Euclidean ball. In chapter 2, we prove analogous

results for rotor-router aggregation and the divisible sandpile, and give quantitative bounds

on the rate of convergence to a ball. Let An be the domain of n sites in Zd formed from

rotor-router aggregation starting from a point source of n particles at the origin. Thus An

is defined inductively by the rule

An = An−1 ∪ {xn}

where xn is the endpoint of a rotor-router walk started at the origin in Zd and stopped on

first exiting An−1. For example, in Z2, if all rotors initially point north, the sequence will
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Figure 1.3: Rotor-router aggregate of one million particles in Z2. Each site is colored
according to the direction of its rotor.

begin A1 = {(0, 0)}, A2 = {(0, 0), (1, 0)}, A3 = {(0, 0), (1, 0), (0,−1)}. The region A1,000,000

is pictured in Figure 1.3.

Jim Propp observed from simulations in two dimensions that the regions An are

extraordinarily close to circular, and asked why this was so [26, 39]. Despite the impressive

empirical evidence for circularity, the best result known until now [33] says only that if

An is rescaled to have unit volume, the volume of the symmetric difference of An with a

ball of unit volume tends to zero as a power of n, as n ↑ ∞. The main outline of the

argument is summarized in [34]. Fey and Redig [18] also show that An contains a diamond.

In particular, these results do not rule out the possibility of “holes” in An far from the

boundary or of long tendrils extending far beyond the boundary of the ball, provided the

volume of these features is negligible compared to n.

Our main result on the shape of rotor-router aggregation with a single point source
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is the following, which rules out the possibility of holes far from the boundary or of long

tendrils. For r ≥ 0 let

Br = {x ∈ Zd : |x| < r}.

Theorem 1.2.1. Let An be the region formed by rotor-router aggregation in Zd starting

from n particles at the origin and any initial rotor state. There exist constants c, c′ depending

only on d, such that

Br−c log r ⊂ An ⊂ Br(1+c′r−1/d log r)

where r = (n/ωd)1/d, and ωd is the volume of the unit ball in Rd.

We remark that the same result holds when the rotors evolve according to stacks

of bounded discrepancy; see the remark following Lemma 2.4.1.

By way of comparison with Theorem 1.2.1, if In is the internal DLA region formed

from n particles started at the origin, the best known bounds [30] are (up to logarithmic

factors)

Br−r1/3 ⊂ In ⊂ Br+r1/3

for all sufficiently large n, with probability one.

Our next result treats the divisible sandpile with all mass initially concentrated at

a point source. The resulting domain of fully occupied sites is extremely close to a ball; in

fact, the error in the radius is bounded independent of the total mass.

Theorem 1.2.2. For m ≥ 0 let Dm ⊂ Zd be the domain of fully occupied sites for the

divisible sandpile formed from a pile of mass m at the origin. There exist constants c, c′

depending only on d, such that

Br−c ⊂ Dm ⊂ Br+c′ ,

where r = (m/ωd)1/d and ωd is the volume of the unit ball in Rd.

The divisible sandpile is similar to the “oil game” studied by Van den Heuvel [49].

In the terminology of [18], it also corresponds to the h→ −∞ limit of the classical abelian

sandpile (defined below), that is, the abelian sandpile started from the initial condition in

which every site has a very deep “hole.”
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Figure 1.4: Classical abelian sandpile aggregate of one million particles in Z2. Colors
represent the number of grains at each site.

In the classical abelian sandpile model [4], each site in Zd has an integer number of

grains of sand; if a site has at least 2d grains, it topples, sending one grain to each neighbor.

If n grains of sand are started at the origin in Zd, write Sn for the set of sites that are

visited during the toppling process; in particular, although a site may be empty in the final

state, we include it in Sn if it was occupied at any time during the evolution to the final

state.

Until now the best known constraints on the shape of Sn in two dimensions were

due to Le Borgne and Rossin [31], who proved that

{x ∈ Z2 |x1 + x2 ≤
√
n/12− 1} ⊂ Sn ⊂ {x ∈ Z2 |x1, x2 ≤

√
n/2}.

Fey and Redig [18] proved analogous bounds in higher dimensions, and extended these

bounds to arbitrary values of the height parameter h. This parameter is discussed in
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Figure 1.5: Known bounds on the shape of the classical abelian sandpile in Z2. The inner
diamond and outer square are due to Le Borgne and Rossin [31]; the inner and outer circles
are those in Theorem 1.2.3.

section 2.3.

The methods used to prove the near-perfect circularity of the divisible sandpile

shape in Theorem 1.2.2 can be used to give constraints on the shape of the classical abelian

sandpile, improving on the bounds of [18] and [31].

Theorem 1.2.3. Let Sn be the set of sites that are visited by the classical abelian sandpile

model in Zd, starting from n particles at the origin. Write n = ωdr
d. Then for any ε > 0

we have

Bc1r−c2 ⊂ Sn ⊂ Bc′1r+c′2

where

c1 = (2d− 1)−1/d, c′1 = (d− ε)−1/d.

The constant c2 depends only on d, while c′2 depends only on d and ε.
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Figure 1.6: The rotor-router model in Z2 started from two point sources on the x-axis. The
boundary of the limiting shape is an algebraic curve of degree 4; see equation (1.13).

Note that Theorem 1.2.3 does not settle the question of the asymptotic shape of

Sn, and Figure 1.4 indicates that the limiting shape in two dimensions may be a polygon

rather than a disk. Even the existence of an asymptotic shape is not known, however.

1.3 Multiple Point Sources

Using our results for single point sources together with the construction of the

smash sum (1.6), we can understand the limiting shape of our aggregation models started

from multiple point sources. The answer turns out to be a smash sum of balls centered at

the sources. For x ∈ Rd write x:: for the closest lattice point in δnZd, breaking ties to the

right. Our shape theorem for multiple point sources, which is deduced from Theorems 1.1.3,

1.2.1 and 1.2.2 along with the main result of [29], is the following.

Theorem 1.3.1. Fix x1, . . . , xk ∈ Rd and λ1, . . . , λk > 0. Let Bi be the ball of volume λi

centered at xi. Fix a sequence δn ↓ 0, and for x ∈ δnZd let

σn(x) =

⌊
δ−dn

k∑
i=1

λi1{x=x::
i }

⌋
.
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Let Dn, Rn, In be the domains of occupied sites in δnZd formed from the divisible sandpile,

rotor-router model, and internal DLA, respectively, started from source density σn. Then

as n→∞
Dn, Rn → B1 ⊕ . . .⊕Bk; (1.9)

and if δn ≤ 1/n, then with probability one

In → B1 ⊕ . . .⊕Bk

where ⊕ denotes the smash sum (1.6), and the convergence is in the sense of (1.7).

Implicit in equation (1.9) is the associativity of the smash sum operation, which is

not readily apparent from the definition (1.6). For a proof of associativity, see Lemma 3.5.1.

For related results in dimension two, see [41, Prop. 3.10] and [50, section 2.4].

We remark that a similar model of internal DLA with multiple point sources was

studied by Gravner and Quastel [21], who also obtained a variational solution. In their

model, instead of starting with a fixed number of particles, each source xi emits particles

according to a Poisson process. The shape theorems of [21] concern convergence in the sense

of volume, which is a weaker form of convergence than (1.7).

1.4 Quadrature Domains

By analogy with the discrete case, we would expect that volumes add under the

smash sum operation; that is,

L(A⊕B) = L(A) + L(B)

where L denotes Lebesgue measure in Rd. Although this additivity is not immediately

apparent from the definition (1.6), it holds for all bounded open A,B ⊂ Rd provided their

boundaries have measure zero; see Corollary 3.1.14.

We can derive a more general class of identities known as quadrature identities

involving integrals of harmonic functions over A ⊕ B. Let us first consider the discrete

case. If h is a superharmonic function on Zd, and σ is a mass configuration for the divisible

sandpile (so each site x ∈ Zd has mass σ(x)), the sum
∑

x∈Zd h(x)σ(x) can only decrease

when we perform a toppling. Thus∑
x∈Zd

h(x)ν(x) ≤
∑
x∈Zd

h(x)σ(x), (1.10)
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where ν is the final mass configuration. We therefore expect the domain D given by (1.5)

to satisfy the quadrature inequality∫
D
h(x)dx ≤

∫
D
h(x)σ(x)dx (1.11)

for all integrable superharmonic functions h on D. For a proof under suitable smoothness

assumptions on σ and h, see Proposition 3.1.11; see also [42].

A domain D ⊂ Rd satisfying an inequality of the form (1.11) is called a quadrature

domain for σ. Such domains are widely studied in potential theory and have a variety of

applications in fluid dynamics [9, 40]. For more on quadrature domains and their connection

with the obstacle problem, see [1, 8, 24, 25, 42, 43]. Equation (1.10) can be regarded as

a discrete analogue of a quadrature inequality; in this sense our aggregation models, in

particular the divisible sandpile, produce discrete analogues of quadrature domains.

In Proposition 3.5.5, we show that the smash sum of balls B1⊕ . . .⊕Bk arising in

Theorem 1.3.1 obeys the classical quadrature identity∫
B1⊕...⊕Bk

h(x)dx =
k∑
i=1

λih(xi) (1.12)

for all harmonic functions h on B1 ⊕ . . . ⊕ Bk. This can be regarded as a generalization

of the classical mean value property of harmonic functions, which corresponds to the case

k = 1. Using results of Gustafsson [22] and Sakai [42] on quadrature domains in the plane,

we can deduce the following theorem, which is proved in section 3.5.

Theorem 1.4.1. Let B1, . . . , Bk be disks in R2 with distinct centers. The boundary of the

smash sum B1 ⊕ . . . ⊕ Bk lies on an algebraic curve of degree 2k. More precisely, there is

a polynomial P ∈ R[x1, x2] of the form

P (x1, x2) =
(
x2

1 + x2
2

)k + lower order terms

and there is a finite set of points E ⊂ R2, possibly empty, such that

∂(B1 ⊕ . . .⊕Bk) = {(x1, x2) ∈ R2|P (x1, x2) = 0} − E.

For example, if B1 and B2 are disks of equal radius r > 1 centered at (1, 0) and

(−1, 0), then ∂(B1 ⊕B2) is given by the quartic curve [44](
x2

1 + x2
2

)2 − 2r2
(
x2

1 + x2
2

)
− 2(x2

1 − x2
2) = 0. (1.13)

This curve describes the shape of the rotor-router model with two point sources pictured in

Figure 1.6.
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1.5 Aggregation on Trees

Let T be the infinite d-regular tree. To define rotor-router walk on a tree, for each

vertex of T choose a cyclic ordering of its d neighbors. Each vertex is assigned a rotor

which points to one of the neighboring vertices, and a particle walks by first rotating the

rotor at each site it comes to, then stepping in the direction of the newly rotated rotor.

Fix a vertex o ∈ T called the origin. Beginning with A1 = {o}, define the rotor-router

aggregation cluster An inductively by

An = An−1 ∪ {xn}, n > 1

where xn ∈ T is the endpoint of a rotor-router walk started at o and stopped on first exiting

An−1. We do not change the positions of the rotors when adding a new chip. Thus the

sequence (An)n≥1 depends only on the choice of the initial rotor configuration.

Our next result is the analogue of Theorem 1.2.1 on regular trees. Call a configu-

ration of rotors acyclic if there are no directed cycles of rotors. On a tree, this is equivalent

to forbidding directed cycles of length 2: for any pair of neighboring vertices v ∼ w, if the

rotor at v points to w, then the rotor at w does not point to v. As the following result

shows, provided we start with an acyclic configuration of rotors, the occupied cluster An is

a perfect ball for suitable values of n.

Theorem 1.5.1. Let T be the infinite d-regular tree, and let

Br = {x ∈ T : |x| ≤ r}

be the ball of radius r centered at the origin o ∈ T , where |x| is the length of the shortest

path from o to x. Write

br = #Br = 1 + d
(d− 1)r − 1

d− 2
.

Let An be the region formed by rotor-router aggregation on the infinite d-regular tree, starting

from n chips at o. If the initial rotor configuration is acyclic, then

Abr = Br.

The proof of Theorem 1.5.1 uses the sandpile group of a finite regular tree with

the leaves collapsed to a single vertex. This is an abelian group defined for any graph G

whose order is the number of spanning trees of G. In section 4.1 we recall the definition of
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the sandpile group and prove the following decomposition theorem expressing the sandpile

group of a finite regular tree as a product of cyclic groups.

Theorem 1.5.2. Let Tn be the regular tree of degree d = a + 1 and height n, with leaves

collapsed to a single sink vertex and an edge joining the root to the sink. Then writing Zqp
for the group (Z/pZ)⊕ . . .⊕ (Z/pZ) with q summands, the sandpile group of Tn is given by

SP (Tn) ' Za
n−3(a−1)

1+a ⊕ Za
n−4(a−1)

1+a+a2 ⊕ . . .⊕ Za−1
1+a+...+an−2 ⊕ Z1+a+...+an−1 .

For example, taking d = 3 we obtain that the sandpile group of the regular ternary

tree of height n has the decomposition

SP (Tn) ' (Z3)2n−3 ⊕ (Z7)2n−4 ⊕ . . .⊕ Z2n−1−1 ⊕ Z2n−1.

Toumpakari [47] studied the sandpile group of the ball Bn inside the infinite d-

regular tree. Her setup differs slightly from ours in that there is no edge connecting the

root to the sink. She found the rank, exponent, and order of SP (Bn) and conjectured a

formula for the ranks of its Sylow p-subgroups. We use Theorem 1.5.2 to give a proof of

her conjecture in section 4.1.3.

Chen and Schedler [10] study the sandpile group of thick trees (i.e. trees with

multiple edges) without collapsing the leaves to the sink. They obtain quite a different

product formula in this setting.

In section 4.2 we define the rotor-router group of a graph and show that it is

isomorphic to the sandpile group. We then use this isomorphism to prove Theorem 1.5.1.

Much previous work on the rotor-router model has taken the form of comparing

the behavior of rotor-router walk with the expected behavior of random walk. For example,

Cooper and Spencer [12] show that for any configuration of chips on even lattice sites in Zd,

letting each chip perform rotor-router walk for n steps results in a configuration that differs

by only constant error from the expected configuration had the chips performed independent

random walks. We continue in this vein by investigating the recurrence and transience of

rotor-router walk on trees. A walk which never returns to the origin visits each vertex

only finitely many times, so the positions of the rotors after a walk has escaped to infinity

are well-defined. We construct two “extremal” rotor configurations on the infinite ternary

tree, one for which walks exactly alternate returning to the origin with escaping to infinity,

and one for which every walk returns to the origin. The latter behavior is something of
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a surprise: to our knowledge it represents the first example of rotor-router walk behaving

fundamentally differently from the expected behavior of random walk.

In between these two extreme cases, a variety of intermediate behaviors are possi-

ble. We say that a binary word a1 . . . an is an escape sequence for the infinite ternary tree if

there exists an initial rotor configuration on the tree so that the k-th chip escapes to infinity

if and only if ak = 1. The following result characterizes all possible escape sequences on the

ternary tree.

Theorem 1.5.3. Let a = a1 . . . an be a binary word. For j ∈ {1, 2, 3} write a(j) =

ajaj+3aj+6 . . .. Then a is an escape sequence for some rotor configuration on the infi-

nite ternary tree if and only if for each j and k ≥ 2, every subword of a(j) of length 2k − 1

contains at most 2k−1 ones.

Theorem 1.5.3 is proved in section 4.2.3 by expressing the escape sequence corre-

sponding to a rotor configuration on the full tree in terms of the escape sequences of the

configurations on each of the principal subtrees.
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Chapter 2

Spherical Asymptotics for Point

Sources

This chapter is devoted to the proofs of Theorems 1.2.1, 1.2.2 and 1.2.3. In sec-

tion 2.1, we derive the basic Green’s function estimates that are used in the proofs. In

section 2.2 we prove the abelian property and Theorem 1.2.2 for the divisible sandpile. In

section 2.3 we adapt the methods used for the divisible sandpile to prove Theorem 1.2.3 for

the classical abelian sandpile model. Section 2.4 is devoted to the proof of Theorem 1.2.1

for the rotor-router model.

2.1 Basic Estimate

Write (Xk)k≥0 for simple random walk in Zd, and for d ≥ 3 denote by

g1(x, y) = Ex#{k|Xk = y} (2.1)

the expected number of visits to y by simple random walk started at x. This is the discrete

harmonic Green’s function in Zd. For fixed x, the function g1(x, ·) is harmonic except at

x, where its discrete Laplacian is −1. Our notation g1 is chosen to distinguish between the

discrete Green’s function in Zd and its continuous counterpart g in Rd. For the definition

of g, see section 3.1.2. Estimates relating the discrete and continuous Green’s functions are

discussed in section 3.1.5.

In dimension d = 2, simple random walk is recurrent, so the expectation on the
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right side of (2.1) infinite. Here we define the potential kernel

g1(x, y) = lim
n→∞

(gn1 (x, y)− gn1 (x, x)) (2.2)

where

gn1 (x, y) = Ex#{k ≤ n|Xk = y}.

The limit defining g1 in (2.2) is finite [28, 45], and g1(x, ·) is harmonic except at x, where

its discrete Laplacian is −1. Note that (2.2) is the negative of the usual definition of the

potential kernel; we have chosen this sign convention so that g1 has the same Laplacian in

dimension two as in higher dimensions.

Fix a real number m > 0 and consider the function on Zd

γ̃d(x) = |x|2 +mg1(o, x). (2.3)

Let r be such that m = ωdr
d, and let

γd(x) = γ̃d(x)− γ̃d(brce1) (2.4)

where e1 is the first standard basis vector in Zd. The function γd plays a central role in our

analysis. To see where it comes from, recall the divisible sandpile odometer function

u(x) = total mass emitted from x.

Let Dm ⊂ Zd be the domain of fully occupied sites for the divisible sandpile formed from a

pile of mass m at the origin. For x ∈ Dm, since each neighbor y of x emits an equal amount

of mass to each of its 2d neighbors, we have

∆u(x) =
1
2d

∑
y∼x

u(y)− u(x)

= mass received by x−mass emitted by x

= 1−mδox.

Moreover, u = 0 on ∂Dm, where for A ⊂ Zd we write

∂A = {x ∈ Ac |x ∼ y for some y ∈ A}

for the boundary of A. By construction, the function γd obeys the same Laplacian condition:

∆γd = 1−mδo; and as we will see shortly, γd ≈ 0 on ∂Br. Since we expect the domain Dm
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to be close to the ball Br, we should expect that u ≈ γd. In fact, we will first show that u

is close to γd, and then use this to conclude that Dm is close to Br.

We will use the following estimates for the Green’s function [20, 48]; see also [28,

Theorems 1.5.4 and 1.6.2].

g1(x, y) =

−
2
π log |x− y|+ κ+O(|x− y|−2), d = 2

ad|x− y|2−d +O(|x− y|−d), d ≥ 3.
(2.5)

Here ad = 2
(d−2)ωd

, where ωd is the volume of the unit ball in Rd, and κ is a constant whose

value we will not need to know. Here and throughout this thesis, constants in error terms

denoted O(·) depend only on d.

We will need an estimate for the function γd near the boundary of the ball Br. We

first consider dimension d = 2. From (2.5) we have

γ̃2(x) = φ(x)− κm+O(m|x|−2), (2.6)

where

φ(x) = |x|2 − 2m
π

log |x|.

In the Taylor expansion of φ about |x| = r

φ(x) = φ(r)− φ′(r)(r − |x|) +
1
2
φ′′(t)(r − |x|)2 (2.7)

the linear term vanishes, leaving

γ2(x) =
(

1 +
m

πt2

)
(r − |x|)2 +O(m|x|−2) (2.8)

for some t between |x| and r.

In dimensions d ≥ 3, from (2.5) we have

γ̃d(x) = |x|2 + adm|x|2−d +O(m|x|−d).

Setting φ(x) = |x|2 + adm|x|2−d, the linear term in the Taylor expansion (2.7) of φ about

|x| = r again vanishes, yielding

γd(x) =
(

1 + (d− 1)(r/t)d
)

(r − |x|)2 +O(m|x|−d)

for t between |x| and r. Together with (2.8), this yields the following estimates in all

dimensions d ≥ 2.
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Lemma 2.1.1. Let γd be given by (2.4). For all x ∈ Zd we have

γd(x) ≥ (r − |x|)2 +O

(
rd

|x|d

)
. (2.9)

Lemma 2.1.2. Let γd be given by (2.4). Then uniformly in r,

γd(x) = O(1), x ∈ Br+1 −Br−1.

The following lemma is useful for x near the origin, where the error term in (2.9)

blows up.

Lemma 2.1.3. Let γd be given by (2.4). Then for sufficiently large r, we have

γd(x) ≥ r2

4
, ∀x ∈ Br/3.

Proof. Since γd(x)− |x|2 is superharmonic, it attains its minimum in Br/3 at a point z on

the boundary. Thus for any x ∈ Br/3

γd(x)− |x|2 ≥ γd(z)− |z|2,

hence by Lemma 2.1.1

γd(x) ≥ (2r/3)2 − (r/3)2 +O(1) >
r2

4
.

Lemmas 2.1.1 and 2.1.3 together imply the following.

Lemma 2.1.4. Let γd be given by (2.4). There is a constant a depending only on d, such

that γd ≥ −a everywhere.

2.2 Divisible Sandpile

2.2.1 Abelian Property

In this section we prove the abelian property of the divisible sandpile mentioned

in the introduction. We work in continuous time. Fix τ > 0, and let T : [0, τ ] → Zd be a

function having only finitely many discontinuities in the interval [0, t] for every t < τ . The
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value T (t) represents the site being toppled at time t. The odometer function at time t is

given by

ut(x) = L
(
T−1(x) ∩ [0, t]

)
,

where L denotes Lebesgue measure. We will say that T is a legal toppling function for an

initial configuration ν0 if for every 0 ≤ t ≤ τ

νt(T (t)) ≥ 1

where

νt(x) = ν0(x) + ∆ut(x) (2.10)

is the amount of mass present at x at time t. If in addition ντ ≤ 1, we say that T is

complete. The abelian property can now be stated as follows.

Lemma 2.2.1. If T1 : [0, τ1]→ Zd and T2 : [0, τ2]→ Zd are complete legal toppling functions

for an initial configuration ν0, then for any x ∈ Zd

L
(
T−1

1 (x)
)

= L
(
T−1

2 (x)
)
.

In particular, τ1 = τ2 and the final configurations ντ1, ντ2 are identical.

Proof. For i = 1, 2 write

uit(x) = L
(
T−1
i (x) ∩ [0, t]

)
;

νit(x) = ν0(x) + ∆uit(x).

Write ui = uiτi and νi = νiτi . Let t(0) = 0 and let t(1) < t(2) < . . . be the points of

discontinuity for T1. Let xk be the value of T1 on the interval (t(k− 1), t(k)). We will show

by induction on k that

u2(xk) ≥ u1
t(k)(xk). (2.11)

Note that for any x 6= xk, if u1
t(k)(x) > 0, then letting j < k be maximal such that xj = x,

since T1 6= x on the interval (t(j), t(k)), it follows from the inductive hypothesis (2.11) that

u2(x) = u2(xj) ≥ u1
t(j)(xj) = u1

t(k)(x). (2.12)

Since T1 is legal and T2 is complete, we have

ν2(xk) ≤ 1 ≤ ν1
t(k)(xk)
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hence

∆u2(xk) ≤ ∆u1
t(k)(xk).

Since T1 is constant on the interval (t(k − 1), t(k)) we obtain

u2(xk) ≥ u1
t(k)(xk) +

1
2d

∑
x∼xk

(u2(x)− u1
t(k−1)(x)).

By (2.12), each term in the sum on the right side is nonnegative, completing the inductive

step.

Since t(k) ↑ τ1 as k ↑ ∞, the right side of (2.12) converges to u1(x) as k ↑ ∞,

hence u2 ≥ u1. After interchanging the roles of T1 and T2, the result follows.

2.2.2 Proof of Theorem 1.2.2

Recall that a function s on Zd is superharmonic if ∆s ≤ 0. Given a function γ on

Zd the least superharmonic majorant of γ is the function

s(x) = inf{f(x) | f is superharmonic and f ≥ γ}.

Note that if f is superharmonic and f ≥ γ then

f(x) ≥ 1
2d

∑
y∼x

f(y) ≥ 1
2d

∑
y∼x

s(y).

Taking the infimum on the left side we obtain that s is superharmonic.

Lemma 2.2.2. Let T : [0, τ ] → Zd be a complete legal toppling function for the initial

configuration ν0, and let

u(x) = L(T−1(x))

be the corresponding odometer function for the divisible sandpile. Then u = s+ γ, where

γ(x) = |x|2 +
∑
y∈Zd

g1(x, y)ν0(y)

and s is the least superharmonic majorant of −γ.

Proof. From (2.10) we have

∆u = ντ − ν0 ≤ 1− ν0.

Since ∆γ = 1 − ν0, the difference u − γ is superharmonic. As u is nonnegative, it follows

that u − γ ≥ s. For the reverse inequality, note that s + γ − u is superharmonic on the

domain D = {x | ντ (x) = 1} of fully occupied sites and is nonnegative outside D, hence

nonnegative inside D as well.
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We now turn to the case of a point source mass m started at the origin: ν0 = mδo.

More general starting densities are treated in Chapter 3. In the case of a point source of

mass m, the natural question is to identify the shape of the resulting domain Dm of fully

occupied sites, i.e. sites x for which µ(x) = 1. According to Theorem 2.2.3, Dm is extremely

close to a ball of volume m; in fact, the error in the radius is a constant independent of m.

As before, for r ≥ 0 we write

Br = {x ∈ Zd : |x| < r}

for the lattice ball of radius r centered at the origin.

Theorem 2.2.3. For m ≥ 0 let Dm ⊂ Zd be the domain of fully occupied sites for the

divisible sandpile formed from a pile of size m at the origin. There exist constants c, c′

depending only on d, such that

Br−c ⊂ Dm ⊂ Br+c′ ,

where r = (m/ωd)1/d and ωd is the volume of the unit ball in Rd.

The idea of the proof is to use Lemma 2.2.2 along with the basic estimates on γ,

Lemmas 2.1.1 and 2.1.2, to obtain estimates on the odometer function

u(x) = total mass emitted from x.

We will need the following simple observation.

Lemma 2.2.4. For every point x ∈ Dm − {o} there is a path x = x0 ∼ x1 ∼ . . . ∼ xk = o

in Dm with u(xi+1) ≥ u(xi) + 1.

