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In the two-dimensional rotor-router walk (defined by Jim Propp and pre-
sented beautifully in [4]), the first time a particle leaves a site x it departs
east; the next time this or another particle leaves x it departs south; the next
departure is west, then north, then east again, etc. More generally, in any di-
mension d ≥ 1, for each site x ∈ Z

d fix a cyclic ordering of its 2d neighbors, and
require successive departures from x to follow this ordering. In rotor-router ag-
gregation, we start with n particles at the origin; each particle in turn performs
rotor-router walk until it reaches an unoccupied site. Let An denote the shape
obtained from rotor-router aggregation of n particles in Z

d; for example, in Z
2

with the ordering of directions as above, the sequence will be begin A1 = {0},
A2 = {0, (1, 0)}, A3 = {0, (1, 0), (0,−1)}, etc. As noted in [4], simulations in
two dimensions indicated that An is close to a ball, but there was no theorem
explaining this phenomenon.

Order the points in the lattice Z
d according to increasing distance from the

origin, and let Bn consist of the first n points in this ordering; we call Bn the
lattice ball of cardinality n. In this letter we outline a proof that for all d, the
rotor-router shape An in Z

d is indeed close to a ball, in the sense that

the number of points in the symmetric difference An∆Bn is o(n) . (1)

See [6] for a complete proof, and error bounds. Let B ⊂ R
d denote a ball

of unit volume centered at the origin, and let A∗

n ⊂ R
d be the union of unit

cubes centered at the points of An; then (1) means that the volume of the
symmetric difference n−1/dA∗

n∆B tends to zero as n → ∞. A novel feature
of our argument is the use of random walk and Brownian motion to analyze a
deterministic cellular automaton.

A stochastic analogue of the rotor-router walk, called internal diffusion lim-

ited aggregation (IDLA) was introduced earlier by Diaconis and Fulton [3]. In
IDLA one also starts with n particles at the origin 0, and each particle in turn
walks until it reaches an unoccupied site; however, the particles perform simple
random walk instead of rotor-router walks. Lawler, Bramson and Griffeath [5]
showed that the asymptotic shape of IDLA is a ball. Our result does not rely
on theirs, but we do use a modification of IDLA in our analysis.

Since the lattice ball Bn minimizes the quadratic weight Q(A) =
∑

x∈A ‖x‖2

among all sets A ⊂ Z
d of cardinality n, the difference Q(An) − Q(Bn) can be
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Figure 1: Rotor-router (left) and IDLA shapes of 10,000 particles. Each site is
colored according to the direction in which the last particle left it.

seen as a measurement of how far the set An is from a ball. We claim that

Q(An) <
∼Q(Bn) (where an

<
∼ bn means that lim supan/bn ≤ 1 ). (2)

It is easy to prove that this implies (1). To bound Q(An), we use a property
of the function ‖x‖2: its value at a point x is one less than its average value
on the 2d neighbors of x. For a set A ⊂ Z

d and a point x ∈ Z
d, let E(x, A)

be the expected time for random walk started at x to reach the complement of
A. If x /∈ A, then E(x, A) = 0, while if x ∈ A, then E(x, A) is one more than
the average value of E(y, A) over the 2d neighbors y of x. This implies that
h(x) = ‖x‖2 + E(x, A) is harmonic in A: its value at x ∈ A equals its average
on the neighbors of x.

Consider rotor-router aggregation starting with n particles at 0, and re-
call that An is the set of sites occupied by the particles when they have all
stopped. Given a configuration of n particles at (not necessarily distinct) loca-
tions x1, . . . , xn, define the harmonic weight of the configuration to be

W = W (x1, . . . , xn) =

n
∑

k=1

(

‖xk‖
2 + E(xk, An)

)

.