Proof. If xi ∈ Dm−{o}, let xi+1 be a neighbor of xi maximizing u(xi+1). Then xi+1 ∈ Dm

and

u(xi+1) ≥ 1
2d

∑
y∼xi

u(y)

= u(xi) + ∆u(xi)

= u(xi) + 1,

where in the last step we have used the fact that xi ∈ Dm.
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Proof of Theorem 2.2.3. We first treat the inner estimate. Let γd be given by (2.4). By

Lemma 2.2.2 the function u−γd is superharmonic, so its minimum in the ball Br is attained

on the boundary. Since u ≥ 0, we have by Lemma 2.1.2

u(x)− γd(x) ≥ O(1), x ∈ ∂Br.

Hence by Lemma 2.1.1,

u(x) ≥ (r − |x|)2 +O(rd/|x|d), x ∈ Br. (2.13)

It follows that there is a constant c, depending only on d, such that u(x) > 0 whenever

r/3 ≤ |x| < r − c. Thus Br−c − Br/3 ⊂ Dm. For x ∈ Br/3, by Lemma 2.1.3 we have

u(x) > r2/4 +O(1) > 0, hence Br/3 ⊂ Dm.

For the outer estimate, note that u− γd is harmonic on Dm. By Lemma 2.1.4 we

have γd ≥ −a everywhere, where a depends only on d. Since u vanishes on ∂Dm it follows

that u−γd ≤ a on Dm. Now for any x ∈ Dm with r− 1 < |x| ≤ r, we have by Lemma 2.1.2

u(x) ≤ γd(x) + a ≤ c′

for a constant c′ depending only on d. Lemma 2.2.4 now implies that Dm ⊂ Br+c′+1.

2.3 Classical Sandpile

We consider a generalization of the classical abelian sandpile, proposed by Fey and

Redig [18]. Each site in Zd begins with a “hole” of depth H. Thus, each site absorbs the first

H grains it receives, and thereafter functions normally, toppling once for each additional

2d grains it receives. If H is negative, we can interpret this as saying that every site starts

with h = −H grains of sand already present. Aggregation is only well-defined in the regime

h ≤ 2d − 2, since for h = 2d − 1 the addition of a single grain already causes every site in

Zd to topple infinitely often.

Let Sn,H be the set of sites that are visited if n particles start at the origin in Zd.

Fey and Redig [18, Theorem 4.7] prove that

lim
H→∞

lim sup
n→∞

H

n
# (Sn,H 4BH−1/dr) = 0,

where n = ωdr
d, and 4 denotes symmetric difference. The following theorem strengthens

this result.
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Theorem 2.3.1. Fix an integer H ≥ 2 − 2d. Let Sn = Sn,H be the set of sites that are

visited by the classical abelian sandpile model in Zd, starting from n particles at the origin,

if every lattice site begins with a hole of depth H. Write n = ωdr
d. Then

Bc1r−c2 ⊂ Sn,H

where

c1 = (2d− 1 +H)−1/d

and c2 is a constant depending only on d. Moreover if H ≥ 1 − d, then for any ε > 0 we

have

Sn,H ⊂ Bc′1r+c′2

where

c′1 = (d− ε+H)−1/d

and c′2 is independent of n but may depend on d, H and ε.

Note that the ratio c1/c
′
1 ↑ 1 as H ↑ ∞. Thus, the classical abelian sandpile

run from an initial state in which each lattice site starts with a deep hole yields a shape

very close to a ball. Intuitively, one can think of the classical sandpile with deep holes

as approximating the divisible sandpile, whose limiting shape is a ball by Theorem 2.2.3.

Following this intuition, we can adapt the proof of Theorem 2.2.3 to prove Theorem 2.3.1;

just one additional averaging trick is needed, which we explain below.

Consider the odometer function for the abelian sandpile

u(x) = total number of grains emitted from x.

Let Tn = {x|u(x) > 0} be the set of sites which topple at least once. Then

Tn ⊂ Sn ⊂ Tn ∪ ∂Tn.

In the final state, each site which has toppled retains between 0 and 2d−1 grains, in addition

to the H that it absorbed. Hence

H ≤ ∆u(x) + nδox ≤ 2d− 1 +H, x ∈ Tn. (2.14)

We can improve the lower bound by averaging over a small box. For x ∈ Zd let

Q(x, k) = {y ∈ Zd : ||x− y||∞ ≤ k}
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be the box of side length 2k + 1 centered at x, and let

u(k)(x) = (2k + 1)−d
∑

y∈Q(x,k)

u(y).

Write

T (k)
n = {x |Q(x, k) ⊂ Tn}.

Le Borgne and Rossin [31] observe that if T is a set of sites all of which topple, the number

of grains remaining in T is at least the number of edges internal to T : indeed, for each

internal edge, the endpoint that topples last sends the other a grain which never moves

again. Since the box Q(x, k) has 2dk(2k + 1)d−1 internal edges, we have

∆u(k)(x) ≥ (d+H)
2k

2k + 1
, x ∈ T (k)

n . (2.15)

The following lemma is analogous to Lemma 2.2.4.

Lemma 2.3.2. For every point x ∈ Tn adjacent to ∂Tn there is a path x = x0 ∼ x1 ∼ . . . ∼
xm = o in Tn with u(xi+1) ≥ u(xi) + 1.

Proof. By (2.14) we have
1
2d

∑
y∼xi

u(y) ≥ u(xi).

Since u(xi−1) < u(xi), some term u(y) in the sum above must exceed u(xi). Let xi+1 =

y.

Proof of Theorem 2.3.1. Let

ξ̃d(x) = (2d− 1 +H)|x|2 + ng1(o, x),

and let

ξd(x) = ξ̃d(x)− ξ̃d(bc1rce1).

Taking m = n/(2d− 1 +H) in Lemma 2.1.2, we have

u(x)− ξd(x) ≥ −ξd(x) = O(1), x ∈ ∂Bc1r. (2.16)

By (2.14), u− ξd is superharmonic, so (2.16) holds in all of Bc1r. Hence by Lemma 2.1.1

u(x) ≥ (r − |x|)2

2d− 1 +H
+O(rd/|x|d), x ∈ Bc1r. (2.17)
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It follows that u is positive on Bc1r−c2 − Bc1r/3 for a suitable constant c2. For x ∈ Bc1r/3,

by Lemma 2.1.3 we have u(x) > c2
1r

2/4 +O(1) > 0. Thus Bc1r−c2 ⊂ Tn ⊂ Sn.

For the outer estimate, let

ψ̂d(x) = (d− ε+H)|x|2 + ng1(o, x).

Choose k large enough so that (d+H) 2k
2k+1 ≥ d− ε+H and define

ψ̃d(x) = (2k + 1)−d
∑

y∈Q(x,k)

ψ̂d(y).

Finally, let

ψd(x) = ψ̃d(x)− ψ̃d(bc′1rce1).

By (2.15), u(k) − ψd is subharmonic on T
(k)
n . Taking m = n/(d − ε + H) in Lemma 2.1.4,

there is a constant a such that ψd ≥ −a everywhere. Since u(k) ≤ (2d + H)(d+1)k on

∂T
(k)
n it follows that u(k) − ψd ≤ a + (2d + H)(d+1)k on T

(k)
n . Now for any x ∈ Sn with

c′1r − 1 < |x| ≤ c′1r we have by Lemma 2.1.2

u(k)(x) ≤ ψd(x) + a+ (2d+H)(d+1)k ≤ c̃2

for a constant c̃2 depending only on d, H and ε. Then u(x) ≤ c′2 := (2k+1)dc̃2. Lemma 2.3.2

now implies that Tn ⊂ Bc′1r+c′2 , and hence

Sn ⊂ Tn ∪ ∂Tn ⊂ Bc′1r+c′2+1.

We remark that the crude bound of (2d+H)(d+1)k used in the proof of the outer

estimate can be improved to a bound of order k2H, and the final factor of (2k + 1)d can

be replaced by a constant factor independent of k and H, using the fact that a nonneg-

ative function on Zd with bounded Laplacian cannot grow faster than quadratically; see

Lemma 3.1.18.

2.4 Rotor-Router Model

Given a function f on Zd, for a directed edge (x, y) write

∇f(x, y) = f(y)− f(x).
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Given a function s on directed edges in Zd, write

div s(x) =
1
2d

∑
y∼x

s(x, y).

The discrete Laplacian of f is then given by

∆f(x) = div∇f =
1
2d

∑
y∼x

f(y)− f(x).

2.4.1 Inner Estimate

Fixing n ≥ 1, consider the odometer function for rotor-router aggregation

u(x) = total number exits from x by the first n particles.

We learned the idea of using the odometer function to study the rotor-router shape from

Matt Cook [11].

Lemma 2.4.1. For a directed edge (x, y) in Zd, denote by κ(x, y) the net number of cross-

ings from x to y performed by the first n particles in rotor-router aggregation. Then

∇u(x, y) = −2dκ(x, y) +R(x, y) (2.18)

for some edge function R which satisfies

|R(x, y)| ≤ 4d− 2

for all edges (x, y).

Remark. In the more general setting of rotor stacks of bounded discrepancy, the 4d− 2 will

be replaced by a different constant here.

Proof. Writing N(x, y) for the number of particles routed from x to y, we have

u(x)− 2d+ 1
2d

≤ N(x, y) ≤ u(x) + 2d− 1
2d

hence

|∇u(x, y) + 2dκ(x, y)| = |u(y)− u(x) + 2dN(x, y)− 2dN(y, x)|

≤ 4d− 2.
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For the remainder of this section C0, C1, . . . denote constants depending only on d.

Lemma 2.4.2. Let Ω ⊂ Zd − {o} be a finite set. Then∑
y∈Ω

|y|1−d ≤ C0 Diam(Ω).

Proof. Let

Sk = {y ∈ Zd : k ≤ |y| < k + 1}.

Then ∑
y∈Sk

|y|1−d ≤ k1−d#Sk ≤ C0.

Since Ω can intersect at most Diam(Ω) + 1 distinct sets Sk, the proof is complete.

Lemma 2.4.3. Let G = GBr be the Green’s function for simple random walk in Zd stopped

on exiting Br. Let x ∈ Br with |x| > r − ρ. Then∑
y∈Br
|x−y|<3ρ

∑
z∼y
|G(x, y)−G(x, z)| ≤ C1ρ. (2.19)

Proof. Let (Xt)t≥0 denote simple random walk in Zd, and let T be the first exit time from

Br. For fixed y, the function

A(x) = g1(x, y)− Exg1(XT , y) (2.20)

has Laplacian ∆A(x) = −δxy in Br and vanishes on ∂Br, hence A(x) = G(x, y). Let

x, y ∈ Br and z ∼ y. From (2.5) we have

|g1(x, y)− g1(x, z)| ≤ C2

|x− y|d−1
, y, z 6= x.

Using the triangle inequality together with (2.20), we obtain

|G(x, y)−G(x, z)| ≤ |g1(x, y)− g1(x, z)|+ Ex|g1(XT , y)− g1(XT , z)|

≤ C2

|x− y|d−1
+
∑

w∈∂Br

Hx(w)
C2

|w − y|d−1
,

where Hx(w) = Px(XT = w).

Write D = {y ∈ Br : |x− y| < 3ρ}. Then∑
y∈D
y 6=x

∑
z∼y
z 6=x

|G(x, y)−G(x, z)| ≤ C3ρ+ C2

∑
w∈∂Br

Hx(w)
∑
y∈D
|w − y|1−d. (2.21)
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Figure 2.1: Diagram for the Proof of Lemma 2.4.4.

By Lemma 2.4.2, the inner sum on the right is at most C0 Diam(D) = 6C0ρ, so the right

side of (2.21) is bounded above by C1ρ for a suitable C1.

Finally, the terms in which y or z coincides with x make a negligible contribution

to the sum in (2.19), since for y ∼ x ∈ Zd

|G(x, x)−G(x, y)| ≤ |g1(x, x)− g1(x, y)|+ Ex|g1(XT , x)− g1(XT , y)| ≤ C4.

Lemma 2.4.4. Let H1, H2 be linear half-spaces in Zd, not necessarily parallel to the coor-

dinate axes. Let Ti be the first hitting time of Hi. If x /∈ H1 ∪H2, then

Px(T1 > T2) ≤ 5
2
h1 + 1
h2

(
1 +

1
2h2

)2

where hi is the distance from x to Hi.

Proof. If one of H1, H2 contains the other, the result is vacuous. Otherwise, let H̃i be the

half-space shifted parallel to Hc
i by distance 2h2 in the direction of x, and let T̃i be the

first hitting time of Hi ∪ H̃i. Let (Xt)t≥0 denote simple random walk in Zd, and write

Mt for the (signed) distance from Xt to the hyperplane defining the boundary of H1, with
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M0 = h1. Then Mt is a martingale with bounded increments. Since ExT̃1 <∞, we obtain

from optional stopping

h1 = ExMeT1
≥ 2h2 Px (XeT1

∈ H̃1)− Px(XeT1
∈ H1),

hence

Px (XeT1
∈ H̃1) ≤ h1 + 1

2h2
. (2.22)

Likewise, dM2
t − t is a martingale with bounded increments, giving

ExT̃1 ≤ d ExM2eT1

≤ d(2h2 + 1)2 Px (XeT1
∈ H̃1)

≤ d(h1 + 1)(2h2 + 1)
(

1 +
1

2h2

)
. (2.23)

Let T = min(T̃1, T̃2). Denoting by Dt the distance from Xt to the hyperplane

defining the boundary of H2, the quantity

Nt =
d

2
(
D2
t + (2h2 −Dt)2

)
− t

is a martingale. Writing p = Px(T = T̃2) we have

dh2
2 = EN0 = ENT ≥ p

d

2
(2h2)2 + (1− p)dh2

2 − ExT

≥ (1 + p)dh2
2 − ExT

hence by (2.23)

p ≤ ExT
dh2

2

≤ 2
h1 + 1
h2

(
1 +

1
2h2

)2

.

Finally by (2.22)

P(T1 > T2) ≤ p+ P(XeT1
∈ H̃1) ≤ 5

2
h1 + 1
h2

(
1 +

1
2h2

)2

.

Lemma 2.4.5. Let x ∈ Br and let ρ = r + 1− |x|. Let

S∗k = {y ∈ Br : 2kρ < |x− y| ≤ 2k+1ρ}. (2.24)

Let τk be the first hitting time of S∗k , and T the first exit time from Br. Then

Px(τk < T ) ≤ C22−k.
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Figure 2.2: Diagram for the proof of Lemma 2.4.5.

Proof. Let H be the outer half-space tangent to Br at the point z ∈ ∂Br closest to x. Let

Q be the cube of side length 2kρ/
√
d centered at x. Then Q is disjoint from S∗k , hence

Px(τk < T ) ≤ Px(T∂Q < T ) ≤ Px(T∂Q < TH)

where T∂Q and TH are the first hitting times of ∂Q and H. Let H1, . . . ,H2d be the outer

half-spaces defining the faces of Q, so that Q = Hc
1 ∩ . . . ∩Hc

2d. By Lemma 2.4.4 we have

Px(T∂Q < TH) ≤
2d∑
i=1

Px(THi < TH)

≤ 5
2

2d∑
i=1

dist(x,H) + 1
dist(x,Hi)

(
1 +

1
2 dist(x,Hi)

)2

.

Since dist(x,H) = |x − z| ≤ ρ and dist(x,Hi) = 2k−1ρ/
√
d, and ρ ≥ 1, taking C2 =

20 d3/2(1 +
√
d)2 completes the proof.

Lemma 2.4.6. Let G = GBr be the Green’s function for random walk stopped on exiting

Br. Let x ∈ Br and let ρ = r − |x|. Then∑
y∈Br

∑
z∼y
|G(x, y)−G(x, z)| ≤ C3ρ log

r

ρ
.
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Proof. Let S∗k be given by (2.24), and let

W = {w ∈ ∂(S∗k ∪ ∂S∗k) : |w − x| < 2kρ}.

Let τW be the first hitting time of W and T the first exit time from Br. For w ∈W let

Hx(w) = Px(XτW∧T = w).

Fixing y ∈ S∗k and z ∼ y, simple random walk started at x must hit W before hitting either

y or z, hence

|G(x, y)−G(x, z)| ≤
∑
w∈W

Hx(w)|G(w, y)−G(w, z)|.

For any w ∈W we have |w| > r − (2k + 1)ρ and |y − w| < 3 · 2kρ. Lemma 2.4.3 yields∑
y∈S∗k

∑
z∼y
|G(x, y)−G(x, z)| ≤ C1(2k + 1)ρ

∑
w∈W

Hx(w).

By Lemma 2.4.5 we have
∑

w∈W Hx(w) ≤ C22−k, so the above sum is at most 2C1C2ρ.

Since the union of shells S∗0 ,S∗1 , . . . ,S∗dlog2(r/ρ)e covers all of Br except for those points

within distance ρ of x, and
∑
|x−y|≤ρ

∑
z∼y |G(x, y) − G(x, z)| ≤ C1ρ by Lemma 2.4.3, the

result follows.

Proof of Theorem 1.2.1, Inner Estimate. Let κ and R be defined as in Lemma 2.4.1. Since

the net number of particles to enter a site x 6= o is at most one, we have 2d div κ(x) ≥ −1.

Likewise 2d div κ(o) = n− 1. Taking the divergence in (2.18), we obtain

∆u(x) ≤ 1 + divR(x), x 6= o; (2.25)

∆u(o) = 1− n+ divR(o). (2.26)

Let T be the first exit time from Br, and define

f(x) = Exu(XT )− ExT + n Ex #{j < T |Xj = 0}.

Then ∆f(x) = 1 for x ∈ Br − {o} and ∆f(o) = 1− n. Moreover f ≥ 0 on ∂Br. It follows

from Lemma 2.1.2 with m = n that f ≥ γ − C4 on Br for a suitable constant C4.

We have

u(x)− Exu(XT ) =
∑
k≥0

Ex
(
u(Xk∧T )− u(X(k+1)∧T )

)
.
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Each summand on the right side is zero on the event {T ≤ k}, hence

Ex
(
u(Xk∧T )− u(X(k+1)∧T ) | Fk∧T

)
= −∆u(Xk)1{T>k}.

Taking expectations and using (2.25) and (2.26), we obtain

u(x)− Exu(XT ) ≥
∑
k≥0

Ex
[
1{T>k}(n1{Xk=o} − 1− divR(Xk))

]
= n Ex #{k < T |Xk = o} − ExT −

∑
k≥0

Ex
[
1{T>k}divR(Xk)

]
,

hence

u(x)− f(x) ≥ − 1
2d

∑
k≥0

Ex

1{T>k}
∑
z∼Xk

R(Xk, z)

 . (2.27)

Since random walk exits Br with probability at least 1
2d every time it reaches a site adjacent

to the boundary ∂Br, the expected time spent adjacent to the boundary before time T is

at most 2d. Since |R| ≤ 4d, the terms in (2.27) with z ∈ ∂Br contribute at most 16d3 to

the sum. Thus

u(x)− f(x) ≥ − 1
2d

∑
k≥0

Ex

 ∑
y,z∈Br
y∼z

1{T>k}∩{Xk=y}R(y, z)

− 8d2.

For y ∈ Br we have {Xk = y} ∩ {T > k} = {Xk∧T = y}, hence

u(x)− f(x) ≥ − 1
2d

∑
k≥0

∑
y,z∈Br
y∼z

Px(Xk∧T = y)R(y, z)− 8d2. (2.28)

Write pk(y) = Px(Xk∧T = y). Note that since ∇f and κ are antisymmetric, R is antisym-

metric. Thus ∑
y,z∈Br
y∼z

pk(y)R(y, z) = −
∑

y,z∈Br
y∼z

pk(z)R(y, z)

=
∑

y,z∈Br
y∼z

pk(y)− pk(z)
2

R(y, z).

Summing over k and using the fact that |R| ≤ 4d, we conclude from (2.28) that

u(x) ≥ f(x)−
∑

y,z∈Br
y∼z

|G(x, y)−G(x, z)| − 8d2,
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where G = GBr is the Green’s function for simple random walk stopped on exiting Br. By

Lemma 2.4.6 we obtain

u(x) ≥ f(x)− C3(r − |x|) log
r

r − |x|
− 8d2.

Using the fact that f ≥ γ − C4, we obtain from Lemma 2.1.1

u(x) ≥ (r − |x|)2 − C3(r − |x|) log
r

r − |x|
+O

(
rd

|x|d

)
.

The right side is positive provided r/3 ≤ |x| < r − C5 log r. For x ∈ Br/3, by Lemma 2.1.3

we have u(x) > r2/4− C3r log 3
2 > 0, hence Br−C5 log r ⊂ An.

2.4.2 Outer Estimate

The following result is due to Holroyd and Propp (unpublished); we include a

proof for the sake of completeness. Notice that the bound in (2.29) does not depend on the

number of particles.

Proposition 2.4.7. Let Γ be a finite connected graph, and let Y ⊂ Z be subsets of the vertex

set of Γ. Let s be a nonnegative integer-valued function on the vertices of Γ. Let Hw(s, Y )

be the expected number of particles stopping in Y if s(x) particles start at each vertex x

and perform independent simple random walks stopped on first hitting Z. Let Hr(s, Y ) be

the number of particles stopping in Y if s(x) particles start at each vertex x and perform

rotor-router walks stopped on first hitting Z. Let H(x) = Hw(1x, Y ). Then

|Hr(s, Y )−Hw(s, Y )| ≤
∑
u∈G

∑
v∼u
|H(u)−H(v)| (2.29)

independent of s and the initial positions of the rotors.

Proof. For each vertex u, arbitrarily choose a neighbor η(u). Order the neighbors η(u) =

v1, v2, . . . , vd of u so that the rotor at u points to vi+1 immediately after pointing to vi

(indices mod d). We assign weight w(u, η(u)) = 0 to a rotor pointing from u to η(u),

and weight w(u, vi) = H(u) − H(vi) + w(u, vi−1) to a rotor pointing from u to vi. These

assignments are consistent since H is a harmonic function:
∑

i(H(u) − H(vi)) = 0. We

also assign weight H(u) to a particle located at u. The sum of rotor and particle weights

in any configuration is invariant under the operation of routing a particle and rotating the

corresponding rotor. Initially, the sum of all particle weights is Hw(s, Y ). After all particles
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Figure 2.3: Diagram for the proof of Lemma 2.4.8.

have stopped, the sum of the particle weights is Hr(s, Y ). Their difference is thus at most

the change in rotor weights, which is bounded above by the sum in (2.29).

For ρ ∈ Z let

Sρ = {x ∈ Zd : ρ ≤ |x| < ρ+ 1}. (2.30)

Then

Bρ = {x ∈ Zd : |x| < ρ} = S0 ∪ . . . ∪ Sρ−1.

Note that for simple random walk started in Bρ, the first exit time of Bρ and first hitting

time of Sρ coincide. Our next result is a modification of Lemma 5(b) of [29].

Lemma 2.4.8. Fix ρ ≥ 1 and y ∈ Sρ. For x ∈ Bρ let H(x) = Px(XT = y), where T is the

first hitting time of Sρ. Then

H(x) ≤ J

|x− y|d−1
(2.31)

for a constant J depending only on d.

Proof. We induct on the distance |x−y|, assuming the result holds for all x′ with |x′−y| ≤
1
2 |x−y|; the base case can be made trivial by choosing J sufficiently large. By Lemma 5(b) of
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[29], we can choose J large enough so that the result holds provided |y|− |x| ≥ 2−d−3|x−y|.
Otherwise, let H1 be the outer half-space tangent to Sρ at the point of Sρ closest to x, and

let H2 be the inner half-space tangent to the ball S̃ of radius 1
2 |x− y| about y, at the point

of S̃ closest to x. By Lemma 2.4.4 applied to these half-spaces, the probability that random

walk started at x reaches S̃ before hitting Sρ is at most 21−d. Writing T̃ for the first hitting

time of S̃ ∪ Sρ, we have

H(x) ≤
∑
x′∈eS

Px(XeT = x′)H(x′) ≤ 21−dJ ·
(
|x− y|

2

)1−d

where we have used the inductive hypothesis to bound H(x′).

The lazy random walk in Zd stays in place with probability 1
2 , and moves to each

of the 2d neighbors with probability 1
4d . We will need the following standard result, which

can be derived e.g. from the estimates in [36], section II.12; we include a proof for the sake

of completeness.

Lemma 2.4.9. Given u ∼ v ∈ Zd, lazy random walks started at u and v can be coupled

with probability 1−C/R before either reaches distance R from u, where C depends only on

d.

Proof. Let i be the coordinate such that ui 6= vi. To define a step of the coupling, choose

one of the d coordinates uniformly at random. If the chosen coordinate is different from

i, let the two walks take the same lazy step so that they still agree in this coordinate. If

the chosen coordinate is i, let one walk take a step while the other stays in place. With

probability 1
2 the walks will then be coupled. Otherwise, they are located at points u′, v′

with |u′− v′| = 2. Moreover, P
(
|u−u′| ≥ R

2
√
d

)
< C′

R for a constant C ′ depending only on d.

From now on, whenever coordinate i is chosen, let the two walks take lazy steps in opposite

directions.

Let

H1 =
{
x
∣∣∣xi =

u′i + v′i
2

}
be the hyperplane bisecting the segment [u′, v′]. Since the steps of one walk are reflections

in H1 of the steps of the other, the walks couple when they hit H1. Let Q be the cube of

side length R/
√
d + 2 centered at u, and let H2 be a hyperplane defining one of the faces

of Q. By Lemma 2.4.4 with h1 = 1 and h2 = R/4
√
d, the probability that one of the walks

exits Q before the walks couple is at most 2d · 52
h1+1
h2

(
1 + 1

2h2

)2
≤ 40 d3/2

(
1+2
√
d
)2
/R.
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Lemma 2.4.10. With H defined as in Lemma 2.4.8, we have∑
u∈Bρ

∑
v∼u
|H(u)−H(v)| ≤ J ′ log ρ

for a constant J ′ depending only on d.

Proof. Given u ∈ Bρ and v ∼ u, by Lemma 2.4.9, lazy random walks started at u and

v can be coupled with probability 1 − 2C/|u − y| before either reaches distance |u − y|/2
from u. If the walks reach this distance without coupling, by Lemma 2.4.8 each has still

has probability at most J/|u− y|d−1 of exiting Bρ at y. By the strong Markov property it

follows that

|H(u)−H(v)| ≤ 2CJ
|u− y|d

.

Summing in spherical shells about y, we obtain

∑
u∈Bρ

∑
v∼u
|H(u)−H(v)| ≤

ρ∑
t=1

dωdt
d−1 2CJ

td
≤ J ′ log ρ.

We remark that Lemma 2.4.10 could also be inferred from Lemma 2.4.8 using [28,

Thm. 1.7.1] in a ball of radius |u− y|/2 about u.

Proof of Theorem 1.2.1, Outer Estimate. Fix integers ρ ≥ r, h ≥ 1. In the setting of

Proposition 2.4.7, let G be the lattice ball Bρ+h+1, and let Z = Sρ+h. Fix y ∈ Sρ+h and

let Y = {y}. For x ∈ Sρ let s(x) be the number of particles stopped at x if all particles in

rotor-router aggregation are stopped upon reaching Sρ. Write

H(x) = Px(XT = y)

where T is the first hitting time of Sρ+h. By Lemma 2.4.8 we have

Hw(s, y) =
∑
x∈Sρ

s(x)H(x) ≤ JNρ

hd−1
(2.32)

where

Nρ =
∑
x∈Sρ

s(x)

is the number of particles that ever visit the shell Sρ in the course of rotor-router aggregation.



40

By Lemma 2.4.10 the sum in (2.29) is at most J ′ log h, hence from Propositon 2.4.7

and (2.32) we have

Hr(s, y) ≤ JNρ

hd−1
+ J ′ log h. (2.33)

Let ρ(0) = r, and define ρ(i) inductively by

ρ(i+ 1) = min
{
ρ(i) +N

2/(2d−1)
ρ(i) , min{ρ > ρ(i)|Nρ ≤ Nρ(i)/2}

}
. (2.34)

Fixing h < ρ(i+ 1)− ρ(i), we have

hd−1 log h ≤ N
2d−2
2d−1

ρ(i) logNρ(i) ≤ Nρ(i);

so (2.33) with ρ = ρ(i) simplifies to

Hr(s, y) ≤
CNρ(i)

hd−1
(2.35)

where C = J + J ′.

Since all particles that visit Sρ(i)+h during rotor-router aggregation must pass

through Sρ(i), we have

Nρ(i)+h ≤
∑

y∈Sρ(i)+h

Hr(s, y). (2.36)

Let Mk = #(An ∩ Sk). There are at most Mρ(i)+h nonzero terms in the sum on the right

side of (2.36), and each term is bounded above by (2.35), hence

Mρ(i)+h ≥ Nρ(i)+h
hd−1

CNρ(i)
≥ hd−1

2C

where the second inequality follows from Nρ(i)+h ≥ Nρ(i)/2. Summing over h, we obtain

ρ(i+1)−1∑
ρ=ρ(i)+1

Mρ ≥
1

2dC
(ρ(i+ 1)− ρ(i)− 1)d. (2.37)

The left side is at most Nρ(i), hence

ρ(i+ 1)− ρ(i) ≤ (2dCNρ(i))
1/d ≤ N2/(2d−1)

ρ(i)

provided Nρ(i) ≥ C ′ := (2dC)2d−1. Thus the minimum in (2.34) is not attained by its first

argument. It follows that Nρ(i+1) ≤ Nρ(i)/2, hence Nρ(a log r) < C ′ for a sufficiently large

constant a.
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By the inner estimate, since the ball Br−c log r is entirely occupied, we have∑
ρ≥r

Mρ ≤ ωdrd − ωd(r − c log r)d

≤ cdωdrd−1 log r.

Write xi = ρ(i+ 1)− ρ(i)− 1; by (2.37) we have

a log r∑
i=0

xdi ≤ cdωdrd−1 log r,

By Jensen’s inequality, subject to this constraint,
∑
xi is maximized when all xi are equal,

in which case xi ≤ C ′′r1−1/d and

ρ(a log r) = r +
∑

xi ≤ r + C ′′r1−1/d log r. (2.38)

Since Nρ(a log r) < C ′ we have Nρ(a log r)+C′ = 0; that is, no particles reach the shell

Sρ(a log r)+C′ . Taking c′ = C ′ + C ′′, we obtain from (2.38)

An ⊂ Br(1+c′r−1/d log r).
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Chapter 3

Scaling Limits for General Sources

This chapter is devoted to proving Theorems 1.1.2, 1.1.3 and 1.3.1. The proofs use

many ideas from potential theory, and the relevant background is developed in section 3.1.

The proof of Theorem 1.1.2 is broken into three sections, one for each of the three aggrega-

tion models. Of the three models the divisible sandpile is the most straightforward and is

treated in section 3.2. The rotor-router model and internal DLA are treated in sections 3.3

and 3.4, respectively. Finally, in section 3.5 we deduce Theorem 1.3.1 for multiple point

sources from Theorem 1.1.3 along with our results for single point sources.

3.1 Potential Theory Background

In this section we review the basic properties of superharmonic potentials and of

the least superharmonic majorant. For more background on potential theory in general, we

refer the reader to [3, 16]; for the obstacle problem in particular, see [7, 19].

3.1.1 Least Superharmonic Majorant

Since we will often be working with functions on Rd which may not be twice

differentiable, it is desirable to define superharmonicity without making reference to the

Laplacian. Instead we use the mean value property. A function u on an open set Ω ⊂ Rd is

superharmonic if it is lower-semicontinuous and for any ball B(x, r) ⊂ Ω

u(x) ≥ Aru(x) :=
1

ωdrd

∫
B(x,r)

u(y)dy. (3.1)
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Here ωd is the volume of the unit ball in Rd. We say that u is subharmonic if −u is

superharmonic, and harmonic if it is both super- and subharmonic.

The following properties of superharmonic functions are well known; for proofs,

see e.g. [3], [16] or [35].

Lemma 3.1.1. Let u be a superharmonic function on an open set Ω ⊂ Rd. Then

(i) u attains its minimum in Ω̄ on the boundary.

(ii) If h is harmonic on Ω and h = u on ∂Ω, then u ≥ h.

(iii) If B(x, r0) ⊂ B(x, r1) ⊂ Ω, then

Ar0u(x) ≥ Ar1u(x).

(iv) If u is twice differentiable on Ω, then ∆u ≤ 0 on Ω.

(v) If B ⊂ Ω is an open ball, and v is a function on Ω which is harmonic on B, continuous

on B̄, and agrees with u on Bc, then v is superharmonic.

Given a function γ on Rd which is bounded above, the least superharmonic majo-

rant of γ (also called the solution to the obstacle problem with obstacle γ) is the function

s(x) = inf{f(x)|f is continuous, superharmonic and f ≥ γ}. (3.2)

Note that since γ is bounded above, the infimum is taken over a nonempty set.

Lemma 3.1.2. Let γ be a uniformly continuous function which is bounded above, and let

s be given by (3.2). Then

(i) s is superharmonic.

(ii) s is continuous.

(iii) s is harmonic on the domain

D = {x ∈ Rd|s(x) > γ(x)}.

Proof. (i) Let f ≥ γ be continuous and superharmonic. Then f ≥ s. By the mean value

property (3.1), we have

f ≥ Arf ≥ Ars.
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Taking the infimum over f on the left side, we conclude that s ≥ Ars.
It remains to show that s is lower-semicontinuous. Let

ω(γ, r) = sup
x,y∈Rd,|x−y|≤r

|γ(x)− γ(y)|.

Since

Ars ≥ Arγ ≥ γ − ω(γ, r)

the function Ars+ ω(γ, r) is continuous, superharmonic, and lies above γ, so

Ars ≤ s ≤ Ars+ ω(γ, r).

Since γ is uniformly continuous, we have ω(γ, r) ↓ 0 as r ↓ 0, hence Ars → s as r ↓ 0.

Moreover if r0 < r1, then by Lemma 3.1.1(iii)

Ar0s = lim
r→0

Ar0Ars ≥ lim
r→0

Ar1Ars = Ar1s.

Thus s is an increasing limit of continuous functions and hence lower-semicontinuous.

(ii) Since s is defined as an infimum of continuous functions, it is also upper-

semicontinuous.

(iii) Given x ∈ D, write ε = s(x) − γ(x). Choose δ small enough so that for all

y ∈ B = B(x, δ)

|γ(x)− γ(y)| < ε

2
and |s(x)− s(y)| < ε

2
.

Let f be the continuous function which is harmonic in B and agrees with s outside B. By

Lemma 3.1.1(v), f is superharmonic. By Lemma 3.1.1(i), f attains its minimum in B at a

point z ∈ ∂B, hence for y ∈ B

f(y) ≥ f(z) = s(z) ≥ s(x)− ε

2
= γ(x) +

ε

2
> γ(y).

It follows that f ≥ γ everywhere, hence f ≥ s. From Lemma 3.1.1(ii) we conclude that

f = s, and hence s is harmonic at x.

3.1.2 Superharmonic Potentials

Next we describe the particular class of obstacles which relate to the aggregation

models we are studying. For a bounded measurable function σ on Rd with compact support,

write

Gσ(x) =
∫

Rd
g(x, y)σ(y)dy, (3.3)
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where

g(x, y) =

−
2
π log |x− y|, d = 2;

ad|x− y|2−d, d ≥ 3.
(3.4)

Here ad = 2
(d−2)ωd

, where ωd is the volume of the unit ball in Rd. Note that (3.4) differs

by a factor of 2d from the standard harmonic potential in Rd; however, the normalization

we have chosen is most convenient when working with the discrete Laplacian and random

walk.

The following result is standard; see [16, Theorem 1.I.7.2].

Lemma 3.1.3. Let σ be a measurable function on Rd with compact support.

(i) If σ is bounded, then Gσ is continuous.

(ii) If σ is C1, then Gσ is C2 and

∆Gσ = −2dσ. (3.5)

Regarding (ii), if we remove the smoothness assumption on σ, equation (3.5) re-

mains true in the sense of distributions. For our applications, however, we will not need

this fact, and the following lemma will suffice.

Lemma 3.1.4. Let σ be a bounded measurable function on Rd with compact support. If

σ ≥ 0 on an open set Ω ⊂ Rd, then Gσ is superharmonic on Ω.

Proof. Suppose B(x, r) ⊂ Ω. Since for any fixed y the function f(x) = g(x, y) is superhar-

monic in x, we have

Gσ(x) =
∫

Rd
σ(y)g(x, y)dy

≥
∫

Rd
σ(y)Arf(y)dy

= ArGσ(x).

By applying Lemma 3.1.4 both to σ and to −σ, we obtain that Gσ is harmonic off the

support of σ.
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Let B = B(o, r) be the ball of radius r centered at the origin in Rd. We compute

in dimensions d ≥ 3

G1B(x) =


dr2

d−2 − |x|
2, |x| < r

2r2

d−2

(
r
|x|

)d−2
, |x| ≥ r.

(3.6)

Likewise in two dimensions

G1B(x) =

r
2(1− 2 log r)− |x|2, |x| < r

−2r2 log |x|, |x| ≥ r.
(3.7)

Fix a bounded nonnegative function σ on Rd with compact support, and let

γ(x) = −|x|2 −Gσ(x). (3.8)

Let

s(x) = inf{f(x)|f is continuous, superharmonic and f ≥ γ} (3.9)

be the least superharmonic majorant of γ, and let

D = {x ∈ Rd|s(x) > γ(x)} (3.10)

be the noncoincidence set.

Lemma 3.1.5. (i) γ(x) + |x|2 is subharmonic on Rd.

(ii) If σ ≤M on an open set Ω ⊂ Rd, then γ(x)− (M − 1)|x|2 is superharmonic on Ω.

Proof. (i) By Lemma 3.1.4, since σ is nonnegative, the function γ(x) + |x|2 = −Gσ(x) is

subharmonic on Rd.

(ii) Let B = B(o,R) be a ball containing the support of σ. By (3.6) and (3.7), for

x ∈ B we have

|x|2 = cdR
2 −G1B(x)

where c2 = 1− 2 logR and cd = d
d−2 for d ≥ 3. Hence for x ∈ B we have

γ(x)− (M − 1)|x|2 = −Gσ(x)−M |x|2

= G(M1B − σ)(x)− cdMR2.

Since σ ≤ M1B on Ω, by Lemma 3.1.4 the function γ − (M − 1)|x|2 is superharmonic

in B ∩ Ω. Since this holds for all sufficiently large R, it follows that γ − (M − 1)|x|2 is

superharmonic on all of Ω.
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Lemma 3.1.6. Let u = s− γ, where γ and s are given by (3.8) and (3.9). Then

(i) u(x)− |x|2 is superharmonic on Rd.

(ii) If σ ≤M on an open set Ω ⊂ Rd, then u(x) +M |x|2 is subharmonic on Ω.

Proof. (i) By Lemmas 3.1.2(i) and 3.1.5(i), the function

u− |x|2 = s− (γ + |x|2)

is the difference of a superharmonic and a subharmonic function, hence superharmonic on

Rd.

(ii) With Ar defined by (3.1), we have

Ar|x|2 =
1

ωdrd

∫
B(o,r)

(|x|2 + 2x · y + |y|2) dy

= |x|2 +
1

ωdrd

∫ r

0
(dωdtd−1)t2 dt

= |x|2 +
dr2

d+ 2
.

By Lemma 3.1.5 we have

Ars+
dr2

d+ 2
≥ Arγ +Ar|x|2 − |x|2 ≥ γ.

Since Ars is continuous and superharmonic, it follows that Ars+ dr2

d+2 ≥ s, hence

Ars+Ar|x|2 = Ars+ |x|2 +
dr2

d+ 2
≥ s+ |x|2.

Thus s+ |x|2 is subharmonic on Rd, and hence by Lemma 3.1.5(ii) the function

u+M |x|2 = (s+ |x|2)− (γ − (M − 1)|x|2)

is subharmonic on Ω.

For A ⊂ Rd, write Ao for the interior of A and Ā for the closure of A. The

boundary of A is ∂A = Ā−Ao.

Lemma 3.1.7. Let D be given by (3.10). Then {σ > 1}o ⊂ D.
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Proof. If σ > 1 in a ball B = B(x, r), by (3.6) and (3.7), for y ∈ B we have

γ(y) = −|y|2 −Gσ(y) = −cdr2 −G(σ − 1B)(y).

By Lemma 3.1.4 it follows that γ is subharmonic in B. In particular, s > γ in B, so

x ∈ D.

The next lemma concerns the monotonicity of our model: by starting with more

mass, we obtain a larger odometer and a larger noncoincidence set; see also [41].

Lemma 3.1.8. Let σ1 ≤ σ2 be functions on Rd with compact support, and suppose that∫
Rd σ2(x)dx <∞. Let

γi(x) = −|x|2 −Gσi(x), i = 1, 2.

Let si be the least superharmonic majorant of γi, let ui = si − γi, and let

Di = {x|si(x) > γi(x)}.

Then u1 ≤ u2 and D1 ⊂ D2.

Proof. Let

s̃ = s2 +G(σ2 − σ1).

Then s̃ is continuous and superharmonic, and since s2(x) ≥ −|x|2 −Gσ2(x) we have

s̃(x) ≥ −|x|2 −Gσ1(x)

hence s̃ ≥ s1. Now

u2 − u1 = s2 − s1 +G(σ2 − σ1) = s̃− s1 ≥ 0.

Since Di is the support of ui, the result follows.

Our next lemma shows that we can restrict to a domain Ω ⊂ Rd when taking the

least superharmonic majorant, provided that Ω contains the noncoincidence set.

Lemma 3.1.9. Let γ, s,D be given by (3.8)-(3.10). Let Ω ⊂ Rd be an open set with D ⊂ Ω.

Then

s(x) = inf{f(x)|f is superharmonic on Ω, continuous, and f ≥ γ}. (3.11)
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Proof. Let f be any continuous function which is superharmonic on Ω and ≥ γ. By

Lemma 3.1.2(iii), s is harmonic on D, so f − s is superharmonic on D and attains its

minimum in D on the boundary. Hence f − s attains its minimum in Ω at a point x where

s(x) = γ(x). Since f ≥ γ we conclude that f ≥ s on Ω and hence everywhere. Thus s is at

most the infimum in (3.11). Since the infimum in (3.11) is taken over a strictly larger set

than that in (3.9), the reverse inequality is trivial.

3.1.3 Boundary Regularity for the Obstacle Problem

Next we turn to the regularity of the solution to the obstacle problem (3.9) and

of the free boundary ∂D. There is a substantial literature on boundary regularity for the

obstacle problem. In our setup, however, extra care must be taken near points where

σ(x) = 1: at these points the obstacle (3.8) is harmonic, and the free boundary can be

badly behaved. We show only the minimal amount of regularity required for the proofs of

our main theorems. Much stronger regularity results are known in related settings; see, for

example, [7, 8].

The following lemma shows that if the obstacle is sufficiently smooth, then the

superharmonic majorant cannot separate too quickly from the obstacle near the boundary

of the noncoincidence set. For the proof, we follow the sketch in Caffarelli [7, Theorem 2].

As usual, we write Dε for the inner ε-neighborhood of D, given by (1.8)

Lemma 3.1.10. Let σ be a C1 function on Rd with compact support. Let γ, s,D be given

by (3.8)-(3.10), and write u = s−γ. Then u is C1, and for y ∈ ∂Dε we have |∇u(y)| ≤ C0ε,

for a constant C0 depending on σ.

Proof. Fix x0 ∈ ∂D, and define

L(x) = γ(x0) + 〈∇γ(x0), x− x0〉.

Since σ is C1, we have that γ is C2 by Lemma 3.1.3(ii). Let A be the maximum second

partial of γ in the ball B = B(x0, 4ε). By the mean value theorem and Cauchy-Schwarz,

for x ∈ B we have

|L(x)− γ(x)| = |〈∇γ(x0)−∇γ(x∗), x− x0〉|

≤ A
√
d|x0 − x∗||x− x0| ≤ cε2, (3.12)
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where c = 16A
√
d. Hence

s(x) ≥ γ(x) ≥ L(x)− cε2, x ∈ B.

Thus the function

w = s− L+ cε2

is nonnegative and superharmonic in B. Write w = w0 + w1, where w0 is harmonic and

equal to w on ∂B. Then since s(x0) = γ(x0), we have

w0(x0) ≤ w(x0) = s(x0)− L(x0) + cε2 = cε2.

By the Harnack inequality, it follows that w0 ≤ c′ε2 on the ball B′ = B(x0, 2ε), for a suitable

constant c′.

Since w1 is nonnegative and vanishes on ∂B, it attains its maximum in B̄ at a

point x1 in the support of its Laplacian. Since ∆w1 = ∆s, by Lemma 3.1.2(iii) we have

s(x1) = γ(x1), hence

w1(x1) ≤ w(x1) = s(x1)− L(x1) + cε2 ≤ 2cε2,

where in the last step we have used (3.12). We conclude that 0 ≤ w ≤ (2c+ c′)ε2 on B′ and

hence |s− L| ≤ (c+ c′)ε2 on B′. Thus on B′ we have

|u| = |s− γ| ≤ |s− L|+ |γ − L| ≤ (2c+ c′)ε2.

In particular, u is differentiable at x0, and ∇u(x0) = 0. Since s is harmonic in D and equal

to γ outside D, it follows that u is differentiable everywhere, and C1 off ∂D.

Given y ∈ ∂Dε, let x0 be the closest point in ∂D to y. Since B(y, ε) ⊂ D, by

Lemma 3.1.2(iii) the function w is harmonic on B(y, ε), so by the Cauchy estimate [3,

Theorem 2.4] we have

|∇s(y)−∇γ(x0)| = |∇w(y)| ≤ C

ε
sup

z∈B(y,ε)
w(z). (3.13)

Since B(y, ε) ⊂ B′, the right side of (3.13) is at most C(2c+ c′)ε, hence

|∇u(y)| ≤ |∇s(y)−∇γ(x0)|+ |∇γ(y)−∇γ(x0)| ≤ C0ε

where C0 = C(c+ c′) +A
√
d. Thus u is C1 on ∂D as well.
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Next we show that mass is conserved in our model: the amount of mass starting

in D is
∫
D σ(x)dx, while the amount of mass ending in D is L(D), the Lebesgue measure

of D. Since no mass moves outside of D, we expect these to be equal. Although this seems

intuitively obvious, the proof takes some work because we have no a priori control of the

domain D. In particular, we first need to show that the boundary of D cannot have positive

d-dimensional Lebesgue measure.

Proposition 3.1.11. Let σ be a C1 function on Rd with compact support, such that

L(σ−1(1)) = 0. Let D be given by (3.10). Then

(i) L(∂D) = 0.

(ii) For any function h ∈ C1(D̄) which is superharmonic on D,∫
D
h(x)dx ≤

∫
D
h(x)σ(x)dx.

Note that by applying (ii) both to h and to −h, equality holds whenever h is

harmonic on D. In particular, taking h = 1 yields the conservation of mass:
∫
D σ(x)dx =

L(D).

The proof of part (i) follows Friedman [19, Ch. 2, Theorem 3.5]. It uses the

Lebesgue density theorem, as stated in the next lemma.

Lemma 3.1.12. Let A ⊂ Rd be a Lebesgue measurable set, and let

A′ =
{
x ∈ A | lim inf

ε→0
ε−dL

(
B(x, ε) ∩Ac

)
> 0
}
.

Then L(A′) = 0.

To prove the first part of Proposition 3.1.11, given a boundary point x ∈ ∂D, the

idea is first to find a point y in the ball B(x, ε) where u = s− γ is relatively large, and then

to argue using Lemma 3.1.10 that a ball B(y, cε) must be entirely contained in D. Taking

A = ∂D in the Lebesgue density theorem, we obtain that x ∈ A′.
The proof of the second part of Proposition 3.1.11 uses Green’s theorem in the

form ∫
D′

(u∆h−∆uh)dx =
∫
∂D′

(
u
∂h

∂n
− ∂u

∂n
h

)
dr. (3.14)

Here D′ is the union of boxes x� that are contained in D, and dx is the volume measure in

D′, while dr is the (d− 1)-dimensional surface measure on ∂D′. The partial derivatives on

the right side of (3.14) are in the outward normal direction from ∂D′.
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Proof of Propostion 3.1.11. (i) Fix 0 < λ < 1. For x ∈ ∂D with σ(x) ≤ λ, for small enough

ε we have σ ≤ 1+λ
2 on B(x, ε). By Lemma 3.1.5(ii) the function

f(y) = γ(y) +
1− λ

2
|y|2

is superharmonic on B(x, ε) ∩D, so by Lemma 3.1.2(iii) the function

w(y) = u(y)− 1− λ
2
|x− y|2

= s(y)− f(y) + (1− λ)〈x, y〉 − 1− λ
2
|x|2

is subharmonic on B(x, ε) ∩D. Since w(x) = 0, its maximum is not attained on ∂D, so it

must be attained on ∂B(x, ε), so there is a point y with |x− y| = ε and

u(y) ≥ 1− λ
2

ε2.

By Lemma 3.1.10 we have |∇u| ≤ (1 + c)C0ε in the ball B(y, cε). Taking c = 1−λ
4C0

,

we obtain for z ∈ B(y, cε)

u(z) = u(y) + 〈∇u(y∗), z − y〉

≥ 1− λ
2

ε2 − c(1 + c)C0ε
2 > 0.

Thus for any x ∈ ∂D ∩ {σ ≤ λ}

L(B(x, (1 + c)ε) ∩ (∂D)c) ≥ ωd(cε)d.

By the Lebesgue density theorem it follows that

L(∂D ∩ {σ ≤ λ}) = 0. (3.15)

By Lemma 3.1.7 we have σ ≤ 1 on ∂D. Taking λ ↑ 1 in (3.15), we obtain

L(∂D) ≤ L(∂D ∩ {σ < 1}) + L(σ−1(1)) = 0.

(ii) Fix δ > 0 and let

D′ =
⋃

x∈δZd :x�⊂D

x�,

where x� = x+ [− δ
2 ,

δ
2 ]d. By Lemmas 3.1.2(iii) and 3.1.3(ii), in D′ we have

∆u = ∆s−∆γ = 2d(1− σ).
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Now by Green’s theorem (3.14), since u is nonnegative and h is superharmonic,∫
D′

(1− σ)h dx =
1
2d

∫
D′

∆uh dx ≤ 1
2d

∫
∂D′

(
u
∂h

∂n
− ∂u

∂n
h

)
dr (3.16)

where n denotes the unit outward normal vector to ∂D′. By Lemma 3.1.10, the integral on

the right side is bounded by∫
∂D′

∣∣∣∣u∂h∂n

∣∣∣∣+
∣∣∣∣∂u∂n

h

∣∣∣∣ dr ≤ C0

√
d(δ2||∇h||∞ + δ||h||∞)Ld−1(∂D′), (3.17)

where Ld−1 denotes (d− 1)-dimensional Lebesgue measure. Let

S =
⋃

x∈δZd :x�∩∂D 6=∅

x�.

Since L(∂D) = 0, given ε > 0 we can choose δ small enough so that L(S) < ε. Since

∂D′ ⊂ ∂S, we have

Ld−1(∂D′) ≤ Ld−1(∂S) ≤ 2dL(S)
δ

.

Since D is open, L(D′) ↑ L(D) as δ ↓ 0. Taking δ < ε smaller if necessary so that

L(D′) ≥ L(D)− ε, we obtain from (3.16) and (3.17)∫
D

(1− σ)h dx ≤ (M + 1)ε+ C0

√
d(||h||∞ + ||∇h||∞)ε

where M is the maximum of |σ|. Since this holds for any ε > 0, we conclude that∫
D h(x)dx ≤

∫
D h(x)σ(x)dx.

We will need a version of Proposition 3.1.11 which does not assume that σ is C1 or

even continuous. We can replace the C1 assumption and the condition that L(σ−1(1)) = 0

by the following condition.

For all x ∈ Rd either σ(x) ≤ λ or σ(x) ≥ 1 (3.18)

for a constant λ < 1. Then we have the following result.

Proposition 3.1.13. Let σ be a bounded function on Rd with compact support. Let D be

given by (3.10), and let D̃ = D ∪ {σ ≥ 1}o. If σ is continuous almost everywhere and

satisfies (3.18), then

(i) L
(
∂D̃
)

= 0.

(ii) L
(
D
)

=
∫
D σ(x)dx.
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(iii) L
(
D̃
)

=
∫ eD σ(x)dx.

In particular, taking σ = 1A + 1B, we have

A⊕B = A ∪B ∪D = D̃

where ⊕ denotes the smash sum (1.6). From (iii) we obtain the volume additivity of the

smash sum.

Corollary 3.1.14. Let A,B ⊂ Rd be bounded open sets whose boundaries have measure

zero. Then

L(A⊕B) = L(A) + L(B).

Proof of Proposition 3.1.13. (i) Fix ε > 0. Since σ is continuous almost everywhere, there

exist C1 functions σ0 ≤ σ ≤ σ1 with
∫

Rd(σ1 − σ0)dx < ε. Scaling by a factor of 1 + δ

for sufficiently small δ, we can ensure that L(σ−1
i (1)) = 0, so that σ0 and σ1 satisfy the

hypotheses of Proposition 3.1.11. For i = 0, 1 let

γi(x) = −|x|2 −Gσi(x),

and let si be the least superharmonic majorant of γi. Choose α with λ < α < 1 such that

L(σ−1
i (α)) = 0 for i = 0, 1, and write

Di = {si > γi};

Si = Di ∪ {σi ≥ α}.