We track the evolution of W during rotor-router aggregation. Initially, W =
W (0, . . . , 0) = nE(0, An). Since every 2d consecutive visits to a site x result
in one particle stepping to each of the neighbors of x, by harmonicity, the
net change in W resulting from these 2d steps is zero.. Thus the final harmonic
weight determined by the n particles, Q(An)+

∑

x∈An
E(x, An), equals the initial

weight nE(0, An), plus a small error due to the fact that the number of visits to
any given site may not be an exact multiple of 2d. It is not hard to bound this
error (see [6]) and deduce that Q(An) ≈ nE(0, An) −

∑

x∈An
E(x, An), where

an ≈ bn means that liman/bn = 1.
The key step in our argument involves the following modified IDLA. Be-

ginning with n particles {pk}
n
k=1

at the origin, let each particle pk in turn
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Figure 2: Segments of the boundaries of rotor-router (top) and IDLA shapes
formed from one million particles. The rotor-router shape has a smoother
boundary.

perform simple random walk until it either exits An or reaches a site differ-
ent from those occupied by p1, . . . , pk−1. At the random time τn when all the
n particles have stopped, the particles that did not exit An occupy distinct
sites in An. If we let these particles continue walking, the expected number
of steps needed for all of them to exit An is at most

∑

x∈An
E(x, An). Thus

nE(0, An) ≤ E(τn) +
∑

x∈An
E(x, An). So far, we have explained why

Q(An) ≈ nE(0, An) −
∑

x∈An

E(x, An) ≤ E(τn) . (3)

To estimate E(τn), we want to bound, for each k < n, the expected num-
ber of steps made by the particle pk+1 in the random process above; for this,
we use a general upper bound on expected exit times from k-point sets in Z

d.
In 1982, Aizenman and Simon [1] showed that among all regions in R

d of a
fixed volume, a ball centered at the origin maximizes the expected exit time
for standard d-dimensional Brownian motion started at the origin. (Their proof
uses the spherical symmetry of the Gaussian transition density and the power-
ful Brascamp-Lieb-Luttinger [2] rearrangement inequality.) Since random walk
paths are well-approximated by Brownian paths, the Brownian motion result
from [1] can be used to prove that for any k-point set A ⊂ Z

d, the expected
exit time E(0, A) for random walk is at most E(0, Bk) plus a small error term;
details may be found in [6]. The number of steps taken by the particle pk+1 in
our modified IDLA is at most the time for random walk started at 0 to exit the
set occupied by the stopped particles p1, . . . , pk. It follows that

E(τn) <
∼

n
∑

k=1

E(0, Bk) . (4)

The final step in our argument is to show that
∑n

k=1
E(0, Bk) is approxi-

mately equal to Q(Bn). Fix k ≤ n and let a single particle p perform random
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walk starting at 0 and stopping at the first time tk that p exits Bk. If S(j) is
the location of p after j steps, then the expectation of ‖S(j + 1)‖2 given S(j)
equals ‖S(j)‖2 + 1. Therefore

E(0, Bk) = E(tk) = E

(

‖S(tk)‖2

)

. (5)

(Formally, this follows from the Optional Stopping Theorem for Martingales.)
Let v1, v2, . . . be an ordering of Z

d in increasing distance from the origin,
and recall that Bk = {v1, . . . , vk}. Since all points on the boundary of Bk are

about the same distance from the origin, E

(

‖S(tk)‖2

)

≈ ‖vk‖
2. Summing this

over k ≤ n and using (5) gives

n
∑

k=1

E(0, Bk) ≈
n

∑

k=1

‖vk‖
2 = Q(Bn) .

Together with (3) and (4), this yields Q(An) <
∼Q(Bn), as claimed.

Concluding Remark. As discovered by Jim Propp, simulations in two dimen-
sions indicate that the shape generated by the rotor-router walk is significantly
rounder than that of IDLA. One quantitative way of measuring roundness is to
compare inradius and outradius. The inradius of a region A is the minimum
distance from the origin to a point not in A; the outradius is the maximum
distance from the origin to a point in A. In our simulation up to a million
particles, the difference between the inradius and outradius of the IDLA shape
rose as high as 15.2. By contrast, the largest deviation between inradius and
outradius for the rotor-router shape up to a million particles was just 1.74. Not
only is this much rounder than the IDLA shape, it’s about as close to a perfect
circle as a set of lattice points can get!

Due to error terms incurred along the way, our argument only shows that
the rotor-router shape is roughly spherical. It remains a challenge to explain
the almost perfectly spherical shapes encountered in simulations.
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