By (3.18) we have {σ0 ≥ α} ⊂ {σ ≥ 1}o, hence by Lemma 3.1.8

S0 = D0 ∪ {σ0 ≥ α} ⊂ D ∪ {σ ≥ 1}o = D̃ (3.19)

⊂ D̃ ⊂ D1 ∪ {σ ≥ 1} = S1. (3.20)

For i = 0, 1 write

σ◦i (x) =

1, x ∈ Di

σi(x), x 6∈ Di.

By Proposition 3.1.11(ii) with h = 1, we have∫
Rd
σ◦i = L(Di) +

∫
Dci

σi =
∫

Rd
σi. (3.21)
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For 0 < α0 < α, we have

L(S1 − S0) ≤ L
(
S1 ∩ {σ◦0 ≤ α0}

)
+ L

(
{α0 < σ◦0 < α}

)
. (3.22)

Since σ◦1 ≥ α on S1, the first term is bounded by

L
(
S1 ∩ {σ◦0 ≤ α0}

)
≤ ||σ

◦
1 − σ◦0||1
α− α0

=
||σ1 − σ0||1
α− α0

<
ε

α− α0
,

where the equality in the middle step follows from (3.21).

By Proposition 3.1.11(i) we have L(∂D1) = 0, hence L(∂S1) = 0. Taking α0 =

α−
√
ε we obtain from (3.19), (3.20), and (3.22)

L
(
∂D̃
)
≤ L

(
S1 − S0

)
= L(S1 − S0) <

√
ε+ L

(
{α−

√
ε < σ0 < α}

)
.

Since this holds for any ε > 0, the result follows.

(ii) Write

σ◦(x) =

1, x ∈ D

σ(x), x 6∈ D.

From (3.21) we have ∫
Rd
σ0 =

∫
Rd
σ◦0 ≤

∫
Rd
σ◦ ≤

∫
Rd
σ◦1 =

∫
Rd
σ1.

The left and right side differ by at most ε. Since
∫

Rd σ0 ≤
∫

Rd σ ≤
∫

Rd σ1, and ε > 0 is

arbitrary, it follows that
∫

Rd σ =
∫

Rd σ
◦, hence∫

D
σ =

∫
Rd
σ◦ −

∫
Dc
σ = L(D). (3.23)

(iii) By Lemma 3.1.7, if σ(x) > 1 and x /∈ D, then σ is discontinuous at x. Thus

σ = 1 almost everywhere on D̃ −D, and we obtain from (3.23)∫
eD σ = L(D) +

∫
eD−D σ = L(D̃).

Our next lemma describes the domain resulting from starting mass m > 1 on a

ball in Rd. Not surprisingly, the result is another ball, concentric with the original, of m

times the volume. In particular, if m is an integer, the m-fold smash sum of a ball with

itself is again a ball.
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Lemma 3.1.15. Fix m > 1, and let D be given by (3.10) with σ = m1B(o,r). Then

D = B(o,m1/dr).

Proof. Since γ(x) = −|x|2−Gσ(x) is spherically symmetric and the least superharmonic ma-

jorant commutes with rotations, D is a ball centered at the origin. By Proposition 3.1.13(ii)

we have L(D) = mL(B(o, r)).

Next we show that the noncoincidence set is bounded; see also [42, Cor. 7.2].

Lemma 3.1.16. Let σ be a function on Rd with compact support, satisfying 0 ≤ σ ≤ M .

Let D be given by (3.10). Then D is bounded.

Proof. Let B = B(o, r) be a ball containing the support of σ. By Lemmas 3.1.8 and 3.1.15,

the difference s− γ is supported in B(o,M1/dr).

3.1.4 Convergence of Obstacles, Majorants and Domains

In broad outline, many of our arguments have the following basic structure:

convergence of densities =⇒ convergence of obstacles

=⇒ convergence of majorants

=⇒ convergence of domains.

An appropriate convergence of starting densities is built into the hypotheses of the theorems.

From these hypotheses we use Green’s function estimates to deduce the relevant conver-

gence of obstacles. Next, as we have already seen in Lemmas 3.1.5 and 3.1.6, properties

of the obstacle can often be parlayed into corresponding properties of the least superhar-

monic majorant. Finally, deducing convergence of domains (i.e., noncoincidence sets) from

the convergence of the majorants often requires additional regularity assumptions. The

following lemma illustrates this basic three-step approach.

Lemma 3.1.17. Let σ and σn, n = 1, 2, . . . be densities on Rd satisfying

0 ≤ σ, σn ≤M1B

for a constant M and ball B = B(o,R). Suppose that σ is continuous except on a set of

Lebesgue measure zero, and that

σn(x)→ σ(x) (3.24)

as n→∞, for all continuity points x of σ. Then
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(i) Gσn → Gσ uniformly on compact subsets of Rd.

(ii) sn → s uniformly on compact subsets of Rd, where s, sn are the least superharmonic

majorants of the functions γ = −|x|2 −Gσ, and γn = −|x|2 −Gσn, respectively.

(iii) For any ε > 0 we have Dε ⊂ D(n) for all sufficiently large n, where D,D(n) are the

noncoincidence sets {s > γ} and {sn > γn}, respectively.

Proof. (i) Since σ, σn are supported on B, we have

|Gσn(x)−Gσ(x)| ≤
∫
B
|g(x, y)||σn(y)− σ(y)|dy. (3.25)

Fix 0 < ε < 1. Since 0 ≤ σ, σn ≤M , we have by (3.6) and (3.7)∫
B(x,ε)

|g(x, y)||σn(y)− σ(y)|dy ≤ 3Mε2. (3.26)

Now let B0 = B −B(x, ε) and

AN = {y ∈ B0 : |σn(y)− σ(y)| < ε for all n ≥ N}.

Then by (3.24) ⋃
N≥1

AN ⊇ B0 −DC(σ)

where DC(σ) is the set of discontinuities of σ. As L(DC(σ)) = 0 and the sets AN are

monotone increasing in N , we can choose N large enough so that

L(AN ) > L(B0)− εd−1

log(R/ε)
. (3.27)

Given n ≥ N , for y ∈ B0 we have

|g(x, y)| ≤ adε2−d log
R

ε
≤ adε

L(B0 −An)
.

Splitting the right side of (3.25) into separate integrals over B(x, ε), An, and B0 − An, we

obtain

|Gσn(x)−Gσ(x)| < 6Mε2 + ε

∫
An

|g(x, y)|dy + 2Madε

≤
(
3R2 log max(R, |x|) + (2ad + 3)M

)
ε.
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(ii) By Lemmas 3.1.8 and 3.1.15, the noncoincidence sets D,D(n) are contained in

the ball B1 = M1/dB. Given ε > 0 and a compact set K containing B1, choose N large

enough so that |γn − γ| < ε on K for all n ≥ N . Then

s+ ε ≥ γ + ε > γn

on K, so the function fn = max(s + ε, γn) is superharmonic on K. By Lemma 3.1.9 we

have fn ≥ sn, and hence s+ ε ≥ sn on K. Likewise

sn + ε ≥ γn + ε > γ

on K, so the function f̃n = max(sn + ε, γ) is superharmonic on K. By Lemma 3.1.9 we

have f̃n ≥ s and hence sn + ε ≥ s on K. Thus sn → s uniformly on K.

(iii) Let β > 0 be the minimum value of s− γ on Dε, and choose N large enough

so that |γ − γn|, |s− sn| < β/2 on D for all n ≥ N . Then

sn − γn > s− γ − β > 0

on Dε, hence Dε ⊂ D(n) for all n ≥ N .

According to the following lemma, a nonnegative function on Zd with bounded

Laplacian can grow at most quadratically. We will use this fact repeatedly.

Lemma 3.1.18. Fix 0 < β < 1. There is a constant cβ such that any nonnegative function

f on Zd with f(o) = 0 and |∆f | ≤ λ in B(o,R) satisfies

f(x) ≤ cβλ|x|2, x ∈ B(o, βR).

Proof. Consider the functions

f±(y) = f(y)± λ|y|2. (3.28)

By hypothesis, f+ is subharmonic and f− is superharmonic on B(o,R). Given x ∈ B(o, βR),

let r = min(R, 2|x|), and let h± be the harmonic function on the ball B = B(o, r−1) which

agrees with f± on ∂B. Then

f+ ≤ h+ ≤ h− + 2λr2 ≤ f− + 2λr2. (3.29)

By the Harnack inequality [28, Theorem 1.7.2] there is a constant c̃β such that

h+(x) ≤ c̃βh+(o).



59

Since f−(o) = f(o) = 0 we have from (3.29)

h+(o) ≤ f−(o) + 2λr2 ≤ 8λ|x|2.

hence

f(x) ≤ h+(x)− λ|x|2 ≤ cβλ|x|2

with cβ = 8c̃β − 1.

The following continuous version of Lemma 3.1.18 is proved in the same way, using

the continuous Harnack inequality in place of the discrete one, and replacing |y|2 by |y|2/2d
in (3.28).

Lemma 3.1.19. Fix 0 < β < 1. There is a constant c′β such that the following holds. Let

f be a nonnegative function on Rd with f(o) = 0, and let

f±(x) = f(x)± λ |x|
2

2d
.

If f+ is subharmonic and f− is superharmonic in B(o,R), then

f(x) ≤ c′βλ|x|2, x ∈ B(o, βR).

In the following lemma, Aε denotes the inner ε-neighborhood of A, as defined by

(1.8).

Lemma 3.1.20. Let A,B ⊂ Rd be bounded open sets. For any ε > 0 there exists η > 0

with

(A ∪B)ε ⊂ Aη ∪Bη.

Proof. Let K be the closure of (A∪B)ε, and let Yn = A1/n ∪B1/n. Since K is contained in⋃
Yn = A ∪ B, the sets K ∩ Yn form an open cover of K, which has a finite subcover, i.e.

K ⊂ Yn for some n.

3.1.5 Discrete Potential Theory

Fix a sequence δn ↓ 0 with δ1 = 1. In this section we relate discrete superharmonic

potentials in the lattice δnZd to their continuous couterparts in Rd. If A is a domain in

δnZd, write

A� = A+
[
−δn

2
,
δn
2

]d
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δnZd Rd

points x:: =
(
x+

(
− δn

2 ,
δn
2

]d ) ∩ δnZd x� = x+
[
− δn

2 ,
δn
2

]d
sets A:: = A ∩ δnZd A� = A+

[−δn
2 , δn2

]d
functions f :: = f |δnZd f�(x) = f(x::)

Table 3.1: Notation for transitioning between Euclidean space and the lattice.

for the corresponding union of cubes in Rd. If A is a domain in Rd, write A:: = A ∩ δnZd.

Given x ∈ Rd, write

x:: =
(
x− δn

2
, x+

δn
2

]d
∩ δnZd

for the closest lattice point to x, breaking ties to the right. For a function f on δnZd, write

f�(x) = f(x::)

for the corresponding step function on Rd. Likewise, for a function f on Rd, write f :: =

f |δnZd . These notations are summarized in Table 1.

We define the discrete Laplacian of a function f on δnZd to be

∆f(x) = δ−2
n

(
1
2d

∑
y∼x

f(y)− f(x)

)
.

According to the following lemma, if f is sufficiently smooth, then its discrete Laplacian on

δnZd approximates its Laplacian on Rd.

Lemma 3.1.21. If f has continuous third derivative in a δn-neighborhood of x ∈ δnZd, and

A is the maximum pure third partial of f in this neighborhood, then

|∆f(x)− 2d∆f ::(x)| ≤ d

3
Aδn.

Proof. By Taylor’s theorem with remainder

f(x+ δnei)− 2f(x) + f(x− δnei) =
∂2f

∂x2
i

δ2
n +

1
6
∂3f

∂x3
i

(x+ tei)δ3
n −

1
6
∂3f

∂x3
i

(x− uei)δ3
n

for some 0 ≤ t, u ≤ 1. Summing over i = 1, . . . , d and dividing by δ2
n gives the result.

In three and higher dimensions, for x, y ∈ δnZd write

gn(x, y) = δ2−d
n g1(δ−1

n x, δ−1
n y), d ≥ 3, (3.30)
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where

g1(x, y) = Ex#{k|Xk = y}

is the Green’s function for simple random walk on Zd. The scaling in (3.30) is chosen so

that ∆xgn(x, y) = −δ−dn 1{x=y}. In two dimensions, write

gn(x, y) = −a(δ−1
n x, δ−1

n y) +
2
π

log δn, d = 2, (3.31)

where

a(x, y) = lim
m→∞

(
Ex #{k ≤ m|Xk = x} − Ex#{k ≤ m|Xk = y}

)
is the recurrent potential kernel on Z2.

Lemma 3.1.22. In all dimensions d ≥ 2,

gn(x, y) = g(x, y) +O(δ2
n|x− y|−d)

where g is given by (3.4).

Proof. In dimensions d ≥ 3 we have from (3.30) and the standard estimate for the discrete

Green’s function (2.5)

gn(x, y) = δ2−d
n

(
ad

(
|x− y|
δn

)2−d
+O

(
|x− y|
δn

)−d)
= ad|x− y|2−d +O(δ2

n|x− y|−d).

Likewise, in dimension two, using the standard estimate for the potential kernel (2.5) in

(3.31) gives

gn(x, y) = − 2
π

log
|x− y|
δn

+
2
π

log δn +O

(
|x− y|
δn

)−2

.

Our next result adapts Lemma 3.1.17(i) to the discrete setting. We list here our

standing assumptions on the starting densities. Let σ be a function on Rd with compact

support, such that

0 ≤ σ ≤M (3.32)

for some absolute constant M . Suppose that σ satisfies

L (DC(σ)) = 0 (3.33)
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where DC(σ) denotes the set of points in Rd where σ is discontinuous.

For n = 1, 2, . . . let σn be a function on δnZd satisfying

0 ≤ σn ≤M (3.34)

and

σ�
n (x)→ σ(x), x /∈ DC(σ). (3.35)

Finally, suppose that

There is a ball B ⊂ Rd containing the supports of σ and σ�
n for all n. (3.36)

Although for maximum generality we have chosen to state our hypotheses on σ and σn

separately, we remark that the above hypotheses on σn are satisfied in the particular case

when σn is given by averaging σ over a small box:

σn(x) = δ−dn

∫
x�
σ(y)dy. (3.37)

In parallel to (3.3), for x ∈ δnZd write

Gnσn(x) = δdn
∑

y∈δnZd
gn(x, y)σn(y), (3.38)

where gn is given by (3.30) and (3.31).

Lemma 3.1.23. If σ, σn satisfy (3.32)-(3.36), then

(Gnσn)� → Gσ

uniformly on compact subsets of Rd.

Proof. Let K ⊂ Rd be compact. By the triangle inequality

|(Gnσn)� −Gσ| ≤ |(Gnσn)� −Gσ�
n |+ |Gσ�

n −Gσ|.

By Lemma 3.1.17(i) the second term on the right side is < ε/2 on K for sufficiently large

n. The first term is at most

|(Gnσn)�(x)−Gσ�
n (x)| ≤

∑
y∈δnZd

σn(y)
∣∣∣∣δdngn(x::, y)−

∫
y�
g(x, z)dz

∣∣∣∣
≤M

∑
y∈B::

∫
y�
|gn(x::, y)− g(x, z)|dz

= M

∫
B::�
|gn(x::, z::)− g(x, z)|dz. (3.39)
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By Lemma 3.1.22, we have

|gn(x::, z::)− g(x, z)| ≤ |gn(x::, z::)− g(x::, z::)|+ |g(x::, z::)− g(x, z)|

≤ Cδn|x− z|1−d

for a constant C depending only on d. Integrating (3.39) in spherical shells about x, we

obtain

|(Gnσn)� −Gσ�
n | ≤ CdωdMRδn,

where R is the radius of B. Taking n large enough so that the right side is < ε/2, the proof

is complete.

Our next result adapts Lemma 3.1.9 to the discrete setting. Let σn be a function

on δnZd with finite support, and let γn be the function on δnZd defined by

γn(x) = −|x|2 −Gnσn(x). (3.40)

Let

sn = inf{f(x)|f is superharmonic on δnZd and f ≥ γn} (3.41)

be the discrete least superharmonic majorant of γn, and let

Dn = {x ∈ δn Zd |sn(x) > γn(x)}. (3.42)

Lemma 3.1.24. Let γn, sn, Dn be given by (3.40)-(3.42). If Ω ⊂ δnZd satisfies Dn ⊂ Ω,

then

sn(x) = inf{f(x)|f is superharmonic on Ω and f ≥ γn}. (3.43)

Proof. Let f be any function which is superharmonic on Ω and ≥ γn. Since sn is harmonic

on Dn, so f − sn is superharmonic on Dn and attains its minimum in Dn ∪ ∂Dn on the

boundary. Hence f − sn attains its minimum in Ω ∪ ∂Ω at a point x where sn(x) = γn(x).

Since f ≥ γn we conclude that f ≥ sn on Ω and hence everywhere. Thus sn is at most the

infimum in (3.43). Since the infimum in (3.43) is taken over a strictly larger set than that

in (3.41), the reverse inequality is trivial.
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3.2 Divisible Sandpile

3.2.1 Convergence of Odometers

By the odometer function for the divisible sandpile on δnZd with source density

σn, we will mean the function

un(x) = δ2
n · total mass emitted from x if each site y starts with mass σn(y).

Theorem 3.2.1. Let un be the odometer function for the divisible sandpile on δnZd with

source density σn. If σ, σn satisfy (3.32)-(3.36), then

u�
n → s− γ uniformly,

where

γ(x) = −|x|2 −Gσ(x),

Gσ is given by (3.3), and s is the least superharmonic majorant of γ.

Lemma 3.2.2. Let Dn be the set of fully occupied sites for the divisible sandpile in δnZd

started from source density σn. There is a ball Ω ⊂ Rd with⋃
n≥1

D�
n ∪D ⊂ Ω.

Proof. Let An be the set of fully occupied sites for the divisible sandpile in δnZd started

from source density τ(x) = M1x∈B, where B is given by (3.36). From the abelian property,

Lemma 2.2.1, we have Dn ⊂ An. By the inner bound of Theorem 1.2.2 if we start with mass

m = 2δ−dn L(B) at the origin in δnZd, the resulting set of fully occupied sites contains B::;

by the abelian property it follows that if we start with mass Mm at the origin in δnZd, the

resulting set Ωn of fully occupied sites contains An. By the outer bound of Theorem 1.2.2,

Ωn is contained in a ball Ω of volume 3ML(B). By Lemma 3.1.16 we can enlarge Ω if

necessary to contain D.

For x ∈ δnZd write

γn(x) = −|x|2 −Gnσn(x),

where Gn is defined by (3.38). Denote by sn the least superharmonic majorant of γn in the

lattice δnZd.



65

Lemma 3.2.3. Let Ω be as in Lemma 3.2.2. There is a constant M ′ independent of n,

such that |γn| ≤M ′ in Ω::.

Proof. By Lemma 3.1.22 we have for x ∈ Ω::

|Gnσn(x)| ≤ δdn
∑
y∈B::

|gn(x, y)|σn(y)

≤ 2Mδdn
∑
y∈B::

|g(x, y)|

≤ CMR2 logR

for a constant C depending only on d, where R is the radius of Ω. It follows that |γn| ≤
(CM + 1)R2 logR in Ω::.

Lemma 3.2.4. Fix x ∈ Rd, and for y ∈ δnZd let

α(y) = δdngn(x::, y)−
∫
y�
g(x, z)dz. (3.44)

There are constants C1, C2 depending only on d, such that

(i) |α(y)| ≤ C1δ
1+d
n |x− y|1−d.

(ii) If y1 ∼ y2, then |α(y1)− α(y2)| ≤ C2δ
2+d
n |x− y1|−d.

Proof. (i) By Lemma 3.1.22, if z ∈ y� then

|gn(x::, y)− g(x, z)| ≤ |gn(x::, y)− g(x::, y)|+ |g(x::, y)− g(x, z)|

≤ Cδn|x− y|1−d

for a constant C depending only on d. Integrating over y� gives the result.

(ii) Let p = y2 − y1. By Lemma 3.1.22, we have

|α(y1)− α(y2)| ≤
∫
y�
1

|gn(x::, y1)− gn(x::, y2)− g(x, z) + g(x, z + p)| dz

≤
∫
y�
1

|g(x::, y1)− g(x::, y2)− g(x, z) + g(x, z + p)| dz +

+O(δd+2
n |x− y1|−d).

Writing q = x:: − x− y1 + z, the quantity inside the integral can be expressed as

|f(o)− f(p)− f(q) + f(p+ q)|,



66

where

f(w) = g(w, x:: − y1).

Since |p|, |q|, |p+ q| ≤ δn(
√
d+ 1), we have by Taylor’s theorem with remainder

|f(o)− f(p)− f(q) + f(p+ q)| ≤ 3dδ2
n

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj
(o)
∣∣∣∣

≤

6d2(d− 1)(d− 2)adδ2
n|x− y1|−d, d ≥ 3

(24/π)δ2
n|x− y1|−2, d = 2.

Lemma 3.2.5. Let Ω be an open ball as in Lemma 3.2.2, and let Ω1 be a ball with Ω̄ ⊂ Ω1.

Let

φn = −∆(sn1Ω::
1
).

Then ∣∣∣s�
n −Gφ�

n

∣∣∣→ 0

uniformly on Ω.

Proof. Let νn(x) be the amount of mass present at x in the final state of the divisible

sandpile on δnZd. By Lemma 2.2.2 we have sn = un + γn, hence

∆sn = (νn − σn) + (σn − 1) = νn − 1.

In particular, |∆sn| ≤ 1.

Since

Gφ�
n (x) =

∑
y∈Ω::

1∪∂Ω::
1

φn(y)
∫
y�
g(x, z)dz

and sn = Gnφn in Ω::, we have for x ∈ Ω

Gφ�
n (x)− s�

n (x) = Gφ�
n (x)−Gnφn(x::)

= −
∑

y∈Ω::
1∪∂Ω::

1

φn(y)α(y)

where α(y) is given by (3.44). Hence

Gφ�
n (x)− s�

n (x) =
∑
y∈Ω::

1

∆sn(y)α(y) + δ−2
n

∑
y∈Ω::

1 ,z /∈Ω::
1

y∼z

(sn(y)α(z)− sn(z)α(y)). (3.45)
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Let R,R1 be the radii of Ω,Ω1. By Lemma 3.2.4(i), summing in spherical shells

about x, the first sum in (3.45) is bounded in absolute value by

∑
y∈Ω::

1

|α(y)| ≤
∫ 2R1

0

dωdr
d−1

δdn
(C1δ

1+d
n r1−d)dr = C1dωdR1δn.

To bound the second sum in (3.45), note that sn = γn outside Ω, so

|sn(y)α(z)− sn(z)α(y)| ≤ |γn(y)||α(y)− α(z)|+ |α(y)||γn(y)− γn(z)|. (3.46)

By Lemmas 3.2.3 and 3.2.4(ii), the first term is bounded by

|γn(y)||α(y)− α(z)| ≤ C2M
′δ2+d
n |x− y|−d.

Fix ε > 0, and let Ω2 be a ball with Ω̄1 ⊂ Ω2. Since γ is uniformly continuous on Ω2, and

γn → γ uniformly on Ω2 by Lemma 3.1.23, for sufficiently large n we have

|γn(y)− γn(z)| ≤ |γn(y)− γ(y)|+ |γ(y)− γ(z)|+ |γ(z)− γn(z)| ≤ ε.

Thus by Lemma 3.2.4(i) the second term in (3.46) is bounded by

|α(y)||γn(y)− γn(z)| ≤ C1δ
1+d
n |x− y|1−dε.

Since x ∈ Ω and y is adjacent to ∂Ω1, we have |x − y| ≥ R1 − R − δn, so the second term

in (3.45) is bounded in absolute value by

2δ−2
n #∂Ω::

1

(
C2M

′δ2+d
n (R1 −R)−d + C1δ

1+d
n (R1 −R)1−dε

)
≤ C3ε

for sufficiently large n.

Lemma 3.2.6. s�
n → s uniformly on compact subsets of Rd.

Proof. By Lemma 3.2.2 there is a ball Ω containing D and D�
n for all n. Outside Ω we have

s�
n = γ�

n → γ = s

uniformly on compact sets by Lemma 3.1.23.

To show convergence in Ω, write

s̃(x) =
∫

Rd
s(y)λ−dη

(
x− y
λ

)
dy, (3.47)
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where η is the standard smooth mollifier

η(x) =

Ce
1/(|x|2−1), |x| < 1

0, |x| ≥ 1

normalized so that
∫

Rd η dx = 1 (see [17, Appendix C.4]). Then s̃ is smooth and superhar-

monic. Fix ε > 0. By Lemma 3.1.2(ii) and compactness, s is uniformly continuous on Ω̄, so

taking λ sufficiently small in (3.47) we have |s− s̃| < ε in Ω. Let Aε be the maximum third

partial of s̃ in Ω. By Lemma 3.1.21 the function

qn(x) = s̃::(x)− 1
6
Aεδn|x|2

is superharmonic in Ω::. By Lemma 3.1.23 we have γ�
n → γ uniformly in Ω. Taking N large

enough so that 1
6Aεδn|x|

2 < ε in Ω and |γn − γ::| < ε in Ω:: for all n > N , we obtain

qn > s̃:: − ε > s:: − 2ε ≥ γ:: − 2ε > γn − 3ε

in Ω::. In particular, the function fn = max(qn + 3ε, γn) is superharmonic in Ω::. By

Lemma 3.1.24 it follows that fn ≥ sn, hence

sn ≤ qn + 3ε < s̃:: + 3ε < s:: + 4ε

in Ω::. By the uniform continuity of s on Ω̄, taking N larger if necessary we have |s−s::�| < ε

in Ω, and hence s�
n < s+ 5ε in Ω for all n > N .

For the reverse inequality, let

φn = −∆(sn1Ω::
1
)

where Ω1 is an open ball containing Ω̄. By Lemma 3.2.5 we have∣∣∣s�
n −Gφ�

n

∣∣∣ < ε

and hence

Gφ�
n > γ�

n − ε > γ − 2ε. (3.48)

on Ω for sufficiently large n. Since φ�
n is nonnegative on Ω, by Lemma 3.1.4 the function

Gφ�
n is superharmonic on Ω, so by (3.48) the function

ψn = max(Gφ�
n + 2ε, γ)
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is superharmonic on Ω for sufficiently large n. By Lemma 3.1.9 it follows that ψn ≥ s, hence

s�
n > Gφ�

n − ε ≥ s− 3ε

on Ω for sufficiently large n.

Proof of Theorem 3.2.1. Let Ω be as in Lemma 3.2.2. By Lemmas 3.1.23 and 3.2.6 we have

γ�
n → γ and s�

n → s uniformly on Ω. By Lemma 2.2.2, we have un = sn − γn. Since

u�
n = 0 = s− γ off Ω, we conclude that u�

n → s− γ uniformly.

3.2.2 Convergence of Domains

In addition to the conditions (3.32)-(3.36) assumed in the previous section, we

assume in this section that the source density σ satisfies

For all x ∈ Rd either σ(x) ≤ λ or σ(x) ≥ 1 (3.49)

for a constant λ < 1. We also assume that

{σ ≥ 1} = {σ ≥ 1}o. (3.50)

Moreover, we assume that for any ε > 0 there exists N(ε) such that

If x ∈ {σ ≥ 1}ε, then σn(x) ≥ 1 for all n ≥ N(ε); (3.51)

and

If x /∈ {σ ≥ 1}ε, then σn(x) ≤ λ for all n ≥ N(ε). (3.52)

As before, we have chosen to state the hypotheses on σ and σn separately for maximum

generality, but all hypotheses on σn are satisfied in the particular case when σn is given by

averaging σ in a small box (3.37).

We set

γ(x) = −|x|2 −Gσ(x)

with s the least superharmonic majorant of γ and

D = {x ∈ Rd|s(x) > γ(x)}.

We also write

D̃ = D ∪ {x ∈ Rd|σ(x) ≥ 1}o.

For a domain A ⊂ Rd, denote by Aε and Aε its inner and outer open ε-neighborhoods,

respectively.
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Theorem 3.2.7. Let σ and σn satisfy (3.32)-(3.36) and (3.49)-(3.52). For n ≥ 1 let Dn

be the domain of fully occupied sites for the divisible sandpile in δnZd started from source

density σn. For any ε > 0 we have for large enough n

D̃::
ε ⊂ Dn ⊂ D̃ε::. (3.53)

According to the following lemma, near any occupied site x ∈ Dn lying outside D̃ε,

we can find a site y where the odometer un is relatively large. This is a discrete version of a

standard argument for the obstacle problem; see for example Friedman [19], Ch. 2 Lemma

3.1.

Lemma 3.2.8. Fix ε > 0 and x ∈ Dn with x /∈ D̃ε. If n is sufficiently large, there is a

point y ∈ δnZd with |x− y| ≤ ε
2 + δn and

un(y) ≥ un(x) +
1− λ

4
ε2.

Proof. By (3.50), we have {σ ≥ 1} ⊂ D̃. Thus if x /∈ D̃ε, the ball B = B(x, ε2):: is disjoint

from {σ ≥ 1}ε/2. In particular, if n ≥ N( ε2), then by (3.52) we have σn ≤ λ on B. Thus

the function

w(y) = un(y)− (1− λ)|x− y|2

is subharmonic on B∩Dn, so it attains its maximum on the boundary. Since w(x) ≥ 0, the

maximum cannot be attained on ∂Dn, where un vanishes; so it is attained at some point

y ∈ ∂B, and

un(y) ≥ w(y) + (1− λ)
( ε

2

)2
.

Since w(y) ≥ w(x) = un(x), the proof is complete.

Proof of Theorem 3.2.7. Fix ε > 0. By Lemma 3.1.20 we have

D̃ε ⊂ Dη ∪ {σ ≥ 1}η

for some η > 0. Let u = s− γ. Since the closure of Dη is compact and contained in D, we

have u ≥ mη on Dη for some mη > 0. By Theorem 3.2.1, for sufficiently large n we have

un > u− 1
2mη > 0 on D::

η , hence D::
η ⊂ Dn. Likewise, by (3.51) we have {σ ≥ 1}::η ⊂ Dn for

large enough n. Thus D̃ε ⊂ Dn.

For the other inclusion, fix x ∈ δnZd with x /∈ D̃ε. Since u vanishes on the ball

B = B(x, ε2), by Theorem 3.2.1 we have un < 1−λ
4 ε2 on B:: ∪ ∂B:: for all sufficiently large

n. By Lemma 3.2.8 we conclude that x /∈ Dn, and hence Dn ⊂ D̃ε::.
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3.3 Rotor-Router Model

In trying to adapt the proofs of Theorems 3.2.1 and 3.2.7 to the rotor-router

model, we are faced with two main problems. The first is to define an appropriate notion

of convergence of integer-valued densities σn on δnZd to a real-valued density σ on Rd. The

requirement that σn take only integer values is of course imposed on us by the nature of

the rotor-router model itself, since unlike the divisible sandpile, the rotor-router works with

discrete, indivisible particles. The second problem is to find an appropriate analogue of

Lemma 2.2.2 for the rotor-router model.

Although these two problems may seem unrelated, the single technique of smooth-

ing neatly takes care of them both. To illustrate the basic idea, suppose we are given a

domain A ⊂ Rd, and let σn be the function on δnZd taking the value 1 on odd lattice

points in A::, and the value 2 on even lattice points in A::, while vanishing outside A::. We

would like to find a sense in which σn converges to the real-valued density σ = 3
21A. One

approach is to average σn in a box whose side length Ln goes to zero more slowly than the

lattice spacing: Ln ↓ 0 while Ln/δn ↑ ∞ as n ↑ ∞. The resulting “smoothed” version of σn

converges to σ pointwise away from the boundary of A.

By smoothing the odometer function in the same way, we can obtain an approx-

imate analogue of Lemma 2.2.2 for the rotor-router model. Rather than average in a box

as described above, however, it is technically more convenient to average according to the

distribution of a lazy random walk run for a fixed number α(n) of steps. Denote by (Xk)k≥0

the lazy random walk in δnZd which stays in place with probability 1
2 and moves to each of

the 2d neighbors with probability 1
4d . Given a function f on δnZd, define its k-smoothing

Skf(x) = E(Xk|X0 = x). (3.54)

From the Markov property we have SkS` = Sk+`. Also, the discrete Laplacian can be

written as

∆ = 2δ−2
n (S1 − S0). (3.55)

In particular, ∆Sk = Sk∆.

3.3.1 Convergence of Odometers

For n = 1, 2, . . . let σn be an integer-valued function on δnZd satisfying 0 ≤ σn ≤
M . We assume as usual that there is a ball B ⊂ Rd containing the support of σn for all n.
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Let σ be a function on Rd supported in B satisfying (3.32) and (3.33). In place of condition

(3.35) we assume that there exist integers α(n) ↑ ∞ with δnα(n) ↓ 0 such that

(Sα(n)σn)�(x)→ σ(x), x /∈ DC(σ). (3.56)

By the odometer function for rotor-router aggregation starting from source density

σn, we will mean the function

un(x) = δ2
n · number of particles emitted from x

if σn(y) particles start at each site y.

Theorem 3.3.1. Let un be the odometer function for rotor-router aggregation on δnZd

starting from source density σn. If σ, σn satisfy (3.32)-(3.34), (3.36) and (3.56), then

u�
n → s− γ uniformly, where

γ(x) = −|x|2 −
∫

Rd
g(x, y)σ(y)dy

and s is the least superharmonic majorant of γ.

Given a function f on δnZd, for an edge (x, y) write

∇f(x, y) =
f(y)− f(x)

δn
.

Given a function κ on edges in δnZd, write

div κ(x) =
1

2dδn

∑
y∼x

κ(x, y).

The discrete Laplacian on δnZd is then given by

∆f(x) = div∇f = δ−2
n

(
1
2d

∑
y∼x

f(y)− f(x)

)
.

The following “rescaled” version of Lemma 2.4.1 is proved in the same way.

Lemma 3.3.2. For an edge (x, y) in δnZd, denote by κ(x, y) the net number of crossings

from x to y performed by particles during a sequence of rotor-router moves. Let

u(x) = δ2
n · number of particles emitted from x during this sequence.

Then

∇u(x, y) = δn(−2dκ(x, y) + ρ(x, y)). (3.57)
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for some edge function ρ which satisfies

|ρ(x, y)| ≤ 4d− 2

independent of x, y, n and the chosen sequence of moves.

Proof. Writing N(x, y) for the number of particles routed from x to y, for any y, z ∼ x we

have

|N(x, y)−N(x, z)| ≤ 1.

Since u(x) = δ2
n

∑
y∼xN(x, y), we obtain

δ−2
n u(x)− 2d+ 1 ≤ 2dN(x, y) ≤ δ−2

n u(x) + 2d− 1

hence

|∇u(x, y) + 2dδnκ(x, y)| = δn|δ−2
n u(y)− δ−2

n u(x) + 2dN(x, y)− 2dN(y, x)|

≤ (4d− 2)δn.

Recall that the divisible sandpile odometer function has Laplacian 1 − σn inside

the set Dn of fully occupied sites. The next lemma shows that the same is approximately

true of the smoothed rotor-router odometer function. Denote by Rn the occupied shape for

rotor-router aggregation on δnZd starting from source density σn.

Lemma 3.3.3. |∆Skun(x)− Px(Xk ∈ Rn) + Skσn(x)| ≤ C0/
√
k + 1.

Proof. Let κ and ρ be defined as in Lemma 3.3.2. Since each site x starts with σn(x)

particles and ends with either one particle or none accordingly as x ∈ Rn or x /∈ Rn, we

have

2dδn div κ = σn − 1Rn .

Taking the divergence in (3.57) we obtain

∆un = 1Rn − σn + δn div ρ. (3.58)

Using the fact that Sk and ∆ commute, it follows that

∆Skun(x) = Px(Xk ∈ Rn)− Exσn(Xk) + δn Ex div ρ(Xk). (3.59)
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Since ∇u and κ are antisymmetric, ρ is antisymmetric by (3.57). Thus the last term in

(3.59) can be written

δn Ex div ρ(Xk) =
1
2d

∑
y∼z

Px(Xk = y)R(y, z)

= − 1
2d

∑
y∼z

Px(Xk = z)ρ(y, z)

=
1
4d

∑
y∼z

(Px(Xk = y)− Px(Xk = z))ρ(y, z) (3.60)

where the sums are taken over all pairs of neighboring sites y, z ∈ δnZd.

We can couple lazy random walk Xk started at x with lazy random walk X ′k

started at a uniform neighbor of x so that the probability of not coupling in k steps is at

most C/
√
k + 1, where C is a constant depending only on d [36]. Since the total variation

distance between Xk and X ′k is at most the probability of not coupling, we obtain∑
y∼z
| Px (Xk = y)− Px(Xk = z)| ≤ C√

k + 1
.

Using the fact that ρ(y, z) is uniformly bounded in (3.60), taking C0 = 4Cd completes the

proof.

The next lemma shows that smoothing the odometer function does not introduce

much extra error.

Lemma 3.3.4. |Skun − un| ≤ δ2
n(1

2Mk + C0

√
k + 1).

Proof. From (3.55) we have

|Skun − un| ≤
k−1∑
j=0

|Sj+1un − Sjun|

=
δ2
n

2

k−1∑
j=0

|∆Sjun|.

But by Lemma 3.3.3

|∆Sjun| ≤M +
C0√
j + 1

.

Summing over j yields the result.
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Let

γn(x) = −|x|2 −GnSα(n)σn(x)

and let sn be the least superharmonic majorant of γn. By Lemma 2.2.2, the difference sn−γn
is the odometer function for the divisible sandpile on δnZd starting from the smoothed

source density σ̃n = Sα(n)σn. Note that by Lemma 3.2.2, there is a ball Ω ⊂ Rd containing

the supports of s − γ and of sn − γn for all n. The next lemma compares the smoothed

rotor-router odometer for the source density σn with the divisible sandpile odometer for the

smoothed density σ̃n.

Lemma 3.3.5. Let Ω ⊂ Rd be a ball centered at the origin containing the supports of s− γ
and of sn − γn for all n. Then

Sα(n)un ≥ sn − γn − C0r
2α(n)−1/2 (3.61)

on all of δnZd, where r is the radius of Ω.

Proof. Since

∆γn = −1 + Sα(n)σn,

by Lemma 3.3.3 the function

f(x) = Sα(n)un(x) + γn(x) + C0α(n)−1/2(r2 − |x|2)

is superharmonic on δnZd. Since f ≥ γn on Ω::, the function ψn = max(f, γn) is superhar-

monic on Ω::, hence ψn ≥ sn by Lemma 3.1.24. Thus f ≥ sn on Ω::, so (3.61) holds on Ω::

and hence everywhere.

Lemma 3.3.6. Let Rn be the set of occupied sites for rotor-router aggregation in δnZd

started from source density σn. There is a ball Ω ⊂ Rd with
⋃
R�
n ⊂ Ω.

Proof. By assumption there is a ball B ⊂ Rd containing the support of σn for all n. Let

An be the set of occupied sites for rotor-router aggregation in δnZd started from source

density τ(x) = M1x∈B. From the abelian property we have Rn ⊂ An. By the inner

bound of Theorem 1.2.1, if we start with
⌊
2δ−dn L(B)

⌋
particles at the origin in δnZd, the

resulting set of occupied sites contains B::; by the abelian property it follows that if we

start with M
⌊
2δ−dn L(B)

⌋
particles at the origin, the resulting set Ωn of fully occupied sites

contains An. By the outer bound of Theorem 1.2.1, Ωn is contained in a ball Ω of volume

3ML(B).
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Proof of Theorem 3.3.1. By Lemma 3.2.2 there is a ball Ω containing the support of s− γ
and of sn − γn for all n. By Lemma 3.3.6 we can enlarge Ω if necessary to contain the

support of Sα(n)un for all n. By Lemma 3.3.3, the function

φ(x) = Sα(n)un(x)− sn(x) + γn(x) + C0α(n)−1/2|x|2.

is subharmonic on the set

R̃n = {x ∈ Rn : y ∈ Rn whenever ||x− y||1 ≤ α(n)}

since Px
(
Xα(n) ∈ Rn

)
= 1 for x ∈ R̃n. From Lemma 3.3.3 we have

∣∣∆Sα(n)un
∣∣ ≤ M + C0,

so for x /∈ R̃n we have by Lemma 3.1.18

Sα(n)un(x) ≤ c(M + C0)α(n)2δ2
n.

By the maximum principle in R̃n

φ(x) ≤ c(M + C0)α(n)2δ2
n + C0α(n)−1/2r2, x ∈ R̃n.

From Lemma 3.3.5 we obtain

− C0r
2α(n)−1/2 ≤ Sα(n)un − sn + γn ≤ c(M + C0)α(n)2δ2

n + C0r
2α(n)−1/2 (3.62)

on all of δnZd, where r is the radius of Ω.

By Lemmas 3.1.23 and 3.2.6 we have γ�
n → γ and s�

n → s uniformly on Ω. Since

α(n) ↑ ∞ and δnα(n) ↓ 0, we conclude from (3.62) that
(
Sα(n)un

)� → s − γ uniformly on

Ω. Since both Sα(n)un and s − γ vanish outside Ω, this convergence is uniform on Rd. By

Lemma 3.3.4 we have ∣∣Sα(n)un − un
∣∣→ 0

uniformly on δnZd, and hence u�
n → s− γ uniformly on Rd.

3.3.2 Convergence of Domains

In addition to the assumptions of the previous section, in this section we require

that

For all x ∈ Rd either σ(x) ≥ 1 or σ(x) = 0. (3.63)

We also assume that

{σ ≥ 1} = {σ ≥ 1}o. (3.64)
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Moreover, we assume that for any ε > 0 there exists N(ε) such that

If x ∈ {σ ≥ 1}ε, then σn(x) ≥ 1 for all n ≥ N(ε); (3.65)

and

If x /∈ {σ ≥ 1}ε, then σn(x) = 0 for all n ≥ N(ε). (3.66)

Theorem 3.3.7. Let σ and σn satisfy (3.32)-(3.34), (3.36), (3.56) and (3.63)-(3.66). For

n ≥ 1 let Rn = {un > 0} be the domain of sites in δnZd that emit a particle in the rotor-

router model started from source density σn. For any ε > 0 we have for all sufficiently large

n

D̃::
ε ⊂ Rn ⊂ D̃ε::, (3.67)

where

D̃ = {s > γ} ∪ {σ ≥ 1}o.

Lemma 3.3.8. Fix ε > 0 and n ≥ N(ε/2). Given x 6∈ D̃ε and δn ≤ ρ ≤ ε/2, let

Nρ(x) = #B(x, ρ) ∩Rn.

If un ≤ δ2
nm on B(x, ρ), then

Nρ(x) ≥ m

m− 1
Nρ−δn(x).

Proof. Since at least Nρ(x) particles must enter the ball B(x, ρ), we have∑
y∈∂B(x,ρ−δn)

un(y) ≥ δ2
nNρ(x).

There are Nρ(x) − Nρ−δn(x) terms in the sum on the left side, and each term is at most

δ2
nm, hence

m
(
Nρ(x)−Nρ−δn(x)

)
≥ Nρ(x).

The following lemma can be seen as a weak analogue of Lemma 3.2.8 for the

divisible sandpile. In Lemma 3.3.11, below, we obtain a more exact analogue under slightly

stronger hypotheses.
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Lemma 3.3.9. For any ε > 0, if n is sufficiently large and x ∈ Rn with x 6∈ D̃ε, then there

is a point y ∈ Rn with |x− y| ≤ ε/2 and

un(y) ≥ εδn

4 log
(
2ωd(ε/2δn)d

) .
Proof. Take n ≥ N(ε/2) large enough so that 4δn < ε. Let m be the maximum value of

δ−2
n un on B(x, ε). Since x ∈ Rn we have N0(x) = 1. Iteratively applying Lemma 3.3.8, we

obtain

Nε/2(x) ≥
(

m

m− 1

)bε/2δnc
N0(x) ≥ exp

(
ε

4mδn

)
.

Since

Nε/2(x) ≤ #B(x, ε/2) ≤ 2ωd

(
ε

2δn

)d
,

we conclude that
ε

4mδn
≤ log

(
2ωd(ε/δn)d

)
.

Solving for m yields the result.

The following lemma shows that far away from D, the rotor-router odometer grows

at most quadratically as we move away from the boundary of Rn.

Lemma 3.3.10. For any ε > 0 and k ≥ 1, if n is sufficiently large and z 6∈ Rn ∪ D̃ε, then

un(x) ≤ 4cdk2δ2
n, x ∈ B(z, kδn)::,

where c = c1/2 is the constant in Lemma 3.1.18.

Proof. Taking the divergence in (3.57), since −2dδn divκ(x) is the net number of particles

entering x, we obtain

∆un = 1Rn − σn + δn divR. (3.68)

By (3.66), if n ≥ N(ε/2) is large enough so that kδn < ε/4, we have σn = 0 on the ball

B = B(z, 2kδn)::. Since |R| ≤ 4d− 2, we have |∆un| ≤ 4d on B, so by Lemma 3.1.18

un(x) ≤ 4cd|x− z|2

for x ∈ B(z, kδn)::.

The following lemma is analogous to Lemma 3.2.8 for the divisible sandpile.
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Lemma 3.3.11. Fix ε > 0 and k ≥ 4C2
0 , where C0 is the constant in Lemma 3.3.3. There

is a constant C1 such that if x ∈ Rn, x 6∈ D̃ε satisfies

Skun(x) > C1k
2δ2
n

and n is sufficiently large, there exists y ∈ δnZd with |x− y| ≤ ε
2 + δn and

Skun(y) ≥ Skun(x) +
ε2

8
.

Proof. Let

R(k)
n = {x ∈ Rn : y ∈ Rn whenever ||x− y||1 ≤ kδn}.

By Lemma 3.3.3, we have

∆Skun(y) ≥ 1− Skσn(y)− C0/
√
k, y ∈ R(k)

n .

Note that C0/
√
k < 1

2 . Take n ≥ N(ε/4) large enough so that kδn < ε/4; then Skσn

vanishes on the ball B = B(x, ε/2):: by (3.66). Thus the function

f(y) = Skun(y)− 1
2
|x− y|2

is subharmonic on R̃n := R
(k)
n ∩B, so it attains its maximum on the boundary.

If y ∈ ∂R(k)
n , there is a point z 6∈ Rn with |y − z| ≤ kδn. By Lemma 3.3.3 we have

|∆un| ≤M + C0, hence by Lemma 3.1.18 it follows that

un ≤ 4c(M + C0)k2δ2
n

in the ball B(z, 2kδn). Taking C1 = 4c(M + C0) we find that

Skun(y) ≤ C1k
2δ2
n < Skun(x).

Thus f cannot attain its maximum in R̃n on ∂R(k)
n , and hence must attain its maximum at

a point y ∈ ∂B. Since f(y) ≥ f(x) we conclude that

Skun(y) = f(y) +
1
2
|x− y|2

≥ Skun(x) +
1
2

( ε
2

)2
.



80

Proof of Theorem 3.3.7. Fix ε > 0. By Lemma 3.1.20 we have

D̃ε ⊂ Dη ∪ {σ ≥ 1}η

for some η > 0. Since the closure of Dη is compact and contained in D, we have u ≥ mη on

Dη for some mη > 0. By Theorem 3.3.1, for sufficiently large n we have un > u− 1
2mη > 0

on D::
η , hence D::

η ⊂ Rn. Likewise, by (3.51) we have {σ ≥ 1}::η ⊂ Rn for large enough n.

Thus D̃::
ε ⊂ Rn.

For the other inclusion, fix x ∈ δnZd with x /∈ D̃ε. Since u vanishes on the

ball B = B(x, ε), by Theorem 3.3.1 we have un < ε2

8 on B:: for all sufficiently large n.

Let k = 4C2
0 , and take n large enough so that kδn < ε/4. Then Skun < ε2

8 on the

ball B(x, 3ε/4)::. By Lemma 3.3.11 it follows that Skun ≤ C1k
2δ2
n on the smaller ball

B′ = B(x, ε/4)::. In particular, for y ∈ B′ we have

un(y) ≤ Skun(y)
Py(Xk = y)

< C2k
d/2+2δ2

n.

For sufficiently large n the right side is at most εδn/4 log
(
2ωd(ε/2δn)d

)
, so we conclude from

Lemma 3.3.9 that x 6∈ Rn.

3.4 Internal DLA

Our hypotheses for convergence of internal DLA domains are the same as those for

the rotor-router model: σ is a bounded, nonnegative, compactly supported function on Rd

that is continuous almost everywhere, and {σn}n≥1 is a sequence of uniformly bounded func-

tions on δnZd with uniformly bounded supports, whose “smoothings” converge pointwise

to σ at all continuity points of σ.

Theorem 3.4.1. Let σ and σn satisfy (3.32)-(3.34), (3.36), (3.56) and (3.63)-(3.66). For

n ≥ 1 let In be the random domain of occupied sites for internal DLA in δnZd started from

source density σn. For all ε > 0 we have with probability one

D̃::
ε ⊂ In ⊂ D̃ε:: for all sufficiently large n, (3.69)

where

D̃ = {s > γ} ∪ {σ ≥ 1}o.
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3.4.1 Inner Estimate

Fix n ≥ 1, and label the particles in δnZd by the integers 1, . . . ,mn, where mn =∑
x∈δnZd σn(x). Let xi be the starting location of the particle labeled i, so that

#{i|xi = x} = σn(x).

For each i = 1, . . . ,mn let (Xi
t)t≥0 be a simple random walk in δnZd such that Xi

0 = xi,

with Xi and Xj independent for i 6= j.

For z ∈ δnZd and ε > 0, consider the stopping times

τ iz = inf
{
t ≥ 0 |Xi

t = z
}

;

τ iε = inf
{
t ≥ 0 |Xi

t 6∈ D::
ε

}
;

νi = inf
{
t ≥ 0 |Xi

t 6∈ {X
j
νj
}i−1
j=1

}
. (3.70)

The stopping time νi is defined inductively in i with ν1 = 0. We think of building up the

internal DLA cluster one site at a time, by letting the particle labeled i walk until it exits

the set of sites already occupied by particles with smaller labels. Thus νi is the number of

steps taken by the particle labeled i, and Xi
νi

is the location where it stops.

Fix z ∈ D::
ε and consider the random variables

Mε =
mn∑
i=1

1{τ iz<τ iε};

Lε =
mn∑
i=1

1{νi≤τ iz<τ iε}.

These sums can be interpreted in terms of the following two-stage procedure. During the

first stage, we form the occupied internal DLA cluster by adding on one site at a time, as

described above. In the second stage, we let each particle continue walking from where it

stopped until it exits D::
ε . ThenMε counts the total number of particles that visit z during

both stages, while Lε counts the number of particles that visit z during the second stage.

In particular, if Lε < Mε, then z was visited during the first stage and hence belongs to

the occupied cluster.

The sum Lε is difficult to estimate directly because the indicator random variables

in the sum are not independent. Following [29], we can bound Lε by a sum of independent

indicators as follows. For each site y ∈ D::
ε , let (Y y

t )t≥0 be a simple random walk in δnZd
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such that Y y
0 = y, with Y x and Y y independent for x 6= y. Let

L̃ε =
∑
y∈D::

ε

1{τyz<τyε }

where

τyz = inf
{
t ≥ 0 |Y y

t = z
}

;

τyε = inf
{
t ≥ 0 |Y y

t 6∈ D::
ε

}
.

Thus L̃ε counts the number of walks Y y that hit z before exiting D::
ε . Since the sites Xi

νi

are distinct, we can couple the walks {Y y} and {Xi} so that Lε ≤ L̃ε.
Define

fn,ε(z) = gn,ε(z, z) E (Mε − L̃ε),

where

gn,ε(y, z) = E#{t < τyε |Y
y
t = z}

is the Green’s function for simple random walk in δnZd stopped on exiting D::
ε . Then

fn,ε(z) = gn,ε(z, z)

mn∑
i=1

P
(
τ iz < τ iε

)
−
∑
y∈D::

ε

P
(
τyz < τyε

)
= gn,ε(z, z)

∑
y∈D::

ε

(σn(y)− 1) P
(
τyz < τyε

)
=
∑
y∈D::

ε

(σn(y)− 1)gn,ε(y, z) (3.71)

where in the last step we have used the identity

P
(
τyz < τyε

)
=
gn,ε(y, z)
gn,ε(z, z)

. (3.72)

Thus fn,ε solves the Dirichlet problem

∆fn,ε = δ−2
n (1− σn), on D::

ε ; (3.73)

fn,ε = 0, on ∂D::
ε .

Note that the divisible sandpile odometer function un for the source density σn

solves exactly the same Dirichlet problem, with the domain D::
ε in (3.73) replaced by the

domain Dn of fully occupied sites. Our strategy will be first to use Theorem 3.2.7 to argue
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that since Dn → D, the solutions to the Dirichlet problems in Dn and D::
ε should be close;

next, by Theorem 3.2.1, since un → u it follows that the functions fn,ε and u are close. Since

u is strictly positive in Dε, we obtain in this way a lower bound on fn,ε, and hence a lower

bound on E(Mε − L̃ε). Finally, using large deviations for sums of independent indicators,

we conclude that with high probability L̃ε < Mε, and hence with high probability every

point z ∈ D::
ε belongs to the occupied cluster In. The core of the argument is Lemma 3.4.3,

below, which gives the desired lower bound on fn,ε.

In order to apply Theorems 3.2.1 and 3.2.7, we must have discrete densities σn

which converge pointwise to σ at all continuity points of σ. Recall, however, that in order

to allow σ to assume non-integer values, we have chosen not to assume that σn converges

to σ, but rather only that the smoothed density Sα(n)σn converges to σ; see (3.56). For

this reason, we will need to run the divisible sandpile on δnZd starting from the smoothed

density rather than from σn, and we will use the following smoothed version of equation

(3.73).

∆Skfn,ε = δ−2
n (1− Skσn), on D::

ε′ . (3.74)

Here k ≥ 1 is arbitrary, and ε′ = ε+ kδn.

The following lemma is proved in the same way as Lemma 3.3.4.

Lemma 3.4.2. Let ε′ = ε+ kδn. Then for z ∈ D::
ε′ we have

|Skfn,ε(z)− fn,ε(z)| ≤
1
2
Mk.

Proof. From (3.55) and (3.74) we have for z ∈ D::
ε′

|Skfn,ε(z)− fn,ε(z)| ≤
k−1∑
j=0

|Sj+1fn,ε(z)− Sjfn,ε(z)|

=
δ2
n

2

k−1∑
j=0

|∆Sjfn,ε(z)|

≤ 1
2
Mk.

Lemma 3.4.3. Fix ε > 0, and let β > 0 be the minimum value of u = s− γ on Dε. There

exists 0 < η < ε such that for all sufficiently large n

fn,η(z) ≥
1
2
βδ−2

n , z ∈ D::
ε .
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Proof. Since u is uniformly continuous on D, we can choose η > 0 small enough so that

u ≤ β/8 outside D2η. Let η′ = η+δnα(n). Since δnα(n) ↓ 0, we have u ≤ β/8 outside Dη′ if

n is sufficiently large. Since u ≥ β on Dε, for large enough n we have ∂Dη′ 6⊂ Dε and hence

η′ < ε. Let un be the odometer function for the divisible sandpile on δnZd started from

source density Sα(n)σn. We have u�
n → u uniformly by Theorem 3.2.1, so for n sufficiently

large we have |un − u::| ≤ β/8, hence un ≤ β/4 on ∂D::
η′ .

Let Dn be the domain of fully occupied sites for the divisible sandpile in δnZd

started from source density Sα(n)σn. By Theorem 3.2.7 we have D::
η ⊂ Dn for all sufficiently

large n. Now (3.73) implies that Sα(n)fn,η − δ−2
n un is harmonic on D::

η′ . By Lemmas 3.4.2

and 3.1.18, for z ∈ ∂D::
η′ we have

|Sα(n)fn,η(z)| ≤ |fn,η(z)|+
1
2
Mα(n)

≤ cMα(n)2 +
1
2
Mα(n).

Since δnα(n) ↓ 0, for sufficiently large n we have

Sα(n)fn,η(z) ≥ −
β

16δ2
n

, z ∈ ∂D::
η′ .

Since Sα(n)fn,η − δ−2
n un attains its minimum in D::

η′ on the boundary, for z ∈ D::
η′ we have

Sα(n)fn,η(z) ≥ δ−2
n

(
un(z)− 5β

16

)
≥ δ−2

n

(
u(z)− 7β

16

)
.

Since u ≥ β in D::
ε , taking n large enough so that α(n)δ2

n ≤ β/8M , we conclude from

Lemma 3.4.2 that

fn,η ≥
9β

16δ2
n

− 1
2
Mα(n) ≥ 1

2
βδ−2

n .

on D::
ε .

Lemma 3.4.4. We have

EL̃η =
Eτ zη

gn,η(z, z)
.

Moreover

EMη ≤M
Eτ zη

gn,η(z, z)
.
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Proof. Let

T yz = inf{t ≥ 0|Y y
t = z}

be the first hitting time of z for the walk Y y. By (3.72) and the symmetry of gn,η, we have

EL̃η =
∑
y∈D::

η

P
(
T yz < τyη

)
(3.75)

=
∑
y∈D::

η

gn,η(y, z)
gn,η(z, z)

=
1

gn,η(z, z)

∑
y∈D::

η

gn,η(z, y).

The sum in the last line is EzT∂D::
η
.

To prove the inequality for EMη, note that EMη is bounded above by M times

the sum on the right side of (3.75).

The next lemma, using a martingale argument to compute the expected time for

simple random walk to exit a ball, is well known.

Lemma 3.4.5. Fix r > 0 and let B = B(o, r):: ⊂ δnZd, and let T be the first hitting time

of ∂B. Then

EoT =
(
r

δn

)2

+O

(
r

δn

)
.

Proof. Since δ−2
n |Xt|2 − t is a martingale with bounded increments, and EoT < ∞, by

optional stopping we have

EoT = δ−2
n Eo |XT |2 = δ−2

n (r +O(δn))2.

The next lemma, which bounds the expected number of times simple random walk

returns to the origin before reaching distance r, is also well known.

Lemma 3.4.6. Fix r > 0 and let B = B(o, r):: ⊂ δnZd, and let GB be the Green’s function

for simple random walk stopped on exiting B. If n is sufficiently large, then

GB(o, o) ≤ log
r

δn
.
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Proof. In dimension d ≥ 3 the result is trivial since simple random walk on δnZd is transient.

In dimension two, consider the function

f(x) = GB(o, x)− gn(o, x)

where gn is the rescaled potential kernel defined in (3.31). Since f is harmonic in B it

attains its maximum on the boundary, hence by Lemma 3.1.22 we have for x ∈ B

f(x) ≤ 2
π

log r +O

(
δ2
n

r2

)
.

Since gn(o, o) = 2
π log δn, the result follows on setting x = o.

We will use the following large deviation bound; for a proof, see [2, Cor. A.14].

Lemma 3.4.7. If N is a sum of finitely many independent indicator random variables,

then for all λ > 0

P(|N − EN | > λ EN) < 2e−cλEN

where cλ > 0 is a constant depending only on λ.

Let

Ĩn =
{
Xi
νi |ν

i < τ̃ i
}
⊂ In

where νi is given by (3.70), and

τ̃ i = inf
{
t ≥ 0|Xi

t /∈ D̃::
}
.

The inner estimate of Theorem 3.4.1 follows immediately from the lemma below. Although

for the inner estimate it suffices to prove Lemma 3.4.8 with In in place of Ĩn, we will make

use of the stronger statement with Ĩn in the proof of the outer estimate in the next section.

Lemma 3.4.8. For any ε > 0,

P
(
D̃::
ε ⊂ Ĩn for all but finitely many n

)
= 1.

Proof. For z ∈ D̃::
ε , let Ez(n) be the event that z /∈ Ĩn. By Borel-Cantelli it suffices to show

that ∑
n≥1

∑
z∈ eD::

ε

P(Ez(n)) <∞. (3.76)
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By Lemma 3.1.20, since D̃ = D ∪ {σ ≥ 1}o we have

D̃ε ⊂ Dε′ ∪ {σ ≥ 1}ε′

for some ε′ > 0. By (3.65), for n ≥ N(ε′) the terms in (3.76) with z ∈ {σ ≥ 1}ε′ vanish, so

it suffices to show ∑
n≥1

∑
z∈D::

ε′

P(Ez(n)) <∞. (3.77)

By Lemma 3.4.3 there exists 0 < η < ε′ such that

fn,η(z) ≥
1
2
βδ−2

n , z ∈ D::
ε′ (3.78)

for all sufficiently large n, where β > 0 is the minimum value of u on Dε′ . Fixing z ∈ D::
ε′ ,

since Lη ≤ L̃η we have

P(Ez(n)) ≤ P(Mη = Lη)

≤ P(Mη ≤ L̃η)

≤ P(Mη ≤ a) + P(L̃η ≥ a) (3.79)

for a real number a to be chosen below. By Lemma 3.4.7, since L̃η and Mη are sums of

independent indicators, we have

P (L̃η ≥ (1 + λ) E L̃η) < 2e−cλEeLη (3.80)

P (Mη ≤ (1− λ) EMη) < 2e−cλEMη

where cλ depends only on λ, chosen below. Now since z ∈ Dε′ and D is bounded by

Lemma 3.1.16, we have

B(z, ε′ − η) ⊂ Dη ⊂ B(z,R)

hence by Lemma 3.4.5
1
2

(
ε′ − η
δn

)2

≤ Eτ zη ≤
(
R

δn

)2

. (3.81)

By Lemma 3.4.4 it follows that EMη ≤MR2/δ2
ngn,η(z, z). Taking

a = EL̃η +
β

4δ2
ngn,η(z, z)

in (3.79), and letting λ = β/4MR2 in (3.80), we have

λ E L̃η ≤ λ EMη ≤
β

4δ2
ngn,η(z, z)

, (3.82)
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hence

a ≥ (1 + λ) E L̃η.

Moreover, from (3.78) we have

EMη − EL̃η =
fn,η(z)
gn,η(z, z)

≥ β

2δ2
ngn,η(z, z)

,

hence by (3.82)

a ≤ EMη −
β

4δ2
ngn,η(z, z)

≤ (1− λ) EMη.

Thus we obtain from (3.79) and (3.80)

P (Ez(n)) ≤ 4e−cλEeLη . (3.83)

By Lemmas 3.4.4 and 3.4.6 along with (3.81)

EL̃η =
EzT∂D::

η

gn,η(z, z)

≥ 1
2

(
ε′ − η
δn

)2 1
log(R/δn)

.

Using (3.83), the sum in (3.77) is thus bounded by

∑
n≥1

∑
z∈D::

ε′

P(Ez(n)) ≤
∑
n≥1

δ−dn ωdR
d · 4 exp

(
− cλ(ε′ − η)2

2δ2
n log(R/δn)

)
<∞.

3.4.2 Outer Estimate

For x ∈ Zd write

Q(x, h) = {y ∈ Zd : ||x− y||∞ ≤ h}

for the cube of side length 2h+ 1 centered at x. According to the next lemma, if we start

a simple random walk at distance h from a hyperplane H ⊂ Zd, then the walk is farily

“spread out” by the time it hits H, in the sense that its chance of first hitting H at any

particular point z has the same order of magnitude as z ranges over a (d− 1)-dimensional

cube of side length order h.
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Lemma 3.4.9. Fix y ∈ Zd with y1 = h, and let T be the first hitting time of the hyperplane

H = {x ∈ Zd|x1 = 0}. Let F = H ∩Q(y, h). For any z ∈ F we have

Py(XT = z) ≥ ah1−d

for a constant a depending only on d.

Proof. For fixed w ∈ H, the function

f(x) = Px(XT = w)

is harmonic in the ball B = B(y, h). By the Harnack inequality [28, Theorem 1.7.2] we have

f(x) ≥ cf(y), x ∈ B(y, h/2)

for a constant c depending only on d. By translation invariance, it follows that for w′ ∈
H ∩B(w, h/2), letting x = y + w − w′ we have

Py(XT = w′) = f(x) ≥ cf(y) = c Py (XT = w).

Iterating, we obtain for any w′ ∈ H ∩Q(w, h)

Py (XT = w′) ≥ c
√
d Py (XT = w). (3.84)

Let T ′ be the first exit time of the cube Q(y, h−1). Since F is a boundary face of this cube,

we have {XT ′ ∈ F} ⊂ {XT ∈ F}. Let z0 be the closest point to y in H. Taking w′ = z0,

we have w′ ∈ H ∩Q(w, h) whenever w ∈ F . Summing (3.84) over w ∈ F , we obtain

(2h+ 1)d−1c−
√
d Py (XT = z0) ≥ Py(XT ∈ F ) ≥ P(XT ′ ∈ F ) =

1
2d
.

Now for any z ∈ F , taking w = z0 and w′ = z in (3.84), we conclude that

Py(XT = z) ≥ c
√
d Py (XT = z0) ≥ c2

√
d

2d
(2h+ 1)1−d.

Lemma 3.4.10. Let h, ρ be positive integers. Let N be the number of particles that ever

visit the cube Q(o, ρ) during the internal DLA process, if one particle starts at each site

y ∈ Zd − Q(o, ρ + h), and k additional particles start at sites y1, . . . , yk /∈ Q(o, ρ + h). If

k ≤ 1
4h

d, then

N ≤ Binom(k, p),

where p < 1 is a constant depending only on d.
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Proof. Let Fj be a half-space defining a face of the cubeQ = Q(o, ρ), such that dist(yj , Fj) ≥
h. Let zj ∈ Fj be the closest point to yj in Fj , and let Bj = Q(zj , h/2)∩F cj . Let Zj be the

random set of sites where the particles starting at y1, . . . , yj stop. Since #Bj ≥ 1
2h

d ≥ 2k,

there is a hyperplane Hj parallel to Fj and intersecting Bj , such that

#Bj ∩Hj ∩ Zj−1 ≤
1
2
hd−1. (3.85)

Denote by Aj the event that the particle starting at yj ever visits Q. On this event, the

particle must pass through Hj at a site which was already occupied by an earlier particle.

Thus if {Xt}t≥0 is the random walk performed by the particle starting at yj , then

Aj ⊂ {XT ∈ Zj−1},

where T is the first hitting time of Hj . By Lemma 3.4.9, every site z ∈ Bj ∩Hj satisfies

P(XT = z) ≥ ah1−d.

From (3.85), since #Bj ∩Hj ≥ hd−1 we obtain P(XT /∈ Zj−1) ≥ a/2, hence

P(Aj |Fj−1) ≤ p

where p = 1−a/2, and Fi is the σ-algebra generated by the walks performed by the particles

starting at y1, . . . , yi. Thus we can couple the indicators 1Aj with i.i.d. indicators Ij ≥ 1Aj
of mean p to obtain

N =
k∑
j=1

1Aj ≤
k∑
j=1

Ij = Binom(k, p).

The next lemma shows that if few enough particles start outside a cube Q(o, 3ρ),

it is highly unlikely that any of them will reach the smaller cube Q(o, ρ).

Lemma 3.4.11. Let ρ, k be positive integers with

k ≤ 1
4
(
1− p1/2d

)d
ρd

where p < 1 is the constant in Lemma 3.4.10. Let N be the number of particles that ever

visit the cube Q(o, ρ) during the internal DLA process, if one particle starts at each site

y ∈ Zd −Q(o, 3ρ), and k additional particles start at sites y1, . . . , yk /∈ Q(o, 3ρ). Then

P(N > 0) ≤ c0e
−c1ρ

where c0, c1 > 0 are constants depending only on d.
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Proof. Let Nj be the number of particles that ever visit the cube Qj = Q(o, ρj), where

ρj =
(
2 + pj/2d

)
ρ.

Let kj = pj/2k, and let Aj be the event that Nj ≤ kj . Taking h = ρj−ρj+1 in Lemma 3.4.10,

since

kj ≤
1
4
pj/2

(
1− p1/2d

)d
ρd =

1
4
hd

we obtain

Nj+11Aj ≤ Binom(Nj , p).

Hence

P(Aj+1|Aj) ≥ P
(
Binom(kj , p) ≤ kj+1

)
≥ 1− 2e−ckj (3.86)

where in the second line we have used Lemma 3.4.7 with λ =
√
p− p.

Now let

j =
⌊

2
log k − log ρ

log(1/p)

⌋
so that p1/2ρ ≤ kj ≤ ρ. On the event Aj , at most ρ particles visit the cube Q(o, 2ρ). Since

the first particle to visit each cube Q(o, 2ρ − i) stops there, at most ρ − i particles visit

Q(o, 2ρ− i). Taking i = ρ we obtain P(N = 0) ≥ P(Aj). From (3.86) we conclude that

P(N = 0) ≥ P(A1) P (A2|A1) · · · P (Aj |Aj−1) ≥ 1− 2je−cρ.

The right side is at least 1− c0e
−c1ρ for suitable constants c0, c1.

Proof of Theorem 3.4.1. The inner estimate is immediate from Lemma 3.4.8. For the outer

estimate, let

Nn = #
{

1 ≤ i ≤ mn

∣∣νi ≥ τ̃ i} = mn −#Ĩn

be the number of particles that leave D̃:: before aggregating to the cluster. Let K0 =
1
4

(
2(1−p1/2d)

3
√
d

)d
, where p is the constant in Lemma 3.4.10. For ε > 0 and n0 ≥ 1, consider

the event

Fn0 =
{
Nn ≤ K0(ε/δn)d for all n ≥ n0

}
.

By (3.63) and (3.64), the closure of D̃ contains the support of σ, so by Proposition 3.1.13,

δdnmn = δdn
∑

x∈δnZd
σn(x)→

∫
Rd
σ(x)dx = L(D̃). (3.87)
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Moreover, by Proposition 3.1.13(i), for sufficiently small η we have

L
(
D̃ − D̃2η

)
≤ 1

2
K0ε

d.

Taking n large enough so that δn < η, we obtain

δdn#D̃::
η = L

(
D̃::�
η

)
≥ L

(
D̃2η

)
≥ L

(
D̃
)
− 1

2
K0ε

d.

Thus for sufficiently large n, on the event D̃::
η ⊂ Ĩn we have

Nn ≤ mn −#D̃::
η

≤ mn − δ−dn L
(
D̃
)

+
1
2
K0ε

dδ−dn

≤ K0ε
dδ−dn ,

where in the last line we have used (3.87). From Lemma 3.4.8 we obtain

P
(
Fn0

)
≥ P

(
D̃::
η ⊆ Ĩn for all n ≥ n0

)
↑ 1 (3.88)

as n0 ↑ ∞.

By compactness, we can find finitely many cubes Q1, . . . , Qm of side length ρ =

2ε/3
√
d centered at points in ∂(D̃ε), with ∂(D̃ε) ⊂

⋃
Qi. Taking k = bK0(ε/δn)dc in

Lemma 3.4.11, since 3Qi is disjoint from D̃, we obtain for n ≥ n0

P
(
{Qi ∩ In 6= ∅} ∩ Fn0

)
≤ c0e

−c1ρ.

Summing over i yields

P
({
D̃ε ∩ In 6= ∅

}
∩ Fn0

)
≤ c0me

−c1ρ.

By Borel-Cantelli, if G is the event that In 6⊂ D̃ε:: for infinitely many n, then P
(
Fn0∩G

)
= 0.

From (3.88) we conclude that P(G) = 0.

3.5 Multiple Point Sources

This section is devoted to proving Theorems 1.3.1 and 1.4.1.
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3.5.1 Associativity and Hausdorff Continuity of the Smash Sum

In this section we establish two basic properties of the smash sum (1.6) that are

needed to prove Theorems 1.3.1 and 1.4.1. In Lemma 3.5.1 we show that the smash sum is

associative, and in Lemma 3.5.3 we show that it is continuous in the Hausdorff metric.

Lemma 3.5.1. Let A,B,C ⊂ Rd be bounded open sets whose boundaries have measure

zero. Then

(A⊕B)⊕ C = A⊕ (B ⊕ C)

= A ∪B ∪ C ∪D

where D is given by (3.10) with σ = 1A + 1B + 1C .

Proof. Let

γ(x) = −|x|2 −G(1A + 1B)(x)

and

γ̂(x) = −|x|2 −G(1A⊕B + 1C)(x).

Let u = s−γ and û = ŝ− γ̂, where s, ŝ are the least superharmonic majorants of γ, γ̂. Then

(A⊕B)⊕ C = (A⊕B) ∪ C ∪ {û > 0}

= A ∪B ∪ {u > 0} ∪ C ∪ {û > 0}

= A ∪B ∪ C ∪ {u+ û > 0}. (3.89)

Let νn be the final mass density for the divisible sandpile in δnZd started from source density

1A:: + 1B:: , and let un be the corresponding odometer function. By Theorem 3.2.1 we have

un → u as n→∞. Moreover, by Theorem 3.2.7 we have

ν�
n (x)→ 1A⊕B(x) (3.90)

for all x /∈ ∂(A ⊕ B). Let ûn be the odometer function for the divisible sandpile on δnZd

started from source density νn + 1C:: . By Proposition 3.1.13(i) the right side of (3.90)

is continuous almost everywhere, so by Theorem 3.2.1 we have ûn → û as n → ∞. On

the other hand, by the abelian property, Lemma 2.2.1, the sum un + ûn is the odometer

function for the divisible sandpile on δnZd started from source density 1A:: + 1B:: + 1C:: , so

by Theorem 3.2.1 we have un + ûn → ũ := s̃− γ̃, where

γ̃(x) = −|x|2 −G(1A + 1B + 1C)(x)
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and s̃ is the least superharmonic majorant of γ̃. In particular,

u+ û = lim
n→∞

(un + ûn) = ũ,

so the right side of (3.89) is equal to A ∪B ∪ C ∪D.

The following lemma shows that the smash sum of two sets with a small intersection

cannot extend very far beyond their union. As usual, L denotes Lebesgue measure in Rd,

and Aε denotes the outer ε-neighborhood of a set A ⊂ Rd.

Lemma 3.5.2. Let A,B ⊂ Rd be bounded open sets whose boundaries have measure zero,

and let ρ = (L(A ∩B))1/d. There is a constant c, independent of A and B, such that

A⊕B ⊂ (A ∪B)cρ.

Proof. Let γ, s be given by (3.8) and (3.9) with σ = 1A + 1B, and write u = s − γ. Fix

x ∈ (A⊕B)− (A∪B) and let r = dist(x,A∪B). Let B = B(x, r/2). By Lemma 3.1.2(iii),

s is harmonic in A⊕B − (A ∪B), so by Lemma 3.1.4 the function

w(y) = u(y)− |x− y|2

= s(y) + |y|2 +G
(
1A + 1B

)
(y)− |x− y|2

is harmonic on the intersection (A⊕B)∩B; hence it attains its maximum on the boundary.

Since w(x) > 0 the maximum cannot be attained on ∂(A ⊕ B), so it is attained at some

point y ∈ ∂B, and

u(y) ≥ w(y) +
r2

4
>
r2

4
. (3.91)

If z is any point outside A ⊕ B, then by Lemma 3.1.6 and Lemma 3.1.19 with

λ = 4d, there is a constant c′ ≥ 1 such that u ≤ c′h2 on B(z, h) for all h. Taking

h = r/2
√
c′, we conclude from (3.91) that B(y, h) ⊂ A ⊕ B. Since B(y, h) is disjoint from

A ∪B, we have by Corollary 3.1.14

L(A ∪B) + ωdh
d ≤ L(A⊕B) = L(A) + L(B),

hence ωdhd ≤ L(A ∩B). Taking c = 2
√
c′/ω

1/d
d yields r = c ω

1/d
d h ≤ cρ.

The following lemma, together with Lemma 3.1.8, shows that the smash sum

operation is continuous in the Hausdorff metric.
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Lemma 3.5.3. Let A,B ⊂ Rd be bounded open sets whose boundaries have measure zero.

For any ε > 0 there exists η > 0 such that

(A⊕B)ε ⊂ Aη ⊕Bη ⊂ Aη ⊕Bη ⊂ (A⊕B)ε. (3.92)

Proof. By Lemma 3.1.20, since A⊕B = A ∪B ∪D, we have

(A⊕B)ε ⊂ Aε′ ∪Bε′ ∪Dε′

for some ε′ > 0. By Lemma 3.1.17(iii) with σ = 1A + 1B and σn = 1A1/n
+ 1B1/n

, for

sufficiently small η we have Dε′ ⊂ Aη ⊕Bη. This proves the first inclusion in (3.92).

The second inclusion is immediate from Lemma 3.1.8.

For the final inclusion, write A′ = Aη − A and B′ = Bη − B. Since L(A′) ↓
L(∂A) = 0 and L(B′) ↓ L(∂B) = 0 as η ↓ 0, for small enough η we have by Lemmas 3.5.1

and 3.5.2

Aη ⊕Bη = A⊕B ⊕A′ ⊕B′

⊂ ((A⊕B) ∪Aη ∪Bη)ε−η

⊂ (A⊕B)ε.

3.5.2 Smash Sums of Balls

In this section we deduce Theorem 1.3.1 from our other results. The following

result on internal DLA with a single point source is a restatement of the main result of [29].

Theorem 3.5.4. Fix λ > 0, and let In be the random set of occupied sites for internal

DLA in δnZd, starting with m =
⌊
λδ−dn

⌋
particles at the origin. If δn ≤ 1/n for all n, then

for any ε > 0, we have with probability one

B::
ε ⊂ In ⊂ Bε:: for all sufficiently large n,

where B is the ball of volume λ centered at the origin in Rd.

Proof of Theorem 1.3.1. For i = 1, . . . , k let Di
n, R

i
n, I

i
n be the domain of occupied sites in

δnZd starting from a single point source of
⌊
δ−dn λi

⌋
particles at x::

i . By Theorems 1.2.1

and 1.2.2, for any η > 0 we have

(Bi)::
η ⊂ Di

n, R
i
n ⊂ (Bi)η:: for all i and all sufficiently large n. (3.93)
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Moreover if δn ≤ 1/n, then by Theorem 3.5.4 we have with probability one

(Bi)::
η ⊂ Iin ⊂ (Bi)η:: for all i and all sufficiently large n. (3.94)

Next we argue that the domains Dn, Rn, In can be understood as smash sums of

Di
n, R

i
n, I

i
n as i ranges over the integers 1, . . . , k. By the abelian property [15], the domain

In is the Diaconis-Fulton smash sum in δnZd of the domains Iin. Likewise, if r1 is an

arbitrary rotor configuration on δnZd, let S2
n be the smash sum of R1

n and R2
n formed using

rotor-router dynamics with initial rotor configuration r1, and let r2 be the resulting final

rotor configuration. For i ≥ 3 define Sin inductively as the smash sum of Si−1
n and Rin

formed using rotor-router dynamics with initial rotor configuration ri−1, and let ri be the

resulting final rotor configuration. Then Rn = Skn. Finally, by Lemma 2.2.1, the domain

Dn contains the smash sum of domains Di
n formed using divisible sandpile dynamics, and

Dn is contained in the smash sum of the domains Di
n ∪ ∂Di

n.

Fixing ε > 0, by Theorem 1.1.3 and Lemma 3.1.8, it follows from (3.93) that for

all sufficiently large n

A::
ε/2 ⊂ Dn, Rn, In ⊂ Ãε/2:: (3.95)

where A is the smash sum of the balls (Bi)η, and Ã is the smash sum of the balls (Bi)η. By

Lemma 3.5.3 we can take η sufficiently small so that

Dε/2 ⊂ A ⊂ Ã ⊂ Dε/2

where D = B1 ⊕ . . .⊕Bk. Together with (3.95), this completes the proof.

3.5.3 Algebraic Boundary

In this section we prove Theorem 1.4.1 showing that the boundary of a smash sum

of disks in R2 is an algebraic curve. The first step is to establish the classical quadrature

identity (1.12), which holds in any dimension. We will prove the following quadrature

inequality generalizing (1.12) for superharmonic functions on a smash sum of balls in Rd.

Proposition 3.5.5. Fix x1, . . . , xk ∈ Rd and λ1, . . . , λk > 0. Let Bi be the ball of volume

λi centered at xi. Then ∫
B1⊕...⊕Bk

h(x)dx ≤
k∑
i=1

λih(xi)

for all integrable superharmonic functions h on B1 ⊕ . . .⊕Bk.
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We could deduce Proposition 3.5.5 from Proposition 3.1.11 by integrating smooth

approximations to h against smooth densities σn converging to the sum of the indicators of

the Bi. However, it more convenient to use the following result of M. Sakai, which is proved

by a similar type of approximation argument.

Theorem 3.5.6. [42, Thm. 7.5] Let Ω ⊂ Rd be a bounded open set, and let σ be a bounded

function on Rd supported on Ω̄ satisfying σ > 1 on Ω. Let γ, s,D be given by (3.8)-(3.10).∫
D
h(x)dx ≤

∫
D
h(x)σ(x)dx

for all integrable superharmonic functions h on D.

We remark that the form of the obstacle in [42] is superficially different from ours:

taking w = 1 and ω = σ in section 7 of [42], the obstacle is given by

ψ(x) = G1B −Gσ

for a large ball B, rather than our choice (3.8) of

γ(x) = −|x|2 −Gσ.

Note, however that γ−ψ is constant on B by (3.6) and (3.7). Thus if B is sufficiently large,

the two obstacle problems have the same noncoincidence set D by Lemmas 3.1.9 and 3.1.16.

To prove Proposition 3.5.5 using Theorem 3.5.6, we must produce an appropriate

density σ on Rd strictly exceeding 1 on its support. We will take σ to be twice the sum of

indicators of balls of half the volume of the Bi.

Proof of Proposition 3.5.5. Let B′i be the ball of volume λi/2 centered at xi, and consider

the sum of indicators

σ = 2
k∑
i=1

1B′i .

Let γ, s,D be given by (3.8)-(3.10). By Theorem 3.5.6 and the mean value proprerty for

superharmonic functions (3.1), we have∫
D
h(x)dx ≤ 2

k∑
i=1

∫
B′i

h(x)dx ≤
k∑
i=1

λih(xi)

for all integrable superharmonic functions h on D.
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It remains to show that D = B1 ⊕ . . .⊕Bk. By Lemma 3.1.7 we have B′i ⊂ D for

all i, hence by Lemma 3.5.1

D = B′1 ⊕B′1 ⊕ . . .⊕B′k ⊕B′k.

By Lemma 3.1.15 we have Bi = B′i ⊕B′i, completing the proof.

Theorem 1.4.1 now follows from Proposition 3.5.5 by a result of Gustafsson [22,

sec. 6]; see also [23, Lemma 1.1(a)]. The methods of [22] rely heavily on complex analysis,

which is why they apply only in dimension two. Indeed, in higher dimensions it is not

known whether classical quadrature domains have boundaries given by algebraic surfaces

[44, Ch. 2].
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Chapter 4

Aggregation on Trees

4.1 The Sandpile Group of a Tree

In this section we describe a short exact sequence relating the sandpile group of

a tree to those of its principal subtrees. In the case of a regular tree this sequence splits,

enabling us to compute the full decomposition of the sandpile group into cyclic subgroups.

This resolves in the affirmative a conjecture of E. Toumpakari concerning the ranks of the

Sylow p-subgroups.

We begin with a simple combinatorial problem. Let Tn be the d-regular tree of

height n. Collapse all the leaves of Tn to a single vertex s, the sink, and add an edge

connecting the root to the sink.

Lemma 4.1.1. Let tn be the number of oriented spanning trees of Tn rooted at the sink.

Then

tn = td−2
n−1(dtn−1 − (d− 1)td−1

n−2).

Proof. If the edge (r, s) from the root to the sink is included in the spanning tree, then each

of the principal branches of Tn may be assigned an oriented spanning tree independently,

so there are td−1
n−1 such spanning trees. On the other hand, if (r, s) is not included in the

spanning tree, there is a directed path r → x1 → . . . → xn−1 → s in the spanning tree

from the root to the sink. In this case, every principal branch except the one rooted at

x1 may be assigned an oriented spanning tree independently; within the branch rooted at

x1, every subbranch except the one rooted at x2 may be assigned an oriented spanning

tree independently; and so on (see Figure 4.1). Since there are (d − 1)n−1 possible paths
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Figure 4.1: The two cases in the proof of Lemma 4.1.1

x1 → . . .→ xn−1, we conclude that

tn = td−1
n−1 + (d− 1)n−1

n−1∏
k=1

td−2
k . (4.1)

Substituting n− 1 for n we find that

(d− 1)n−2
n−2∏
k=1

td−2
k = tn−1 − td−1

n−2

hence from (4.1)

tn = td−2
n−1(tn−1 + (d− 1)(tn−1 − td−1

n−2)).

From Lemma 4.1.1 one can readily show by induction that

tn = (1 + a+ . . .+ an−1)
n−2∏
k=1

(1 + a+ . . .+ ak)a
n−2−k(a−1).

where a = d − 1. A variant of this formula was found by Toumpakari [47], who gives an

algebraic proof.

For any graph G there is an abelian group, the sandpile group, whose order is the

number of oriented spanning trees of G rooted at a fixed vertex; its definition and properties
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are reviewed in section 4.1.1. A product formula such as the one above immediately raises

the question of an analogous factorization of the sandpile group. Our main goal in this

section is to prove Theorem 1.5.2, which establishes precisely such a factorization. In

section 4.2 we will apply this result to study the rotor-router model on regular trees.

The next three sections are organized as follows. In section 4.1.1 we review the

definition and basic properties of the sandpile group, and characterize the recurrent states

on a tree explicitly in terms of what we call critical vertices. We prove a general result,

Theorem 4.1.5, relating the sandpile group of an arbitrary tree to the sandpile groups of its

principal branches (i.e. the subtrees rooted at the children of the root). This result takes

the form of an isomorphism between two quotients. In section 4.1.2 we take advantage of

the symmetry of regular trees to define a projection map back onto the subgroup being quo-

tiented. This allows us to express SP (Tn) as the direct sum of a cyclic group and a quotient

of the direct sum of d− 1 copies of SP (Tn−1), which enables us to prove Theorem 1.5.2 by

induction. Finally, in section 4.1.3, we prove Toumpakari’s conjecture [47].

4.1.1 General Trees

Let T be a finite rooted tree. Collapse all the leaves to a single vertex s, the sink,

and add an edge connecting the root to the sink. If the vertices of T are x1, . . . , xn = s, the

sandpile group of T is defined by

SP (T ) = Zn/∆

where ∆ ⊂ Zn is the lattice

∆ = 〈s,∆x1 , . . . ,∆xn−1〉.

Here ∆xi is the vector in Zn taking value 1 at each neighbor of xi, value −deg(x) at x, and

value 0 elsewhere. The sandpile group of a graph was originally defined in [5, 6, 14].

A nonnegative vector u ∈ Zn may be thought of as a chip configuration with ui

chips at vertex xi. A vertex x 6= s is unstable if u(x) ≥ deg(x). An unstable vertex may

topple, sending one chip to each neighbor. Note that the operation of toppling the vertex x

corresponds to adding the vector ∆x to u. We say that u is stable if no vertex is unstable.

Given chip configurations u and v, we define u+v as the stable configuration resulting from

starting with u(x) + v(x) chips at each vertex x and toppling any unstable vertices; the

order in which topplings are performed does not affect the final configuration, as observed

by Dhar [14] and (in a more general setting) Diaconis and Fulton [15].
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A chip configuration u is recurrent [13] if u + v = u for a nonnegative configu-

ration v. In [13] it is proved that every equivalence class mod ∆ has a unique recurrent

representative. Thus the sandpile group SP (T ) may be thought of as the set of recurrent

configurations under the operation of addition followed by toppling. Note that if v is a

nonnegative configuration, its recurrent representative is given by

v̂ := v + e

where e is the identity element of SP (T ) (the recurrent representative of 0); indeed, v̂ is

recurrent since e is recurrent, and v̂ ≡ v (mod ∆) since e ∈ ∆. Note that if u is a recurrent

configuration and v is a nonnegative configuration, then

u+ v̂ = u+ (v + e) = (u+ e) + v = u+ v. (4.2)

The following result is a simple variant of the “burning algorithm” [14]; see also

[13, Cor. 2.6].

Lemma 4.1.2. Let β(x) be the number of edges from x to the sink. A chip configuration

on T is recurrent if and only if adding β(x) chips at each vertex x causes every vertex to

topple exactly once.

Proof. Note that

β = deg(s)s+ ∆s = deg(s)s−
∑
x 6=s

∆x. (4.3)

If every vertex topples exactly once, then

u+ β = u+ β +
∑
x 6=s

∆x = u,

so u is recurrent. Conversely, suppose u is recurrent. Since β ∈ ∆ we have β̂ = e, hence

from (4.2)

u+ β = u+ e = u.

By (4.3), since {∆x}x6=s are linearly independent, every vertex topples exactly once.

We first characterize the recurrent configurations of a tree explicitly. The charac-

terization uses the following inductive definition. Denote by C(x) the set of children of a

vertex x ∈ T .
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Figure 4.2: A recurrent configuration on the ternary tree of height 5. Critical vertices
are circled; if any of the circled vertices had fewer chips, the configuration would not be
recurrent.

Definition. A vertex x ∈ T is critical for a chip configuration u if x 6= s and

u(x) ≤ #{y ∈ C(x) | y is critical}. (4.4)

Proposition 4.1.3. A configuration u ∈ SP (T ) is recurrent if and only if equality holds

in (4.4) for every critical vertex x.

Proof. If x is critical, then

u(x) + #{y ∈ C(x) | y is not critical} ≤ deg(x)− 1. (4.5)

Thus after chips are added as prescribed by Lemma 4.1.2, inducting upward in decreasing

distance to the root, if x 6= r is critical, its parent must topple before it does. In particular,

if strict inequality holds in (4.4), and hence in (4.5), for some vertex x, that vertex will

never topple, so u is not recurrent.

Conversely, suppose equality holds in (4.4), hence in (4.5), for every critical x.

Begin toppling vertices in order of decreasing distance from the root. Note that a non-
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critical vertex x satisfies

u(x) + #{y ∈ C(x) | y is not critical} ≥ deg(x), (4.6)

Inducting upward, every non-critical vertex topples once. Hence by equality in (4.5), once

all vertices other than the root are stable, every critical vertex x has either toppled (if its

parent toppled) or is left with exactly deg(x) − 1 chips (if its parent did not topple). In

particular, the root now topples, as it was given an extra chip in the beginning. Now if

x is a critical vertex that has not yet toppled, its parent is also such a vertex. Inducting

downward from the root, since all of these vertices are primed with deg(x)− 1 chips, they

each topple once, and u is recurrent.

Write T1, . . . , Tk for the principal branches of T (i.e. the subtrees rooted at the

children of the root). If ui is a chip configuration on Ti, and a is an integer, we will use the

notation

 a

u1, . . . , uk

 for the configuration on T which has a chips at the root and coin-

cides with ui on Ti. The following result is an immediate consequence of Proposition 4.1.3.

Lemma 4.1.4. Let u =

 a

u1, . . . , uk

.

(i) If u is recurrent, each ui is recurrent.

(ii) If u1, . . . , uk are recurrent and a = k, then u is recurrent.

Write δx for a single chip at a vertex x, and denote by x̂ = e + δx the recurrent

form of δx. Note that by (4.2), if u is recurrent then

u+ x̂ = u+ δx. (4.7)

Theorem 4.1.5. Let T1, . . . , Tk be the principal branches of T . Then

SP (T )/(r̂) '
k⊕
i=1

SP (Ti)/((r̂1, . . . , r̂k))

where r, ri are the roots of T , Ti respectively.

Proof. Define φ : SP (T )→
⊕k

i=1 SP (Ti) by a

u1, . . . , uk

 7→ (u1, . . . , uk). (4.8)
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Lemma 4.1.4(i) ensures this map is well-defined. Note that if a

u1, . . . , uk

 =

 b

v1, . . . , vk

+ r̂,

by (4.7) either b < k and ui = vi for all i; or b = k and the root topples, in which case ui =

vi+r̂i. Thus φ descends to a map of quotients φ̄ : SP (T )/(r̂)→
⊕k

i=1 SP (Ti)/((r̂1, . . . , r̂k)).

By adding two configurations without allowing the root to topple, the configura-

tions on each branch add independently, hence by (4.7) a

u1, . . . , uk

+

 b

v1, . . . , vk

 =

 c

u1 + v1, . . . , uk + vk

+ dr̂

for some nonnegative integers c, d. Thus φ̄ is a group homomorphism. Moreover, φ̄ is

surjective by Lemma 4.1.4(ii). Finally, if

(u1, . . . , uk) = (v1, . . . , vk) + c(r̂1, . . . , r̂k),

then by (4.7), allowing the root to topple exactly c times, we obtain a

u1, . . . , uk

 =

 b

v1, . . . , vk

+ (c(k + 1) + d)r̂,

for a suitable integer d. Thus φ̄ is injective.

4.1.2 Regular Trees

In this section we show that for regular trees, Theorem 4.1.5 can be strengthened

to express SP (T ) as a direct sum.

Let Tn be the regular tree of degree d and height n, with leaves collapsed to the

sink vertex and an edge added from the root to the sink as in section 4.1.1. The chip

configurations which are constant on the levels of Tn form a subgroup of SP (Tn). If each

vertex at height k has ak chips, we can represent the configuration as a vector (a1, . . . , an−1).

If such a recurrent configuration is zero on a level, all vertices above that level are critical, so

by Proposition 4.1.3 they must have d−1 chips each. The recurrent configurations constant

on levels are thus in bijection with integer vectors (a1, . . . , an−1) with 0 ≤ ai ≤ d−1 subject

to the constraint that if ai = 0 then a1 = . . . = ai−1 = d− 1.
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r̂ 2r̂ 3r̂ 4r̂ 5r̂ 6r̂ 7r̂ 8r̂ 9r̂ 10r̂ 11r̂ 12r̂ 13r̂ 14r̂ 15r̂ = e

2 0 1 2 0 1 2 2 2 0 1 2 0 1 2

0 1 1 1 2 2 2 2 0 1 1 1 2 2 2

2 2 2 2 2 2 2 0 1 1 1 1 1 1 1

Figure 4.3: Multiples of the root r̂ in the ternary tree of height 4. Each column vector
represents a chip configuration which is constant on levels of the tree.

The following lemma uses the lexicographic order given by a < b if for some k

we have an−1 = bn−1, . . . , ak+1 = bk+1 and ak < bk. In the cyclic lexicographic order on

recurrent vectors we have also (d− 1, . . . , d− 1) < (d− 1, . . . , d− 1, 0).

Lemma 4.1.6. If u, v are recurrent configurations on Tn that are constant on levels, write

u v if v follows u in the cyclic lexicographic order on the set of recurrent vectors. Then

for every integer k ≥ 0, we have

kr̂  (k + 1)r̂.

Figure 4.3 demonstrates the lemma for a ternary tree of height 4.

Proof. By (4.7) we have

(k + 1)r̂ = kr̂ + δr.

Thus if kr̂ = (a1, . . . , an−1) with a1 < d−1, then (k+1)r̂ = (a1 +1, a2, . . . , an−1) as desired.

Otherwise, if not all ai equal d − 1, let j > 1 be such that a1 = . . . = aj−1 = d − 1 and

aj < d− 1. Adding a chip at the root initiates the toppling cascade

d

d− 1

d− 1
...

d− 1

d− 1

aj

aj+1

...

an−1



→



0

d

d− 1
...

d− 1

d− 1

aj

aj+1

...

an−1



→



d− 1

0

d
...

d− 1

d− 1

aj

aj+1

...

an−1



→ . . .→



d− 1

d− 1

d− 1
...

0

d

aj

aj+1

...

an−1



→



d− 1

d− 1

d− 1
...

d− 1

0

aj + 1

aj+1

...

an−1



,
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as desired. If all ai = d−1 the cascade will travel all the way down, ending in (d−1, . . . , d−
1, 0) as desired.

Proposition 4.1.7. Let Tn be the regular tree of degree d and height n, and let R(Tn) be

the subgroup of SP (Tn) generated by r̂. Then R(Tn) consists of all recurrent configurations

that are constant on levels, and its order is

#R(Tn) =
(d− 1)n − 1

d− 2
. (4.9)

Proof. Since the toppling rule is symmetric, all configurations in R(Tn) are constant on

levels. The number of such recurrent configurations is the number of vectors of the form

(d− 1, . . . , d− 1, 0, aj , . . . , an−1), with ai ∈ [d− 1], which is

n−1∑
j=0

(d− 1)j =
(d− 1)n − 1

d− 2
.

Moreover, by Lemma 4.1.6, any such vector can be expressed as a multiple of r̂, so R(Tn)

contains all the recurrent configurations that are constant on levels.

Index the vertices of the d-regular tree of height n by words of length ≤ n− 2 in

the alphabet {1, . . . , d− 1}. Let σi be the automorphism of the tree given by

σi(w1 . . . wk) = w1 . . . (wi + 1) . . . wk

with the sum taken mod d− 1; if k < i then σi(w) = w. Given a map α : [n− 2]→ [d− 1]

let σα be the composition
∏n−2
i=1 σ

α(i)
i .

If σ is an automorphism of the form σα, write σu for the chip configuration σu(x) =

u(σx). Writing u ⊕ v for addition in the sandpile group and u + v for the ordinary vector

sum, we have

u⊕ v = u+ v +
m∑
j=1

∆xj

Since σ∆x = ∆σx we obtain

σ(u⊕ v) = σ(u) + σ(v) +
m∑
j=1

∆σxj .

The configuration on the right side is stable, recurrent, and ≡ σ(u) + σ(v) (mod ∆), so it

is equal to σ(u)⊕ σ(v). Thus σ is an automorphism of the sandpile group.
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Figure 4.4: A non-regular tree for which Proposition 4.1.8 fails.

Proposition 4.1.8. Let Tn be the regular tree of degree d and height n, and let R(Tn) = (r̂)

be the subgroup of SP (Tn) generated by the root. Then

SP (Tn) ' R(Tn)⊕ SP (Tn−1)⊕ . . .⊕ SP (Tn−1)
(R(Tn−1), . . . , R(Tn−1))

with d− 1 summands of SP (Tn−1) on the right side.

Proof. Define p : SP (Tn)→ SP (Tn) by

p(u) = (d− 1)2
∑

α:[n−2]→[d−1]

σαu. (4.10)

By construction p(u) is constant on levels, so the image of p lies in R(Tn) by Proposi-

tion 4.1.7. Given u ∈ R(Tn), since u is constant on levels we have σα(u) = u for all α. Since

there are (d− 1)n−2 terms in the sum (4.10), we obtain

p(u) = (d− 1)nu = u

where the second inequality follows from (4.9). Thus R(Tn) is a summand of SP (Tn), and

the result follows from Theorem 4.1.5.

Proposition 4.1.8 fails for general trees. For example, if T is the tree consisting of a

root with 2 children each of which have 3 children (Figure 4.4), then r̂ =

 2

3, 3

 has order
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10 and the element x =

 2

0, 3

 satisfies 4x = r̂, so x has order 40. The total number of

recurrent configurations is 4 · 4 · 3− 8 = 40, so SP (T ) ' Z/40Z, and R(T ) ' Z/10Z is not

a summand.

Write Zqp as a shorthand for (Z/pZ)⊕ . . .⊕ (Z/pZ) with q summands.

Theorem 4.1.9. Let Tn be the regular tree of degree d = a + 1 and height n, with leaves

collapsed to the sink vertex and an edge joining the root to the sink. Then

SP (Tn) ' Za
n−3(a−1)

1+a ⊕ Za
n−4(a−1)

1+a+a2 ⊕ . . .⊕ Za−1
1+a+...+an−2 ⊕ Z1+a+...+an−1 .

Proof. Induct on n. For the base case n = 2 we have

SP (T2) = R(T2) ' Zd = Z1+a.

Write qn = 1 + a + . . . + an−1. By Proposition 4.1.7, the root subgroup R(Tn) is cyclic of

order qn. By Proposition 4.1.8 and the inductive hypothesis, it follows that

SP (Tn) ' Zqn ⊕
SP (Tn−1)⊕a

Zqn−1

' Zqn ⊕ Za−1
qn−1
⊕ Za(a−1)

qn−2
⊕ . . .⊕ Za

n−3(a−1)
q2 .

4.1.3 Proof of Toumpakari’s Conjecture

As before write a = d− 1 and

qn = 1 + a+ . . .+ an−1.

If p is a prime not dividing d(d− 1), let tp be the least positive n for which p|qn. Then

tp =

p if a ≡ 1 (mod p)

ordp(a), else.

Here ordp(a) is the least positive k for which p|ak − 1. Note that p|qn if and only if tp|n.

The following result was conjectured by E. Toumpakari in [47] (where the factor of d − 2

was left out, presumably an oversight).
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Theorem 4.1.10. Let Bn be the ball of radius n in the d-regular tree, with each leaf con-

nected by d− 1 edges to the sink, but with no edge connecting the root to the sink. Let p be

a prime not dividing d(d− 1), and let Sp(n) be the Sylow-p subgroup of the sandpile group

SP (Bn). Then

rank(Sp(n)) =


d(d− 2)

∑
m<n

m≡n (mod tp)
(d− 1)m, if n 6≡ −1 (mod tp);

d(d− 2)
∑

m<n
m≡n (mod tp)

(d− 1)m + d− 1, if n ≡ −1(mod tp).

Proof. By Theorem 4.1.5 we have

SP (Bn)/(r̂) ' SP (Tn+1)⊕ . . .⊕ SP (Tn+1)
(R(Tn+1), . . . , R(Tn+1))

with d summands. By Proposition 4.1.7 we have R(Tn+1) ' Zqn+1 , so from Theorem 4.1.9

SP (Bn)/(r̂) ' Zaqn+1
⊕ Z(a−1)(a+1)

qn ⊕ Z(a−1)a(a+1)
qn−1

⊕ . . .⊕ Z(a−1)an−2(a+1)
q2 . (4.11)

By Proposition 7.2 of [47], the root subgroup (r̂) of SP (Bn) has order d(d− 1)n. Thus for

p not dividing d(d− 1) the Sylow p-subgroup of SP (Bn) is the same as that of the quotient

SP (Bn)/(r̂). Each summand Zqk in (4.11) contributes 1 to the rank of Sp(n) if tp|k and 0

otherwise. If n 6≡ −1 (mod tp), the total rank is therefore

rank(Sp(n)) =
∑

2≤k≤n
tp|k

(a− 1)an−k(a+ 1)

= d(d− 2)
∑

0≤m≤n−2
m≡n (mod tp)

(d− 1)m.

In the case that n ≡ −1 (mod tp), the first summand Zaqn+1
in (4.11) contributes an addi-

tional rank a = d− 1 to Sp(n).

4.2 The Rotor-Router Model on Trees

This section is devoted to proving Theorems 1.5.1 and 1.5.3.

4.2.1 The Rotor-Router Group

In this section we define the rotor-router group of a graph and show it is isomorphic

to the sandpile group. This isomorphism, Theorem 4.2.5, is mentioned in the physics
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literature; see [38, 37]. To our knowledge the details of the proof are not written down

anywhere. While our main focus is on the tree, the isomorphism is just as easily proved for

general graphs, and it seems to us worthwhile to record the general proof here.

Let G be a strongly connected finite directed graph without loops. Fix a sink

vertex s in G, and write Rec(G) for the set of oriented spanning trees of G rooted at the

sink. Given a configuration of rotors T , write ex(T ) for the configuration resulting from

starting a chip at x and letting it walk according to the rotor-router rule until it reaches

the sink. (Note that if the chip visits a vertex infinitely often, it visits all of its neighbors

infinitely often; since G is strongly connected, the chip eventually reaches the sink.) We

view T as a subgraph of G in which every vertex except the sink has out-degree one. Note

that such a subgraph is an oriented spanning tree rooted at the sink if and only if it has no

oriented cycles.

Lemma 4.2.1. If T ∈ Rec(G), then ex(T ) ∈ Rec(G).

Proof. Let Y be any collection of vertices of G. If the chip started at x reaches the sink

without ever visiting Y , then the rotors at vertices in Y point the same way in ex(T ) as

they do in T , so they do not form an oriented cycle. If the chip does visit Y , let y ∈ Y be

the last vertex it visits. Then either y = s, or the rotor at y points to a vertex not in Y ; in

either case, the rotors at vertices in Y do not form an oriented cycle.

We will need slightly more refined information about the intermediate states that

occur before the chip falls into the sink. These states may contain oriented cycles, but only

of a very restricted form. For a vertex x we write Cycx(G) for the set of rotor configurations

U such that

(i) U contains an oriented cycle; and

(ii) If the rotor U(x) is deleted, the resulting configuration contains no oriented cycles.

Lemma 4.2.2. Starting from a rotor configuration T0 ∈ Rec(G) with a chip at x0, let Tk

and xk be the rotor configuration and chip location after k steps. Then

(i) If Tk /∈ Rec(G), then Tk ∈ Cycxk(G).

(ii) If Tk ∈ Rec(G), then xk /∈ {x0, . . . , xk−1}.
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Proof. (i) It suffices to show that any oriented cycle in Tk contains xk. Let Y be any set

of vertices of G not containing xk. If Y is disjoint from {x0, . . . , xk−1}, then the rotors at

vertices in Y point the same way in Tk as they do in T0, so they do not form an oriented

cycle. Otherwise, let y ∈ Y be the vertex visited latest before time k. The rotor at y points

to a vertex not in Y , so the rotors at vertices in Y do not form an oriented cycle.

(ii) Suppose xk ∈ {x0, . . . , xk−1}. Let y0 = xk, and for i = 0, 1, . . . let yi+1 =

Tk(yi). Then the last exit from xk before time k was to y1, and by induction if y1, . . . , yi−1

are disjoint from xk, then yi−1 was visited before time k, and the last exit from yi−1 before

time k was to yi. It follows that yi = xk for some i, and hence Tk contains an oriented

cycle.

Lemma 4.2.3. If T1, T2 ∈ Rec(G) and ex(T1) = ex(T2), then T1 = T2.

Proof. We will show that T can be recovered from ex(T ) by reversing one rotor step at a

time. Given rotor configurations U,U ′ and vertices y, y′, we say that (U ′, y′) is a predecessor

of (U, y) if a chip at y′ with rotors configured according to U ′ would move to y in a single step

with resulting rotors configured according to U . For each neighbor z → y with U(z) = y

there is a unique predecessor of the form (U ′, z), which we will denote Pz(U, y).

Suppose (U, y) is an intermediate state in the evolution from T to ex(T ). If U /∈
Rec(G), then by case (i) of Lemma 4.2.2 there is a cycle of rotors U(y) = y1, U(y1) =

y2, . . . , U(yn) = y. If U(z) = y and z 6= yn, then z is not in this cycle, so the predecessor

Pz(U, y) has a cycle disjoint from its chip location. Thus Pz(U, y) does not belong to Rec(G)

or to Cycz(G), so by Lemma 4.2.2 it cannot be an intermediate state in the evolution from

T to ex(T ). The state immediately preceding (U, y) in the evolution from T to ex(T ) must

therefore be Pyn(U, y).

Now suppose U ∈ Rec(G). By case (ii) of Lemma 4.2.2, U is the rotor configuration

when y is first visited. If y = x, then U = T . Otherwise, let x = x0 → x1 → . . . → xk = s

be the path in U from x to the sink. Then the last exit from x before visiting y was to x1.

By induction, if x1, . . . , xj−1 are different from y, then xj−1 was visited before y and the

last exit from xj−1 before visiting y was to xj . It follows that xj = y for some j, and the

state immediately preceding (U, y) must be Pxj−1(U, y).

Thus for any vertex x of G, the operation ex of adding a chip at x and routing it

to the sink acts invertibly on the set of states Rec(G) whose rotors form oriented spanning
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trees rooted at the sink. It is for this reason that we call these states recurrent. We

define the rotor-router group RR(G) as the subgroup of the permutation group of Rec(G)

generated by {ex}x∈G. Note that if there are two (indistinguishable) chips on G and each

takes a single step according to the rotor-router rule, the resulting rotor configuration does

not depend on the order of the two steps. Thus the operators ex commute, and the group

RR(G) is abelian; for a general discussion of this property, which is shared by a number of

models including the abelian sandpile and the rotor-router, see [15].

Lemma 4.2.4. RR(G) acts transitively on Rec(G).

Proof. Given T1, T2 ∈ Rec(G), let u(x) be the number of rotor turns needed to get from

T1(x) to T2(x). Let v(x) be the number of chips ending up at x if u(y) chips start at each

vertex y, with rotors starting in configuration T1, and each chip takes a single step. After

each chip has taken a step, the rotors are in configuration T2, hence ∑
x∈V (G)

u(x)ex

T1 =

 ∑
x∈V (G)

v(x)ex

T2.

Letting g =
∑

x∈V (G)(u(x)− v(x))ex we obtain T2 = gT1.

Theorem 4.2.5. Let G be a strongly connected finite directed graph without loops, let

RR(G) be its rotor-router group, and SP (G) its sandpile group. Then RR(G) ' SP (G).

Proof. Let V be the vertex set of G. Recall [13] that the sandpile group can be expressed

as the quotient

SP (G) ' ZV /(s,∆x)x∈V

where s ∈ V is the sink and

∆x =
∑
y←x

y − outdeg(x)x.

Define φ : ZG → RR(G) by

φ(u) =
∑

x∈V (G)

u(x)ex.

Since adding outdeg(x) chips at x and letting each chip take one step results in one chip at

each neighbor y ← x with the rotors unchanged, we have

outdeg(x)ex =
∑
y←x

ey.
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Thus φ(∆x) = 0 and φ descends to a map SP (G)→ RR(G). This map is trivially surjective;

to show it is injective, by Lemma 4.2.4 we have

#RR(G) ≥ #Rec(G) = #SP (G),

where the equality on the right is the matrix-tree theorem [46].

4.2.2 Aggregation on Regular Trees

Let T be the infinite d-regular tree. Fix an origin vertex o in T . In rotor-router

aggregation, we grow a cluster of points in T by repeatedly starting chips at the origin and

letting them walk until they exit the cluster. Beginning with A1 = {o}, define the cluster

An inductively by

An = An−1 ∪ {xn}, n > 1.

where xn ∈ T is the endpoint of a rotor-router walk started at o and stopped on first exiting

An−1. We do not change the positions of the rotors when adding a new chip.

In this section we use the group isomorphism proved in the last section to show

that An is a perfect ball for suitable values of n (Theorem 1.5.1). The proof makes crucial

use of the calculation of the order of the subgroup of the sandpile group of Tn generated by

the root, Proposition 4.1.7.

A function H on the vertices of a directed graph G is harmonic if

H(x) =
1

outdeg(x)

∑
y←x

H(y)

for all vertices x.

Lemma 4.2.6. Let H be a harmonic function on the vertices of G. Suppose chips on G

can be routed, starting with u(x) chips at each vertex x and ending with v(x) chips at each

vertex x, in such a way that the initial and final rotor configurations are the same. Then∑
x∈V (G)

H(x)u(x) =
∑

x∈V (G)

H(x)v(x).

Proof. Let u = u0, u1, . . . , uk = v be the intermediate configurations. If ui+1 is obtained

from ui by routing a chip from xi to yi, then∑
x∈V (G)

H(x)(u(x)− v(x)) =
∑
i

H(xi)−H(yi). (4.12)
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If the initial and final rotor configurations are the same, then each rotor makes an integer

number of full turns, so the sum in (4.12) can be written∑
i

H(xi)−H(yi) =
∑

x∈V (G)

N(x)
∑
y←x

(H(x)−H(y))

where N(x) is the number of full turns made by the rotor at x. Since H is harmonic, the

inner sum on the right vanishes.

Let Tn be the regular tree of degree d and height n, with an edge added from the

root r to the sink o. Denote by (Xt)t≥0 the simple random walk on Tn, and let τ be the

first hitting time of the set consisting of the leaves and the sink. Fix a leaf z of Tn, and let

H(x) = Px(Xτ = z) (4.13)

be the probability that random walk started at x and stopped at time τ stops at z.

The quantity H(r) can be computed by a standard martingale argument. Recall

that the process

Mt = a−|Xt|

is a martingale, where a = d− 1 and |x| denotes the distance from x to the sink. Since Mt

has bounded increments and Erτ <∞, we obtain from optional stopping

a−1 = ErM0 = ErMτ = p+ (1− p)a−n

where p = Pr(Xτ = o). Solving for p we obtain

Pr (Xτ = o) =
an−1 − 1
an − 1

. (4.14)

In the event that the walk stops at a leaf, by symmetry it is equally likely to stop at any

leaf. Since there are an−1 leaves, we obtain from (4.14)

H(r) =
1− Pr(Xτ = o)

an−1
=

a− 1
an − 1

. (4.15)

Lemma 4.2.7. Let a = d − 1. If the initial rotor configuration on Tn is acyclic, then

starting with an−1
a−1 chips at the root, and stopping each chip when it reaches a leaf or the

sink, exactly one chip stops at each leaf, and the remaining an−1−1
a−1 chips stop at the sink.

Moreover the starting and ending rotor configurations are identical.
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Proof. By Theorem 4.2.5 and Proposition 4.1.7, the element er ∈ RR(Tn) has order an−1
a−1 ,

so the starting and ending rotor configurations are identical. Fix a leaf z and let H be

the harmonic function given by (4.13). By Lemma 4.2.6 and (4.15), the number of chips

stopping at z is ∑
H(x)v(x) =

∑
H(x)u(x) =

an − 1
a− 1

H(r) = 1.

Since there are an−1 leaves, the remaining an−1
a−1 −a

n−1 = an−1−1
a−1 chips stop at the sink.

Let T be the infinite d-regular tree. The ball of radius ρ centered at the origin in

o ∈ T is

Bρ = {x ∈ T : |x| ≤ ρ}

where |x| is the length of the shortest path from o to x. Write

bρ = #Bρ = 1 + (a+ 1)
aρ − 1
a− 1

.

As the following result shows, provided we start with an acyclic configuration of rotors, the

rotor-router aggregation cluster An is a perfect ball at those times when an appropriate

number of chips have aggregated. It follows that at all other times, the cluster is as close

as possible to a ball: if bρ < n < bρ+1 then Bρ ⊂ An ⊂ Bρ+1.

Theorem 4.2.8. Let An be the region formed by rotor-router aggregation on the infinite

d-regular tree, starting from n chips at the origin. If the initial rotor configuration is acyclic,

then Abρ = Bρ for all ρ ≥ 0.

Proof. Define a modified aggregation process A′n as follows. Stop the n-th chip when it

either exits the occupied cluster A′n−1 or returns to o, and let

A′n = A′n−1 ∪ {x′n}

where x′n is the point where the n-th chip stops. By relabeling the chips, this yields a time

change of the original process, i.e. A′n = Af(n) for some sequence f(1), f(2), . . .. Thus it

suffices to show A′cρ = Bρ for some sequence c1, c2, . . .. We will show by induction on ρ that

this is the case for

cρ = 1 + (a+ 1)
ρ∑
t=1

at − 1
a− 1

,

and that after cρ chips have stopped the rotors are in their initial state. For the base case

ρ = 1, we have c1 = a + 2 = d + 1. The first chip stops at o, and the next d stop at each
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Figure 4.5: A branch of the regular ternary tree.

of the neighbors of o, so A′d+1 = B1. Since the rotor at o has performed one full turn, it is

back in its initial state.

Assume now that A′cρ−1
= Bρ−1 and that the rotors are in their initial acyclic

state. Starting with cρ− cρ−1 chips at o and letting each take one step, there are aρ−1
a−1 chips

at each neighbor of o. Since the rotor at o has performed an integer number of full turns,

the rotors remain in their initial acyclic state. By Lemma 4.2.7, exactly one chip will stop

at each leaf z ∈ Bρ−Bρ−1, and the remainder will stop at o. Thus A′cρ = Bρ. Moreover, by

Lemma 4.2.7, once all chips have stopped, the rotors are once again in their initial state,

completing the inductive step.
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4.2.3 Recurrence and Transience

In this section we explore questions of recurrence and transience for the rotor-

router walk on regular trees. We aim to study to what extent the rotor-router walk behaves

as a deterministic analogue of random walk. We find that the behavior depends quite

dramatically on the initial configuration of rotors.

Let Tn be the d-regular tree of height n. We collapse the leaves to a sink labeled b

for boundary, label the origin o and treat it as both the source and a sink. We will examine

the hitting rates of the two sinks for various configurations of the model, and compare to

the expected result for random walk.

Since the origin is a sink, the recurrence and transience of chips on one principal

branch of the tree are independent of the rotor configurations on the other branches. There-

fore, as shown in Figure 4.5, we focus on a single branch Yn of Tn. By the root r of Yn we

will mean the unique node with |r| = 1. To each rotor direction we associate an index from

{1, . . . , d}, with direction d corresponding to a rotor pointing to the parent vertex. Rotors

cycle through the indices in order.

Lemma 4.2.9. Let Yn be a principal branch of Tn, the regular ternary tree of height n. If

all rotors initially point in direction 1, then the first 2n − 1 chips started at r alternate, the

first stopping at b, the next stopping at o, the next at b, and so on until all the rotors again

point in direction 1.

Proof. Induct on n. For n = 2 the result is obvious as there is only one rotor, which sends

the first chip in direction 2 to b, the next chip up in direction 3 to o, and the third chip in

direction 1 to b, at which point the rotor is again in its initial state.

Now suppose that the lemma holds for Yn−1. Let L and R be the two principal

branches of Yn. We think of L and R as each having a rotor that points either to b or back

up to r. The initial state of these rotors is pointing to r. The first chip is sent from the

origin to R, which by induction sends it to b. Note that the root rotor is now pointing

towards R, the R-rotor is pointing to b, and the L-rotor is pointing to r (Figure 4.6a). We

now observe that the next four chips form a pattern that will be repeated. The second

chip is sent directly to o (Figure 4.6b) and the third chip is sent to L which sends it to b

(Figure 4.6c). The fourth chip is sent to R, but by induction this chip is returned and then

it is sent to o (Figure 4.6d). Finally, the fifth chip is sent to L, returned, sent to R, and

through to b (Figure 4.6e). Note that the root rotor is now again pointing towards R, the
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Figure 4.6: The four-chip cycle, which begins after the first chip has been routed to b.

R-rotor is again pointing to b, and the L-rotor is again pointing to r. In this cycle of four

chips, the two branches R and L see two chips apiece. This cycle repeats 2n−2 − 1 times,

and each subtree sees 2n−1 − 2 chips.

Recall that we sent the first chip to R, so that it has seen a total of 2n−1−1 chips.

By induction, all the rotors in R are in their initial configuration. We have sent a total of

2n − 3 chips. The next chip is sent to o, and the last to L which sends it to b. Now L has

seen 2n−1 − 1 chips so by induction all of its rotors are in their initial configuration. The

root rotor is pointing towards L, its initial configuration. We have sent a total of 2n − 1

chips, alternating between b and o, and all of the rotors of Yn are in the initial configuration,

so the inductive step is complete.

We remark that the obvious generalization of Lemma 4.2.9 to trees of degree d > 3

fails; indeed, we do not know of a starting rotor configuration on trees of higher degree which

results in a single chip stopping at o alternating with a string of d− 1 chips stopping at b.

Consider now the case of the infinite ternary tree T . A chip performing rotor-

router walk on T must either return to o or escape to infinity visiting each vertex only
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finitely many times. Thus the state of the rotors after a chip has escaped to infinity is

well-defined. Therefore, we can properly define R(m) as the number of chips that stop at

o after m chips have executed the rotor-router walk beginning at r. The following result

shows that there is a configuration of the tree for which the rotor-router walk behaves as an

exact quasirandom analogue to the random walk, in which chips exactly alternate returning

to the origin with escaping to infinity.

Proposition 4.2.10. Let T be the infinite ternary tree, with principal branches labeled

Y (1), Y (2), and Y (3) in correspondence with the direction indexing of the rotor at the origin.

Set the rotors along the rightmost branch of Y (3) initially pointing in direction 2, and all

remaining rotors initially pointing in direction 1. Let E(m) be the expected number of chips

that return to the origin if m chips perform independent random walks on T . Let R(m) be

the number of chips that return to the origin if m chips perform rotor-router walks on T .

Then |E(m)−R(m)| ≤ 1
2 for all m.

Proof. Lemma 4.2.9 implies that for the branches Y (1) and Y (2), the chips sent to a given

branch alternate indefinitely with the first escaping to infinity, the next returning to o,

and so on. Likewise, chips sent to Y (3) will alternate indefinitely with the first returning

to o, the next escaping to infinity, and so on. Since chips on the full tree T are routed

cyclically through the branches beginning with Y (2), we see that the chips too will alternate

indefinitely between escaping to infinity and returning to the origin, with the first escaping

to infinity. Thus R(m) =
⌊
m
2

⌋
. Taking n → ∞ in (4.14) we obtain E(m) = m

2 , and the

result follows.

Lemma 4.2.11. Let Yn be a principal branch of Tn, the d-regular tree of height n. If all

rotors initially point in direction d− 1, then the first n− 1 chips return to o before hitting

height n of Yn.

Proof. Induct on n. For n = 2, there is a single rotor which sends the first chip from r to

o. Now suppose the lemma holds for Yn−1. Let Z1, . . . , Zd−1 be the principal branches of

Yn. The first chip placed at r is sent directly to o. By the inductive hypothesis, the first

n− 2 chips that are sent to each branch Zi are returned to r before hitting height n of Yn.

Thus each of the next n − 2 chips is sent to Z1, returned to r, sent to Z2, and so on until

it is sent to Zd−1, returned to r and then routed to o.
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Our next result shows that, perhaps surprisingly, the rotors can be set up so as to

make rotor-router walk on the d-regular tree recurrent.

Proposition 4.2.12. Let T be the infinite d-regular tree. If all rotors initially point in

direction d − 1, then every chip in an infinite succession of chips started at the origin

eventually returns to the origin.

Proof. By Lemma 4.2.11, for each n, the n-th chip sent to each principal branch Y returns

to the origin before hitting height n+ 1 of T .

We continue our exploration of recurrence and transience on the infinite ternary

tree T , but now we allow for arbitrary rotor configurations. We again focus on a single

branch Y . For a given rotor configuration we define the escape sequence for the first n chips

to be the binary word a = a1 . . . an, where for each j,

aj =

0, if the jth chip returns to the origin;

1, if the jth chip escapes to infinity.

As noted above, a chip cannot stay within a finite height indefinitely without returning to

the origin, so a is well-defined.

We define a map ψ on an escape sequence a = a1 . . . an. First we rewrite a as the

concatenation of subwords b1 · · · bm where each bj ∈ {0, 10, 110}. Since at least one of any

three consecutive chips entering Y is routed directly upwards by the root rotor, at most

two of any three consecutive letters in an escape sequence a can be ones. Therefore, any

escape sequence can be factored in this way up to the possible concatenation of an extra 0.

Now we define ψ(a) = (c, d) by

(cj , dj) =



(0, 0), if bj = 0

(1, 1), if bj = 110

(0, 1), if bj = 10 and #{i < j|bi = 10} is odd

(1, 0), if bj = 10 and #{i < j|bi = 10} is even

Now we define the map φ on a pair of binary words c and d each of length m by



122

φ(c, d) = b1 · · · bm, where

bj =


0, if (cj , dj) = (0, 0)

10, if (cj , dj) = (1, 0) or (0, 1)

110, if (cj , dj) = (1, 1)

Note that φ is a left inverse of ψ, i.e. φ ◦ψ(a) = a, up to possible concatenation of an extra

0.

Lemma 4.2.13. Let Y be a principal branch of the infinite ternary tree. Fix a rotor

configuration on Y with the root rotor pointing up. Let c and d be the escape sequences for

the configurations on the left and right sub-branches of Y , respectively. Then φ(c, d) is the

escape sequence for the full branch Y .

Proof. We claim that each word bj is the escape sequence for the jth full rotation of the root

rotor. Suppose first that (cj , dj) = (0, 0) so that bj = 0. In this case, since each sub-branch

will return the next chip it sees back to r, the next chip that enters the full tree will be

sent up to the origin, and the root rotor will once again be pointing up to the origin. If

(cj , dj) = (1, 0), the next chip entering the full tree will be routed to the left sub-branch

where it escapes to infinity. The following chip will be routed to the right sub-branch and

then back up to the origin, and the root rotor will once again be pointing up. In this case

we have bj = 10. If (cj , dj) = (0, 1), the next chip entering the full tree will be routed to the

left sub-branch, back up to r, and then to the right sub-branch where it escapes to infinity.

The following chip will be routed directly up to the origin leaving the root rotor pointed

up once again. Again, in this case bj = 10. Finally, if (cj , dj) = (1, 1), the next two chips

entering the full branch will escape to infinity, one through each sub-branch. The following

chip will be routed directly up to the origin, once again leaving the root rotor pointing up.

In this case we have bj = 110.

We observe that if the root rotor is not pointing up and c and d are the escape

sequences of the left and right sub-branches respectively, then a = φ(c, d) is not the escape

sequence of the full branch. In order to calculate the escape sequence of the full branch

we define extended escape sequences on the sub-branches, c′ and d′. Suppose the root rotor

initially points to the left sub-branch. Then c′ = 0c and d′ = d. Suppose the root rotor

initially points to the right sub-branch. Then c′ = 0c and d′ = 0d. Now a = φ(c′, d′) is the

escape sequence of the full branch.
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We now introduce the condition that is central to characterizing which words can

be escape sequences:

any subword of length 2k − 1 contains at most 2k−1 ones (Pk)

We next show that the map ψ preserves this requirement.

Lemma 4.2.14. Let a be a binary word satisfying (Pk) and let ψ(a) = (c, d) as defined

above. Then c and d each satisfy (Pk−1).

Proof. Let c′ be a subword of c of length 2k−1 − 1 and let d′ be the corresponding subword

of d. Let a′ = φ(c′, d′), which is a subword of a0. The formula for φ guarantees that a′ has

one zero for each letter of c′, so a′ has 2k−1− 1 zeros. Since the last letter of a′ is zero, and

a satisfies (Pk), it follows that a′ has at most 2k−1 ones (else after truncating the final zero,

the suffix of a′ of length 2k − 1 has at most 2k−1 − 2 zeros, hence at least 2k−1 + 1 ones).

Let m be the number of ones in c′. Since the instances of (0, 1) and (1, 0) alternate

in the formula for ψ(a) = (c, d), it follows that d′ must have at least m − 1 ones. Since

the number of ones in c′ and d′ combined equals the number of ones in a′, we obtain

2m − 1 ≤ 2k−1, hence m ≤ 2k−2. The same argument with the roles of c and d reversed

shows that d has at most 2k−2 ones.

Lemma 4.2.15. Let a = a1 . . . an be a binary word of length n. Then a is an escape

sequence for some rotor configuration on the infinite branch Y if and only if a satisfies (Pk)

for all k.

Proof. Suppose a is an escape sequence. We prove that a satisfies (Pk) for each k by

induction on k. That a satisfies (P1) is trivial. Now suppose that every escape sequence

satisfies (Pk−1) and let c and d be the extended escape sequences of the left and right sub-

branches respectively. As we saw above, a = φ(c, d) up to the possible concatenation of an

extra zero. Let a′ be a subword of a of length 2k − 1, and let ψ(a′) = (c′, d′). Then there

are words c′′ and d′′ each of which is a subword of c or d, and which are equal to c′ and d′,

respectively, except possibly in the first letter; moreover the first letters satisfy c′1 ≤ c′′1 and

d′1 ≤ d′′1.

By the formula for ψ, the number of ones in a′ is the sum of the number of ones

in c′ and d′. If c′ has length at most 2k−1 − 1, then since c and d satisfy (Pk−1), each of c′

and d′ has at most 2k−2 ones, and therefore a′ has at most 2k−1 ones. On the other hand,
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if c′ has length at least 2k−1, then the number of zeros in a′ is at least 2k−1 − 1. Thus a′

has at most 2k−1 ones, so a satisfies (Pk).

The proof of the converse is by induction on n. For n = 1 the statement is trivial.

Suppose that every binary word of length n − 1 satisfying (Pk) for each k is an escape

sequence. Then by Lemma 4.2.14, ψ(a) = (c, d) gives a pair of binary words each satisfying

(Pk) for all k. If c and d have length n − 1 or less, then they are escape sequences by

induction, hence a is an escape sequence by Lemma 4.2.13. If c and d are of length n then

the definition of ψ implies that aj = 0 for all j, in which case a is an escape sequence by

Proposition 4.2.12.

We can now establish our main result characterizing all possible escape sequences

on the infinite ternary tree.

Theorem 4.2.16. Let a = a1 . . . an be a binary word. For j ∈ {1, 2, 3} write a(j) =

ajaj+3aj+6 . . .. Then a is an escape sequence for some rotor configuration on the infinite

ternary tree T if and only if each a(j) satisfies (Pk) for all k.

Proof. Let Y (1), Y (2), and Y (3) be the three principal branches of T assigned so that the

rotor at the origin initially points to Y (3). Then a is the escape sequence for T if and

only if a(j) = ajaj+3aj+6 . . . is the escape sequence for Y (j). The result now follows from

Lemma 4.2.15.
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Chapter 5

Conjectures and Open Problems

5.1 Rotor-Router Aggregation

A number of intriguing questions remain unanswered about rotor-router aggre-

gation in Zd. While we have shown in Theorem 1.2.1 that the asymptotic shape of the

rotor-router model with a single point source of particles is a ball, the near perfect cir-

cularity found in Figure 1.3 remains a mystery. In particular, we do not know whether

an analogue of Theorem 1.2.2 holds for the rotor-router model, with constant error in the

radius as the number of particles grows.

Equally mysterious are the patterns in the rotor directions evident in Figure 1.3.

The rotor directions can be viewed as values of the odometer function mod 2d, but our

control of the odometer is not fine enough to provide useful information about the patterns.

If the rescaled occupied region
√
π/nAn is viewed as a subset of the complex plane, it

appears that the monochromatic regions visible in Figure 1.3, in which all rotors point in

the same direction, occur near points of the form (1+2z)−1/2, where z = a+bi is a Gaussian

integer (i.e. a, b ∈ Z). We do not even have a heuristic explanation for this phenomenon.

Figure 5.1 shows the image of A1,000,000 under the map z 7→ 1/z2; the monochromatic

patches in the transformed region occur at lattice points.

László Lovász (personal communication) has asked whether the occupied region

An is simply connected, i.e. whether its complement is connected. While Theorem 1.2.1

shows that An cannot have any holes far from the boundary, we cannot answer his question

at present.

Another question is whether our methods could be adapted to internal DLA to
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Figure 5.1: Image of the rotor-router aggregate of one million particles under the map
z 7→ 1/z2. The colors represent the rotor directions. The white disc in the center is the
image of the complement of the occupied region.

show that if n = ωdr
d, then with high probability Br−c log r ⊂ In, where In is the internal

DLA cluster of n particles. The current best bound is due to Lawler [30], who proves that

with high probability Br−r1/3(log r)2 ⊂ In.

Finally, let us mention two simple variants of aggregation models which appear

to have interesting limit shapes, but about which we cannot prove anything at present.

The following conjecture addresses a variant of the rotor-router model. Analogous vari-

ants can also be defined for internal DLA and the divisible sandpile, and by analogy with

Theorem 1.1.2 we expect all three models to yield the same limiting shape.

Conjecture. Let An be the region formed from rotor-router aggregation starting with

n particles at the origin in Z2, if rotors on the positive x-axis reflect particles back in the

direction they came from; all other rotors operate normally. Then as n→∞, the asymptotic

shape of the rescaled region n−1/2An is the cardioid in R2 whose boundary is given by the
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Figure 5.2: Rotor-router aggregation started from a point source at the origin in Z2, modi-
fied so that sites on the positive x-axis (a) reflect particles back in the direction they came
from; or, (b) send all particles in the downward direction.

curve

π2|x|4 − π|x|2 +
2
√

2π
3
√

3
x1 −

1
12

= 0.

This apparent cardioid is pictured in Figure 5.2 on the left. If instead we alter

the rotors on the positive x-axis so that they always point downward, we obtain the spiral-

shaped region on the right. Our simulations indicate that a limiting shape exists for this

variant as well, but we do not have a conjectured formula for the boundary curve.

5.2 Sandpile Aggregation

While Theorem 1.2.3 improves on the best-known bounds of [31] and [18] for the

shape of sandpile aggregation in Zd, it does not settle the question of existence of a limiting

shape. There is also an intriguing pattern in the shapes of the sandpile aggregates Sn,H of

n particles in which every site starts with a hole of depth H. These shapes are pictured in

Figure 5.3 for n = 250, 000 and three different values of H.

Question. In dimension two, is the limiting shape n−1/2Sn,H a regular polygon with 4H+12

sides?
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H = −2 H = −1 H = 0

Figure 5.3: Abelian sandpile shape Sn,H started from a point source of n = 250, 000 particles
in Z2, for three different values of the hole depth H.

Simulations indicate a regular polygon with some rounding at the corners; it re-

mains unclear if the rounded portions of the boundary become negligible in the limit. If

the limiting shape is not a polygon, it would still be very interesting to establish the weaker

statement that it has the dihedral symmetry D4H+12.

The only case that is even partly solved is H = −2: Fey and Redig [18] prove that

Sn,−2 is a cube in Zd, but the growth rate of the cube is still not known. It would be of

interest to show that the volume of the cube Sn,−2 is of order n.
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